1
|
Gastelum C, Perez L, Hernandez J, Le N, Vahrson I, Sayers S, Wagner EJ. Adaptive Changes in the Central Control of Energy Homeostasis Occur in Response to Variations in Energy Status. Int J Mol Sci 2021; 22:2728. [PMID: 33800452 PMCID: PMC7962960 DOI: 10.3390/ijms22052728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Energy homeostasis is regulated in coordinate fashion by the brain-gut axis, the homeostatic energy balance circuitry in the hypothalamus and the hedonic energy balance circuitry comprising the mesolimbcortical A10 dopamine pathway. Collectively, these systems convey and integrate information regarding nutrient status and the rewarding properties of ingested food, and formulate it into a behavioral response that attempts to balance fluctuations in consumption and food-seeking behavior. In this review we start with a functional overview of the homeostatic and hedonic energy balance circuitries; identifying the salient neural, hormonal and humoral components involved. We then delve into how the function of these circuits differs in males and females. Finally, we turn our attention to the ever-emerging roles of nociceptin/orphanin FQ (N/OFQ) and pituitary adenylate cyclase-activating polypeptide (PACAP)-two neuropeptides that have garnered increased recognition for their regulatory impact in energy homeostasis-to further probe how the imposed regulation of energy balance circuitry by these peptides is affected by sex and altered under positive (e.g., obesity) and negative (e.g., fasting) energy balance states. It is hoped that this work will impart a newfound appreciation for the intricate regulatory processes that govern energy homeostasis, as well as how recent insights into the N/OFQ and PACAP systems can be leveraged in the treatment of conditions ranging from obesity to anorexia.
Collapse
Affiliation(s)
- Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Reglodi D, Illes A, Opper B, Schafer E, Tamas A, Horvath G. Presence and Effects of Pituitary Adenylate Cyclase Activating Polypeptide Under Physiological and Pathological Conditions in the Stomach. Front Endocrinol (Lausanne) 2018; 9:90. [PMID: 29615974 PMCID: PMC5868562 DOI: 10.3389/fendo.2018.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide with widespread occurrence throughout the body including the gastrointestinal system. In the small and large intestine, effects of PACAP on cell proliferation, secretion, motility, gut immunology and blood flow, as well as its importance in bowel inflammatory reactions and cancer development have been shown and reviewed earlier. However, no current review is available on the actions of PACAP in the stomach in spite of numerous data published on the gastric presence and actions of the peptide. Therefore, the aim of the present review is to summarize currently available data on the distribution and effects of PACAP in the stomach. We review data on the localization of PACAP and its receptors in the stomach wall of various mammalian and non-mammalian species, we then give an overview on PACAP's effects on secretion of gastric acid and various hormones. Effects on cell proliferation, differentiation, blood flow and gastric motility are also reviewed. Finally, we outline PACAP's involvement and changes in various human pathological conditions.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
- *Correspondence: Dora Reglodi,
| | - Anita Illes
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
- 1st Department of Internal Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Eszter Schafer
- Department of Gastroenterology, Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
3
|
Arin RM, Gorostidi A, Navarro-Imaz H, Rueda Y, Fresnedo O, Ochoa B. Adenosine: Direct and Indirect Actions on Gastric Acid Secretion. Front Physiol 2017; 8:737. [PMID: 29018360 PMCID: PMC5614973 DOI: 10.3389/fphys.2017.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Composed by a molecule of adenine and a molecule of ribose, adenosine is a paradigm of recyclable nucleoside with a multiplicity of functions that occupies a privileged position in the metabolic and regulatory contexts. Adenosine is formed continuously in intracellular and extracellular locations of all tissues. Extracellular adenosine is a signaling molecule, able to modulate a vast range of physiologic responses in many cells and organs, including digestive organs. The adenosine A1, A2A, A2B, and A3 receptors are P1 purinergic receptors, G protein-coupled proteins implicated in tissue protection. This review is focused on gastric acid secretion, a process centered on the parietal cell of the stomach, which contains large amounts of H+/K+-ATPase, the proton pump responsible for proton extrusion during acid secretion. Gastric acid secretion is regulated by an extensive collection of neural stimuli and endocrine and paracrine agents, which act either directly at membrane receptors of the parietal cell or indirectly through other regulatory cells of the gastric mucosa, as well as mechanic and chemic stimuli. In this review, after briefly introducing these points, we condense the current body of knowledge about the modulating action of adenosine on the pathophysiology of gastric acid secretion and update its significance based on recent findings in gastric mucosa and parietal cells in humans and animal models.
Collapse
Affiliation(s)
- Rosa M Arin
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Adriana Gorostidi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Hiart Navarro-Imaz
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| |
Collapse
|
4
|
Zhang Y, Xiu M, Jiang J, He J, Li D, Liang S, Chen Q. Novokinin inhibits gastric acid secretion and protects against alcohol-induced gastric injury in rats. Alcohol 2016; 56:1-8. [PMID: 27814789 DOI: 10.1016/j.alcohol.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
Novokinin (Arg-Pro-Leu-Lys-Pro-Trp), a potent vasorelaxing and hypotensive peptide modified from ovokinin, exhibits highly selective affinity for the AT2 receptor. However, its role in gastrointestinal functions is still not fully understood. In this study, we found that novokinin inhibited basal gastric acid secretion and protected gastric mucosa from alcohol-induced injury in a dose-related manner in rats after intracerebroventricular (i.c.v.) administration. Novokinin significantly decreased basal gastric acid output at the dose of 50 and 100 nmol/rat. The effect of novokinin on gastric acid secretion was reversed by central injection of PD 123319 (10 nmol/rat), an AT2 receptor antagonist, and peripheral injection of indomethacin (10 mg/kg), an inhibitor of prostaglandin synthesis. Meanwhile, pre-treatment with novokinin at doses of 10, 50, and 100 nmol/rat significantly reduced the alcohol-induced gastric mucosal injury compared to the ulcer-control group, which was inhibited by indomethacin (10 mg/kg). The result showed a remarkable increase in the level of prostaglandin E2 (PGE2), glutathione (GSH), and a decrease in malondialdehyde (MDA) after i.c.v. administration of novokinin. These findings suggest that the inhibitory effect of novokinin on gastric acid secretion is probably mediated via an AT2 receptor-prostaglandins (PGs) pathway. The gastroprotective effect of novokinin might be attributed to the inhibition of acid secretion, the cytoprotection of PGs, and the antioxidant property.
Collapse
|
5
|
Localization and chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric area in the physiological state and after stomach partial resection. J Mol Neurosci 2013; 52:90-100. [PMID: 24458741 DOI: 10.1007/s12031-013-0102-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
The aim of our study was to localize and define immunocytochemical characteristic of the dorsal motor nucleus of the vagus (DMX) neurons projecting to the porcine stomach prepyloric region in the physiological state and after gastric partial resection. To identify the stomach-projecting perikarya, the neuronal retrograde tracer--Fast Blue (FB) was injected into the studied region of control and resection group (RES). In the RES group, on 22nd day after FB injection, the partial resection of the stomach region previously injected with FB was performed. Sections were immunostained with ChAT, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu-enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the DMX of control and RES group, the stomach-projecting perikarya were found in the entire extent of the nucleus bilaterally. Within control animals, 30.08 ± 1.97 % of the gastric DMX perikarya expressed PACAP, while other substances were found only in the neuronal fibers. In the RES group DMX, PACAP was found in 45.58 ± 2.2 %, VIP in 28.83 ± 3.63 %, NOS in 21.22 ± 3.32 %, and GAL in 5.67 ± 1.49 % of the FB-labeled gastric perikarya. Our data implicate PACAP, VIP, NOS, and GAL as neuronal survival promoting substances and the CART-, LENK-, SP- NOS-, and GAL-immunoreactive processes in control of the gastric vagal neurons in the pig.
Collapse
|
6
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
7
|
Schubert ML, D. Kaunitz J. Gastric Secretion. SLEISENGER AND FORDTRAN'S GASTROINTESTINAL AND LIVER DISEASE 2010:817-832.e7. [DOI: 10.1016/b978-1-4160-6189-2.00049-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology 2008; 134:1842-60. [PMID: 18474247 DOI: 10.1053/j.gastro.2008.05.021] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/28/2008] [Indexed: 12/16/2022]
Abstract
Recent milestones in the understanding of gastric acid secretion and treatment of acid-peptic disorders include the (1) discovery of histamine H(2)-receptors and development of histamine H(2)-receptor antagonists, (2) identification of H(+)K(+)-ATPase as the parietal cell proton pump and development of proton pump inhibitors, and (3) identification of Helicobacter pylori as the major cause of duodenal ulcer and development of effective eradication regimens. This review emphasizes the importance and relevance of gastric acid secretion and its regulation in health and disease. We review the physiology and pathophysiology of acid secretion as well as evidence regarding its inhibition in the management of acid-related clinical conditions.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Department of Medicine, Division of Gastroenterology, Virginia Commonwealth University's Medical College of Virginia, McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, USA.
| | | |
Collapse
|
9
|
Lam IPY, Siu FKY, Chu JYS, Chow BKC. Multiple actions of secretin in the human body. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:159-90. [PMID: 18275888 DOI: 10.1016/s0074-7696(07)65004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of secretin initiated the field of endocrinology. Over the past century, multiple gastrointestinal functions of secretin have been extensively studied, and it was discovered that the principal function of this peptide in the gastrointestinal system is to facilitate digestion and to provide protection. In view of the late identification of secretin and the secretin receptor in various tissues, including the central nervous system, the pleiotropic functions of secretin have more recently been an area of intense focus. Secretin is a classical hormone, and recent studies clearly showed secretin's involvement in neural and neuroendocrine pathways, although the neuroactivity and neural regulation of its release are yet to be elucidated. This chapter reviews our current understanding of the pleiotropic actions of secretin with a special focus on the hormonal and neural interdependent pathways that mediate these actions.
Collapse
Affiliation(s)
- Ian P Y Lam
- Department of Zoology, University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
10
|
Bernsand M, Håkanson R, Norlén P. Tachyphylaxis of the ECL-cell response to PACAP: receptor desensitization and/or depletion of secretory products. Br J Pharmacol 2007; 152:240-8. [PMID: 17660849 PMCID: PMC1978265 DOI: 10.1038/sj.bjp.0707385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Rat stomach ECL cells secrete histamine and pancreastatin in response to gastrin and pituitary adenylate cyclase-activating peptide-27 (PACAP). This study applies microdialysis to explore how ECL cells in situ respond to PACAP and gastrin. EXPERIMENTAL APPROACH Both peptides were administered by microinfusion into the gastric submucosa. The microdialysate was analysed for histamine and pancreastatin (ECL-cell markers) and for somatostatin (D-cell marker). KEY RESULTS Microinfusion of PACAP (0.01-0.3 nmol microl(-1)) raised microdialysate histamine and pancreastatin dose-dependently. The response was powerful but short-lived. The response to gastrin was sustained at all doses tested. It is unlikely that the transient nature of the histamine response to PACAP reflects inadequate histamine synthesis, since the pancreastatin response to PACAP was short-lived too, and both gastrin and PACAP activated ECL-cell histidine decarboxylase. Unlike gastrin, PACAP mobilized somatostatin. Co-infusion of somatostatin abolished the histamine-mobilizing effect of PACAP. However, pretreatment with the somatostatin receptor type-2 antagonist (PRL-2903) did not prolong the histamine response to PACAP, suggesting that mobilization of somatostatin does not explain the transient nature of the response. Repeated administration of 0.1 nmol microl(-1) of PACAP (1 h infusions, 1 h intervals) failed to induce a second histamine response. Pretreatment with a low dose of PACAP (0.03 nmol microl(-1)) abolished the response to a subsequent near-maximal PACAP challenge (0.3 nmol microl(-1)). CONCLUSION The transient nature of the histamine response to PACAP reflects desensitization of the PACAP receptor and/or exhaustion of a specific storage compartment that responds to PACAP but not to gastrin.
Collapse
Affiliation(s)
- M Bernsand
- Unit of Cellular and Molecular Pharmacology, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - R Håkanson
- Unit of Cellular and Molecular Pharmacology, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - P Norlén
- Unit of Cellular and Molecular Pharmacology, Department of Experimental Medical Sciences, Lund University Lund, Sweden
- Unit of Clinical and Experimental Pharmacology, Department of Laboratory Medicine, Lund University Hospital Lund, Sweden
- Author for correspondence:
| |
Collapse
|
11
|
Affiliation(s)
- Sean P Harbison
- Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
12
|
Piqueras L, Taché Y, Martínez V. Peripheral PACAP inhibits gastric acid secretion through somatostatin release in mice. Br J Pharmacol 2004; 142:67-78. [PMID: 15023860 PMCID: PMC1574929 DOI: 10.1038/sj.bjp.0705739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
1. Studies in rats suggest that PACAP modulates gastric acid secretion through the release of both histamine and somatostatin. 2. We characterized the effects of exogenous PACAP on gastric acid secretion in urethane-anesthetized mice implanted with a gastric cannula and in conscious 2-h pylorus ligated mice, and determined the involvement of somatostatin and somatostatin receptor type 2 (SSTR2) by using somatostatin immunoneutralization, the SSTR2 antagonist, PRL-2903, and SSTR2 knockout mice. 3. Urethane-anesthetized wild-type mice had low basal acid secretion (0.10+/-0.01 micromol (10 min)(-1)) compared with SSTR2 knockout mice (0.93+/-0.07 micromol (10 min)(-1)). Somatostatin antibody and PRL-2903 increased basal secretion in wild-type mice but not in SSTR2 knockout animals. 4. In wild-type urethane-anesthetized mice, PACAP-38 (3-270 microg kg(-1) h(-1)) did not affect the low basal acid secretion, but inhibited the acid response to pentagastrin, histamine, and bethanechol. 5. In wild-type urethane-anesthetized mice pretreated with somatostatin antibody or PRL-2903 and in SSTR2 knockout mice, peripheral infusion of PACAP-38 or somatostatin-14 did not inhibit the increased basal gastric acid secretion. 6. In conscious wild-type mice, but not in SSTR2 knockout mice, PACAP-38 inhibited gastric acid secretion induced by 2-h pylorus ligation. The antisecretory effect of PACAP-38 was prevented by immunoneutralization of somatostatin. 7. These results indicate that, in mice, peripheral PACAP inhibits gastric acid secretion through the release of somatostatin and the activation of SSTR2 receptors. There is no evidence for stimulatory effects of PACAP on acid secretion in mice.
Collapse
Affiliation(s)
- Laura Piqueras
- Department of Physiology, Pharmacology and Toxicology, Cardenal Herrera CEU University, Valencia, Spain
| | - Yvette Taché
- CURE:Digestive Diseases Research Center, Center for Neurovisceral Sciences, VA Greater Los Angeles Health Care System, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, Los Angeles, CA, U.S.A
| | - Vicente Martínez
- Department of Physiology, Pharmacology and Toxicology, Cardenal Herrera CEU University, Valencia, Spain
- Author for correspondence:
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Gastric acid facilitates the digestion of protein and the absorption of iron, calcium, and vitamin B12. It also protects against bacterial overgrowth and enteric infection, including prion disease. When homeostatic mechanisms malfunction, the volume and concentration of acid may overwhelm mucosal defense mechanisms, leading to duodenal ulcer, gastric ulcer, and gastroesophageal reflux disease. This article reviews recent knowledge contributing to understanding of the regulation of gastric acid secretion at the central, peripheral, and intracellular levels. RECENT FINDINGS The vagus nerve contains afferent fibers that transmit sensory information from the stomach to the nucleus of the solitary tract. Input from the nucleus of the solitary tract is relayed to vagal efferent neurons that originate from two brain stem nuclei: the nucleus ambiguus and the dorsal motor nucleus of the vagus. The latter is also influenced by thyrotropin-releasing hormone neurons that act centrally to stimulate acid secretion. The main peripheral stimulants of acid secretion are the hormone gastrin and the paracrine amine histamine. Gastrin stimulates acid secretion directly and, more importantly, indirectly by releasing histamine from fundic enterochromaffin-like cells. Gastrin also exerts trophic effects on various tissues, including the gastric and intestinal mucosa. The main inhibitor of acid secretion is somatostatin. Somatostatin, acting via ssTR2 receptors, exerts a tonic paracrine inhibitory influence on the secretion of gastrin, histamine, and acid secretion. Calcitonin gene-related peptide, adrenomedullin, amylin, atrial natriuretic peptide, and pituitary adenylate cyclase-activating polypeptide all stimulate somatostatin secretion and thus inhibit acid secretion. HK-ATPase, the proton pump of the parietal cell, is stored within cytoplasmic tubulovesicles during the resting state, but during stimulation, it is shuttled to the canalicular membrane by a poorly understood mechanism that probably involves soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins. The proton pump inhibitor, pantoprazole, is unique in that it binds cysteine 822, located deep within the membrane domain of the alpha-subunit. The difficulty that reducing agents, such as glutathione, have in reaching cysteine 822 may be responsible for the longer half-time for acid recovery observed with pantoprazole. Hypergastrinemia, induced by proton pump inhibitors, enhances expression of cyclooxygenase-2 and hence prostaglandins within parietal cells, a feedback pathway that may protect the stomach against acid-induced damage. SUMMARY In the past year, significant advances have been made in understanding of the regulation of gastric acid secretion. Ultimately, these advances should lead to improved therapies to prevent and treat acid-related disorders. Gastric acid secretion must be precisely controlled at a variety of levels to prevent disease caused by hyperchlorhydria and hypochlorhydria. The mechanisms include neural (central and peripheral), hormonal, paracrine, and intracellular pathways that operate in concert to switch acid secretion on during ingestion of a meal and off during the interdigestive period. A better understanding of the physiology of acid secretion in health and disease should eventually lead to improved therapies to prevent and treat acid-related disorders.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Department of Medicine, Division of Gastroenterology, Medical College of Virginia and McGuire VAMC, Richmond, Virginia, USA.
| |
Collapse
|
14
|
Piqueras L, Taché Y, Martínez V. Somatostatin receptor type 2 mediates bombesin-induced inhibition of gastric acid secretion in mice. J Physiol 2003; 549:889-901. [PMID: 12692184 PMCID: PMC2342983 DOI: 10.1113/jphysiol.2003.039750] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Studies in isolated mouse stomach showed that bombesin releases somatostatin. We characterized the effects of exogenous bombesin on gastric acid secretion in mice and determined the involvement of somatostatin and somatostatin receptor type 2 (SSTR2) by using somatostatin immunoneutralization, the SSTR2 antagonist, PRL-2903, and SSTR2 knockout mice. Gastric acid secretion was monitored under basal and pentagastrin-, histamine- or bethanechol-stimulated conditions in urethane-anaesthetized mice. Bombesin (10-40 micro g kg-1 h-1) and somatostatin-14 (20 micro g kg-1 h-1) were infused I.V. 10 and 30 min after PRL-2903 or somatostatin antibody pretreatment, respectively. Urethane-anaesthetized wild-type mice had low basal acid secretion (0.12 +/- 0.01 micro mol (10 min)-1) compared with SSTR2 knockout mice (1.43 +/- 0.10 micro mol (10 min)-1). Somatostatin antibody and PRL-2903 increased basal secretion in wild-type mice but not in SSTR2 knockout animals. In wild-type mice, bombesin inhibited secretagogue-stimulated acid secretion in a dose-dependent manner, and somatostatin-14 inhibited pentagastrin-stimulated secretion. In wild-type mice pretreated with somatostatin antibody or PRL-2903 and in SSTR2 knockout mice, bombesin and somatostatin-14 I.V. infusion did not alter the increased gastric acid secretion. These results indicate that, in mice, bombesin inhibits gastric acid secretion through the release of somatostatin and the activation of SSTR2. These observations strengthen the important role of SSTR2 in mediating somatostatin inhibitory actions on gastric acid secretion.
Collapse
Affiliation(s)
- Laura Piqueras
- Department of Physiology, Pharmacology and Toxicology, Cardenal Herrera CEU University, Valencia, Spain
| | | | | |
Collapse
|
15
|
Abstract
Overlapping neural, hormonal, and paracrine pathways finely regulate gastric acid secretion. In rats and guinea pigs, most of the intrinsic neural innervation to the gastric mucosa originates in the myenteric plexus. In contrast, human stomachs have a clearly defined submucosal plexus that contains a variety of transmitters including nitric oxide, vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP), substance P, and calcitonin gene-related peptide (CGRP). Although GRP is known to participate in meal-stimulated acid secretion by releasing gastrin in a variety of laboratory animals, recent studies were unable to demonstrate a role for endogenous GRP in meal-stimulated gastrin secretion in humans. Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin-glucagon-VIP family, has been localized to gastric mucosal neurons and may participate in vagally mediated acid secretion. Two novel peptides, ghrelin and leptin, have been localized to the stomach. Peripheral administration of ghrelin stimulates and of leptin inhibits acid secretion. The binding of secretagogues to parietal cells generates changes in second messengers that regulate the translocation and activation of the proton pump, HK-ATPase. In resting cells, HK-ATPase is contained within cytoplasmic tubulovesicles in an inactive form. At stimulation, the tubulovesicles fuse with the apical canaliculi and the HK-ATPase is incorporated into the apical membrane where it actively pumps H ions in exchange for K. Acute infection with Helicobacter pylori results in hypochlorhydria, whereas chronic infection can cause either hypo- or hyperchlorhydria, depending on the distribution of the infection and the degree of corpus gastritis. Recent studies suggest that inflammatory cytokines, produced in response to the organism, can play a role in the perturbations in acid and gastrin secretion induced by H. pylori.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Department of Medicine, Division of Gastroenterology, Medical College of Virginia and McGuire VAMC Richmond, Virginia 23249, USA.
| |
Collapse
|
16
|
Miampamba M, Germano PM, Arli S, Wong HH, Scott D, Taché Y, Pisegna JR. Expression of pituitary adenylate cyclase-activating polypeptide and PACAP type 1 receptor in the rat gastric and colonic myenteric neurons. REGULATORY PEPTIDES 2002; 105:145-54. [PMID: 11959368 PMCID: PMC6736535 DOI: 10.1016/s0167-0115(02)00003-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to regulate gastric acid secretion and intestinal motility. In the present study, the pattern of distribution of PACAP and PACAP type 1 receptor (PAC1) immunoreactivities were examined in the rat stomach and distal colon using a specific polyclonal antibody raised against rat/human PAC1. Western blot of the membrane preparations of NIH/3T3 cells transfected with the human PAC1 obtained by using rabbit polyclonal anti-PAC1 antibody showed a protein band with a molecular mass of approximately 50 kDa. NIH/3T3 cells transfected with the human PAC1 and incubated with the anti-PAC1 antibody displayed surface cell-type immunoreactivity, which was internalized following ligand exposure. In gastric or colonic longitudinal muscle/myenteric plexus (LMMP) whole mount preparations as well as cryostat sections, PACAP immunoreactivity was observed in cell bodies within the myenteric ganglia and nerve fibers in the muscle layers and mucosa. PAC1 immunoreactivity was confined mainly on the surface of the nerve cells. PACAP and PAC1 immunoreactivities showed a similar pattern of distribution in gastric and colonic tissues. Adjacent sections or LMMP whole mount preparations labeled with protein gene product 9.5 (PGP 9.5) revealed the neuronal identity of myenteric cells bearing PAC1. The neuronal localization of PACAP and PAC1 receptors supports their role in the neural regulation of gastric acid secretion and gastrointestinal motor function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph R. Pisegna
- Corresponding author. Chief Gastroenterology and Hepatology (111C), VA GLAHS, Room 203, Bldg. 115, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA. Tel.: +1-310-478-3711x41940; fax: +1-310-268-4096. (J.R. Pisegna)
| |
Collapse
|
17
|
Norlén P, Bernsand M, Konagaya T, Håkanson R. ECL-cell histamine mobilization in conscious rats: effects of locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators. Br J Pharmacol 2001; 134:1767-77. [PMID: 11739254 PMCID: PMC1572899 DOI: 10.1038/sj.bjp.0704419] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The ECL cells control gastric acid secretion by mobilizing histamine in response to circulating gastrin. In addition, the ECL cells are thought to operate under nervous control and to be influenced by local inflammatory processes. 2. The purpose of the present study was to monitor histamine mobilization from ECL cells in conscious rats in response to locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators. 3. Microdialysis probes were implanted in the submucosa of the acid-producing part of the rat stomach. Three days later, the agents to be tested were administered via the microdialysis probe and their effects on basal (48 h fast) and stimulated (intravenous infusion of gastrin-17, 3 nmol kg(-1) h(-1)) mobilization of ECL-cell histamine was monitored by continuous measurement of histamine in the perfusate (radioimmunoassay). 4. Locally administered gastrin-17 and sulfated cholecystokinin-8 mobilized histamine as did pituitary adenylate cyclase-activating peptide-27, vasoactive intestinal peptide, peptide YY, met-enkephalin, endothelin and noradrenaline, adrenaline and isoprenaline. 5. While gastrin, sulfated-cholecystokinin-8, met-enkephalin and isoprenaline induced a sustained elevation of the submucosal histamine concentration, endothelin, peptide YY, pituitary adenylate cyclase activating peptide, vasoactive intestinal peptide, noradrenaline and adrenaline induced a transient elevation. 6. Calcitonin gene-related peptide, galanin, somatostatin and the prostanoid misoprostol inhibited gastrin-stimulated histamine mobilization. 7. The gut hormones neurotensin and secretin and the neuropeptides gastrin-releasing peptide, neuropeptide Y and substance P failed to affect ECL-cell histamine mobilization, while motilin and neuromedin U-25 had weak stimulatory effects. Also acetylcholine, carbachol, serotonin and the amino acid neurotransmitters aspartate, gamma-aminobutyric acid, glutamate and glycine were inactive or weakly active as was bradykinin. 8. In summary, a range of circulating hormones, local hormones, catecholamines, neuropeptides and inflammatory mediators participate in controlling the activity of rat stomach ECL cells in situ.
Collapse
Affiliation(s)
- P Norlén
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund BMC F13, S-221 84 Lund, Sweden
| | - M Bernsand
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund BMC F13, S-221 84 Lund, Sweden
| | - T Konagaya
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund BMC F13, S-221 84 Lund, Sweden
| | - R Håkanson
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund BMC F13, S-221 84 Lund, Sweden
- Author for correspondence:
| |
Collapse
|
18
|
Sandvik AK, Cui G, Bakke I, Munkvold B, Waldum HL. PACAP stimulates gastric acid secretion in the rat by inducing histamine release. Am J Physiol Gastrointest Liver Physiol 2001; 281:G997-G1003. [PMID: 11557520 DOI: 10.1152/ajpgi.2001.281.4.g997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that pituitary adenylate cyclase-activating peptide (PACAP) stimulates enterochromaffin-like (ECL) cell histamine release, but its role in the regulation of gastric acid secretion is disputed. This work examines the effect of PACAP-38 on aminopyrine uptake in enriched rat parietal cells and on histamine release and acid secretion in the isolated vascularly perfused rat stomach and the role of PACAP in vagally (2-deoxyglucose) stimulated acid secretion in the awake rat. PACAP has no direct effect on the isolated parietal cell as assessed by aminopyrine uptake. PACAP induces a concentration-dependent histamine release and acid secretion in the isolated stomach, and its effect on histamine release is additive to gastrin. The histamine H2 antagonist ranitidine potently inhibits PACAP-stimulated acid secretion without affecting histamine release. Vagally stimulated acid secretion is partially inhibited by a PACAP antagonist. The results from the present study strongly suggest that PACAP plays an important role in the neurohumoral regulation of gastric acid secretion. Its effect seems to be mediated by the release of ECL cell histamine.
Collapse
Affiliation(s)
- A K Sandvik
- Department of Physiology and Biomedical Engineering, University Hospital of Trondheim, Faculty of Medicine, The Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
19
|
Solomon TE, Varga G, Zeng N, Wu SV, Walsh JH, Reeve JR. Different actions of secretin and Gly-extended secretin predict secretin receptor subtypes. Am J Physiol Gastrointest Liver Physiol 2001; 280:G88-94. [PMID: 11123201 DOI: 10.1152/ajpgi.2001.280.1.g88] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Only one secretin receptor has been cloned and its properties characterized in native and transfected cells. To test the hypothesis that stimulatory and inhibitory effects of secretin are mediated by different secretin receptor subtypes, pancreatic and gastric secretory responses to secretin and secretin-Gly were determined in rats. Pancreatic fluid secretion was increased equipotently by secretin and secretin-Gly, but secretin was markedly more potent for inhibition of basal and gastrin-induced acid secretion. In Chinese hamster ovary cells stably transfected with the rat secretin receptor, secretin and secretin-Gly equipotently displaced (125)I-labeled secretin (IC(50) values 5.3 +/- 0.5 and 6.4 +/- 0.6 nM, respectively). Secretin, but not secretin-Gly, caused release of somatostatin from rat gastric mucosal D cells. Thus the equipotent actions of secretin and secretin-Gly on pancreatic secretion appear to result from equal binding and activation of the pancreatic secretin receptor. Conversely, secretin more potently inhibited gastric acid secretion in vivo, and only secretin released somatostatin from D cells in vitro. These results support the existence of a secretin receptor subtype mediating inhibition of gastric acid secretion that is distinct from the previously characterized pancreatic secretin receptor.
Collapse
Affiliation(s)
- T E Solomon
- CURE: Digestive Diseases Research Center, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles 90073, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
This article summarizes data published during the past year that improve our understanding of the mechanisms by which various neurotransmitters, paracrine agents, and hormones regulate gastric acid secretion and are themselves regulated. The main stimulants of acid secretion are histamine, gastrin, and acetylcholine. The main inhibitor is somatostatin, which exerts a tonic restraint on parietal, enterochromaffin-like (ECL), and gastrin cells. Histamine, released from ECL cells, stimulates the parietal cell directly via H(2) receptors and indirectly via H(3) receptors coupled to inhibition of somatostatin secretion. Gastrin, acting via gastrin/cholecystokinin-B (CCK-B), now termed CCK(2), receptors on ECL cells activates histidine decarboxylase, releases histamine, and induces ECL hypertrophy and hyperplasia. The latter might be responsible for the rebound hyperacidity observed after withdrawal of long-term antisecretory therapy. The neurotransmitter pituitary adenylate cyclase-activating polypeptide stimulates histamine secretion from isolated ECL cells, but its physiologic role, if any, is not known. Acetylcholine, released from gastric postganglionic intramural neurons, stimulates the parietal cell directly via muscarinic M(3) receptors and indirectly by inhibiting somatostatin secretion. Although infection with H. pylori is associated with increased basal and stimulated acid outputs in patients with duodenal ulcer, most people infected with the organism are asymptomatic and have pangastritis with decreased acid output. In the latter, eradication of the bacterium leads to an increase in gastric acidity and is associated with a two-to threefold increase in gastroesophageal reflux.
Collapse
Affiliation(s)
- M L Schubert
- Department of Medicine, Division of Gastroenterology, Medical College of Virginia and McGuire VAMC, Richmond, Virginia 23249, USA.
| |
Collapse
|