1
|
Yang E, Kim W, Park YS, Jin YH. Substance P Increases the Excitability of Dorsal Motor Nucleus of the Vagus Nerve via Inhibition of Potassium Channels. Front Neurosci 2022; 16:867831. [PMID: 35495038 PMCID: PMC9051405 DOI: 10.3389/fnins.2022.867831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Increases in the substance P (SP) concentration in the medial portion of the dorsal motor nucleus of the vagus nerve (mDMV) in the brainstem are closely associated with chemotherapy induced nausea and vomiting (CINV). However, the underlying cellular and molecular mechanisms of action are not well understood. In this study, we investigated the effects of SP on mDMV neurons using whole-cell patch-clamp recordings from rat brainstem slices. Application of different concentrations of SP induced tonic and phasic responses. Submicromolar concentrations of induced an inward shift of the holding current by increasing membrane input resistance. The response was mimicked by acidification of the extracellular solution and inhibited by a neurokinin type 1 receptor antagonist. These responses have equilibrium potentials close to the K+ equilibrium potential. In addition, a TWIK-related acid-sensitive K+ channel 3 (TASK-3) inhibitor, PK-THPP, induced responses similar to those produced by submicromolar SP concentrations. Micromolar concentrations of SP facilitated γ-aminobutyric acid (GABA) release but diminished glutamate release; these changes were blocked by a GABAB receptor antagonist and a neurokinin type 3 receptor antagonist, respectively. In current-clamp recordings, submicromolar SP concentrations increased neuronal excitability by depolarizing membrane potentials. However, neither the increase in SP concentration to the micromolar range nor the addition of GABAA and ionotropic glutamate receptor antagonists affected neuronal excitability. Thus, SP increases the excitability of mDMV neurons by inhibiting K+ conductance.
Collapse
Affiliation(s)
- Eunhee Yang
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Woojin Kim,
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Young-Ho Jin
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Young-Ho Jin,
| |
Collapse
|
2
|
Shah T, Dunning JL, Contet C. At the heart of the interoception network: Influence of the parasubthalamic nucleus on autonomic functions and motivated behaviors. Neuropharmacology 2022; 204:108906. [PMID: 34856204 PMCID: PMC8688299 DOI: 10.1016/j.neuropharm.2021.108906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
The parasubthalamic nucleus (PSTN), a small nucleus located on the lateral edge of the posterior hypothalamus, has emerged in recent years as a highly interconnected node within the network of brain regions sensing and regulating autonomic function and homeostatic needs. Furthermore, the strong integration of the PSTN with extended amygdala circuits makes it ideally positioned to serve as an interface between interoception and emotions. While PSTN neurons are mostly glutamatergic, some of them also express neuropeptides that have been associated with stress-related affective and motivational dysfunction, including substance P, corticotropin-releasing factor, and pituitary adenylate-cyclase activating polypeptide. PSTN neurons respond to food ingestion and anorectic signals, as well as to arousing and distressing stimuli. Functional manipulation of defined pathways demonstrated that the PSTN serves as a central hub in multiple physiologically relevant networks and is notably implicated in appetite suppression, conditioned taste aversion, place avoidance, impulsive action, and fear-induced thermoregulation. We also discuss the putative role of the PSTN in interoceptive dysfunction and negative urgency. This review aims to synthesize the burgeoning preclinical literature dedicated to the PSTN and to stimulate interest in further investigating its influence on physiology and behavior.
Collapse
Affiliation(s)
- Tanvi Shah
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
3
|
Jin Z, Daksla N, Gan TJ. Neurokinin-1 Antagonists for Postoperative Nausea and Vomiting. Drugs 2021; 81:1171-1179. [PMID: 34106456 DOI: 10.1007/s40265-021-01532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Postoperative nausea and vomiting (PONV) are the second most frequent adverse events after surgery second only to postoperative pain. Despite the advances in antiemetics and implementation of multimodal prophylactic interventions, the clinical management of PONV remains problematic. Neurokinin-1 (NK-1) receptor is a tachykinin receptor found throughout the central and peripheral nervous systems, with a particular affinity towards substance P. NK-1 receptors interact with several parts of the neuronal pathway for nausea and vomiting. This includes the chemoreceptor trigger zone, the gastrointestinal tract, and dorsal motor nucleus of the vagus. NK-1 antagonists are thought to prevent nausea and vomiting by downregulating the emetogenic signals at those points. As more head-to-head trials are conducted between the various anti-emetics, there is emerging evidence that NK-1 antagonists may be more effective in preventing PONV than several other antiemetics currently in use. In this review, we will discuss the pharmacology of NK-1 antagonists, their efficacy in clinical practice, and how they could fit into the framework of PONV management.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8480, USA
| | - Neil Daksla
- Department of Anesthesiology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8480, USA
| | - Tong J Gan
- Department of Anesthesiology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8480, USA.
| |
Collapse
|
4
|
Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK 1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva). Neurochem Int 2018; 122:106-119. [PMID: 30453005 DOI: 10.1016/j.neuint.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
To characterize mechanisms involved in neurokinin type 1 receptor (NK1R)-mediated emesis, we investigated the brainstem emetic signaling pathways following treating least shrews with the selective NK1R agonist GR73632. In addition to episodes of vomiting over a 30-min observation period, a significant increase in substance P-immunoreactivity in the emetic brainstem dorsal motor nucleus of the vagus (DMNX) occurred at 15 min post an intraperitoneal (i.p.) injection GR73632 (5 mg/kg). In addition, time-dependent upregulation of phosphorylation of several emesis -associated protein kinases occurred in the brainstem. In fact, Western blots demonstrated significant phosphorylations of Ca2+/calmodulin kinase IIα (CaMKIIα), extracellular signal-regulated protein kinase1/2 (ERK1/2), protein kinase B (Akt) as well as α and βII isoforms of protein kinase C (PKCα/βII). Moreover, enhanced phospho-ERK1/2 immunoreactivity was also observed in both brainstem slices containing the dorsal vagal complex emetic nuclei as well as in jejunal sections from the shrew small intestine. Furthermore, our behavioral findings demonstrated that the following agents suppressed vomiting evoked by GR73632 in a dose-dependent manner: i) the NK1R antagonist netupitant (i.p.); ii) the L-type Ca2+ channel (LTCC) antagonist nifedipine (subcutaneous, s.c.); iii) the inositol trisphosphate receptor (IP3R) antagonist 2-APB (i.p.); iv) store-operated Ca2+ entry inhibitors YM-58483 and MRS-1845, (i.p.); v) the ERK1/2 pathway inhibitor U0126 (i.p.); vi) the PKC inhibitor GF109203X (i.p.); and vii) the inhibitor of phosphatidylinositol 3-kinase (PI3K)-Akt pathway LY294002 (i.p.). Moreover, NK1R, LTCC, and IP3R are required for GR73632-evoked CaMKIIα, ERK1/2, Akt and PKCα/βII phosphorylation. In addition, evoked ERK1/2 phosphorylation was sensitive to inhibitors of PKC and PI3K. These findings indicate that the LTCC/IP3R-dependent PI3K/PKCα/βII-ERK1/2 signaling pathways are involved in NK1R-mediated vomiting.
Collapse
|
5
|
Sun X, Xu L, Guo F, Luo W, Gao S, Luan X. Neurokinin-1 receptor blocker CP-99 994 improved emesis induced by cisplatin via regulating the activity of gastric distention responsive neurons in the dorsal motor nucleus of vagus and enhancing gastric motility in rats. Neurogastroenterol Motil 2017; 29:1-11. [PMID: 28464353 DOI: 10.1111/nmo.13096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Nowadays, chemotherapy induced nausea and vomiting (CINV) is still common in patients with cancer. It was reported that substance P mediated CINV via neurokinin-1 (NK1 ) receptor and antagonists of NK1 receptor has been proved useful for treating CINV but the mechanism are not fully understood. This study aimed to examine the role of NK1 receptor blocker, CP-99 994, when administrated into dorsal motor nucleus of vagus (DMNV), on the cisplatin-induced emesis in rats and the possible mechanism. METHODS Rats' kaolin intake, food intake, and bodyweight were recorded every day; gastric contraction activity was recorded in conscious rats through a force transducer implanted into the stomach; gastric emptying was monitored using the phenol red method; single unit extracellular firing in the DMNV were recorded. KEY RESULTS DMNV microinjection of CP-99 994 reduced the changes of increased kaolin consumption and suppressed food intake in cisplatin-treated rats; enhanced the gastric contraction activity dose-dependently in control and cisplatin-treated rats but enhanced gastric emptying only in cisplatin-treated rats; reduced the firing rate of gastric distention inhibited (GD-I) neurons but increased the firing rate of GD excited (GD-E) neurons in the DMNV. The effects of CP-99 994 on gastric motility and neuronal activity were stronger in cisplatin-treated rats than those of control rats. CONCLUSIONS AND INFERENCES Our results suggested that CP-99 994 could improve emesis induced by cisplatin by regulating gastric motility and gastric related neuronal activity in the DMNV.
Collapse
Affiliation(s)
- X Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - L Xu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - F Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - W Luo
- Department of ophthalmology, Qingdao University Affiliated Hospital, Qingdao, Shandong Province, China
| | - S Gao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - X Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
6
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
7
|
Babic T, Browning KN. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur J Pharmacol 2013; 722:38-47. [PMID: 24184670 DOI: 10.1016/j.ejphar.2013.08.047] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
Nausea and vomiting are among the most frequently occurring symptoms observed by clinicians. While advances have been made in understanding both the physiological as well as the neurophysiological pathways involved in nausea and vomiting, the final common pathway(s) for emesis have yet to be defined. Regardless of the difficulties in elucidating the precise neurocircuitry involved in nausea and vomiting, it has been accepted for over a century that the locus for these neurocircuits encompasses several structures within the medullary reticular formation of the hindbrain and that the role of vagal neurocircuits in particular are of critical importance. The afferent vagus nerve is responsible for relaying a vast amount of sensory information from thoracic and abdominal organs to the central nervous system. Neurons within the nucleus of the tractus solitarius not only receive these peripheral sensory inputs but have direct or indirect connections with several other hindbrain, midbrain and forebrain structures responsible for the co-ordination of the multiple organ systems. The efferent vagus nerve relays the integrated and co-ordinated output response to several peripheral organs responsible for emesis. The important role of both sensory and motor vagus nerves, and the available nature of peripheral vagal afferent and efferent nerve terminals, provides extensive and readily accessible targets for the development of drugs to combat nausea and vomiting.
Collapse
Affiliation(s)
- Tanja Babic
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
8
|
Localization and chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric area in the physiological state and after stomach partial resection. J Mol Neurosci 2013; 52:90-100. [PMID: 24458741 DOI: 10.1007/s12031-013-0102-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
The aim of our study was to localize and define immunocytochemical characteristic of the dorsal motor nucleus of the vagus (DMX) neurons projecting to the porcine stomach prepyloric region in the physiological state and after gastric partial resection. To identify the stomach-projecting perikarya, the neuronal retrograde tracer--Fast Blue (FB) was injected into the studied region of control and resection group (RES). In the RES group, on 22nd day after FB injection, the partial resection of the stomach region previously injected with FB was performed. Sections were immunostained with ChAT, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu-enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the DMX of control and RES group, the stomach-projecting perikarya were found in the entire extent of the nucleus bilaterally. Within control animals, 30.08 ± 1.97 % of the gastric DMX perikarya expressed PACAP, while other substances were found only in the neuronal fibers. In the RES group DMX, PACAP was found in 45.58 ± 2.2 %, VIP in 28.83 ± 3.63 %, NOS in 21.22 ± 3.32 %, and GAL in 5.67 ± 1.49 % of the FB-labeled gastric perikarya. Our data implicate PACAP, VIP, NOS, and GAL as neuronal survival promoting substances and the CART-, LENK-, SP- NOS-, and GAL-immunoreactive processes in control of the gastric vagal neurons in the pig.
Collapse
|
9
|
Brancati SB, Zádori ZS, Németh J, Gyires K. Substance P induces gastric mucosal protection at supraspinal level via increasing the level of endomorphin-2 in rats. Brain Res Bull 2013; 91:38-45. [PMID: 23328537 DOI: 10.1016/j.brainresbull.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to analyze the potential role of substance P (SP) in gastric mucosal defense and to clarify the receptors and mechanisms that may be involved in it. Gastric ulceration was induced by oral administration of acidified ethanol in male Wistar rats. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. We found that central (intracerebroventricular) injection of SP (9.3-74 pmol) dose-dependently inhibited the formation of ethanol-induced ulcers, while intravenously injected SP (0.37-7.4 nmol/kg) had no effect. The mucosal protective effect of SP was inhibited by pretreatment with neurokinin 1-, neurokinin 2-, neurokinin 3- and μ-opioid receptor antagonists, while δ- and κ-opioid receptor antagonists had no effect. Endomorphin-2 antiserum also antagonized the SP-induced mucosal protection. In the gastroprotective dose range SP failed to influence the gastric motor activity. Inhibition of muscarinic cholinergic receptors, or the synthesis of nitric oxide or prostaglandins significantly reduced the effect of SP. In addition, centrally injected SP reversed the ethanol-induced reduction of gastric mucosal CGRP content. It can be concluded, that SP may induce gastric mucosal protection initiated centrally. Its protective effect is likely to be mediated by endomorphin-2, and vagal nerve may convey the centrally initiated protection to the periphery, where both prostaglandins, nitric oxide and CGRP are involved in mediating this effect.
Collapse
Affiliation(s)
- Serena B Brancati
- Department of Pharmaceutical Sciences - Pharmacology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | |
Collapse
|
10
|
Adachi T, Huxtable AG, Fang X, Funk GD. Substance P Modulation of Hypoglossal Motoneuron Excitability During Development: Changing Balance Between Conductances. J Neurophysiol 2010; 104:854-72. [DOI: 10.1152/jn.00016.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although Substance P (SP) acts primarily through neurokinin 1 (NK1) receptors to increase the excitability of virtually all motoneurons (MNs) tested, the ontogeny of this transmitter system is not known for any MN pool. Hypoglossal (XII) MNs innervate tongue protruder muscles and participate in several behaviors that must be functional from birth including swallowing, suckling and breathing. We used immunohistochemistry, Western immunoblotting, and whole cell recording of XII MNs in brain stem slices from rats ranging in age from postnatal day zero (P0) to P23 to explore developmental changes in: NK1 receptor expression; currents evoked by SPNK1 (an NK1-selective SP receptor agonist) and; the efficacy of transduction pathways transforming ligand binding into channel modulation. Despite developmental reductions in XII MN NK1 receptor expression, SPNK1 current density remained constant at 6.1 ± 1.0 (SE) pA/pF. SPNK1 activated at least two conductances. Activation of a pH-insensitive Na+ conductance dominated in neonates (P0–P5), but its contribution fell from ∼80 to ∼55% in juveniles (P14–P23). SPNK1 also inhibited a pH-sensitive, two-pore domain K+ (TASK)-like K+ current. Its contribution increased developmentally. First, the density of this pH-sensitive K+ current doubled between P0 and P23. Second, SPNK1 did not affect this current in neonates, but reduced it by 20% at P7–P10 and 80% in juveniles. In addition, potentiation of repetitive firing was greatest in juveniles. These data establish that despite apparent reductions in NK1 receptor density, SP remains an important modulator of XII MN excitability throughout postnatal development due, in part, to increased expression of a pH-sensitive, TASK-like conductance.
Collapse
Affiliation(s)
- Tadafumi Adachi
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | - Adrianne G. Huxtable
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - X. Fang
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - Gregory D. Funk
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Le Brun I, Dufour A, Crest M, Szabó G, Erdelyi F, Baude A. Differential expression of Nk1 and NK3 neurokinin receptors in neurons of the nucleus tractus solitarius and the dorsal vagal motor nucleus of the rat and mouse. Neuroscience 2008; 152:56-64. [PMID: 18222044 DOI: 10.1016/j.neuroscience.2007.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 12/16/2022]
Abstract
Tachykinins (substance P, neurokinin A and neurokinin B) influence autonomic functions by modulating neuron activity in nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) through activation of neurokinin receptors NK1 and NK3. Our purpose was to identify and define by neurochemical markers, the subpopulations of NK1 and NK3 expressing neurons in NTS and DMV of rat and mouse. Because the distribution of the NK1 and NK3 expressing neurons overlaps, co-expression for both receptors was tested. By double labeling, we show that NK1 and NK3 were not co-expressed in NTS neurons. In the DMV, most of neurons (87%) were immunoreactive for only one of the receptors and 34% of NK1 neurons, 7% of NK3 neurons and 12% of NK1-NK3 neurons were cholinergic neurons. None of the neurons immunoreactive for NK1 or NK3 were positive for tyrosine hydroxylase, suggesting that catecholaminergic cells of the NTS (A2 and C2 groups) did not express neurokinin receptors. The presence of NK1 and NK3 was examined in GABAergic interneurons of the NTS and DMV by using GAD65-EGFP transgenic mouse. Immunoreactivity for NK1 or NK3 was found in a subpopulation of GAD65-EGFP cells. A majority (60%) of NK3 cells, but only 11% of the NK1 cells, were GAD65-EGFP cells. In conclusion, tachykinins, through differential expression of neurokinin receptors, may influence the central regulation of vital functions by acting on separate neuron subpopulations in NTS and DMV. Of particular interest, tachykinins may be involved in inhibitory mechanisms by acting directly on local GABAergic interneurons. Our results support a larger contribution of NK3 compared with NK1 in mediating inhibition in NTS and DMV.
Collapse
Affiliation(s)
- I Le Brun
- Laboratoire de Neurophysiologie Cellulaire, Université de la Méditerranée, CNRS UMR 6150, IFR Jean-Roche, Faculté de Médecine Nord, Boulevard Pierre Dramard, 13916 Marseille 20, France
| | | | | | | | | | | |
Collapse
|
12
|
Suwabe T, Bradley RM. Effects of 5-Hydroxytryptamine and Substance P on Neurons of the Inferior Salivatory Nucleus. J Neurophysiol 2007; 97:2605-11. [PMID: 17267757 DOI: 10.1152/jn.00859.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parasympathetic secretomotor innervation of the salivary glands originates from a longitudinal column of neurons in the medulla called the salivatory nucleus. The neurons innervating the parotid and von Ebner salivary glands are situated in the caudal extremity of the column designated as the inferior salivatory nucleus (ISN). Immunocytochemical investigations have demonstrated the presence of a number of neuropeptides surrounding the ISN neurons. We have examined the neurophysiological effect of two of these neuropeptides on neurons of the ISN identified by retrograde transport of a fluorescent label. Both serotonin (5-HT) and substance P (SP) excited virtually all neurons in the ISN. Application of these neuropeptides resulted in membrane depolarization that was concentration dependent. Although the majority of ISN neurons that were depolarized by SP application exhibited an increase in input resistance, application of 5-HT induced widely varied change in input resistance. Membrane depolarization elicited action potential discharges that increased in frequency with increasing concentration of 5-HT and SP. Blocking action potential conduction from surrounding neurons did not eliminate the depolarizing effects of 5-HT and SP, indicating that both neuropeptides acted directly on the ISN neurons. Finally, the use of 5-HT agonists and antagonists indicates that 5-HT acts via a 5-HT2A receptor, and the use of SP agonists suggests that SP acts via neuokinin-1 and -2 receptors. These data show that 5-HT and SP excite most of the ISN neurons innervating the lingual von Ebner glands possibly modulating the synaptic drive to these neurons derived from afferent gustatory input.
Collapse
Affiliation(s)
- Takeshi Suwabe
- Dept. of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
13
|
Cruz MT, Murphy EC, Sahibzada N, Verbalis JG, Gillis RA. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat. Am J Physiol Regul Integr Comp Physiol 2006; 292:R291-307. [PMID: 16990483 DOI: 10.1152/ajpregu.00863.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our primary purpose was to characterize vagal pathways controlling gastric motility by microinjecting l-glutamate into the dorsal motor nucleus of the vagus (DMV) in the rat. An intragastric balloon was used to monitor motility. In 39 out of 43 experiments, microinjection of l-glutamate into different areas of the DMV rostral to calamus scriptorius (CS) resulted in vagally mediated excitatory effects on motility. We observed little evidence for inhibitory effects, even with intravenous atropine or with activation of gastric muscle muscarinic receptors by intravenous bethanechol. Inhibition of nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) HCl did not augment DMV-evoked excitatory effects on gastric motility. Microinjection of l-glutamate into the DMV caudal to CS produced vagally mediated gastric inhibition that was resistant to l-NAME. l-Glutamate microinjected into the medial subnucleus of the tractus solitarius (mNTS) also produced vagally mediated inhibition of gastric motility. Motility responses evoked from the DMV were always blocked by ipsilateral vagotomy, while responses evoked from the mNTS required bilateral vagotomy to be blocked. Microinjection of oxytocin into the DMV inhibited gastric motility, but the effect was never blocked by ipsilateral vagotomy, suggesting that the effect may have been due to diffusion of oxytocin to the mNTS. Microinjection of substance P and N-methyl-d-aspartate into the DMV also produced inhibitory effects attributable to excitation of nearby mNTS neurons. Our results do not support previous studies indicating parallel vagal excitatory and inhibitory pathways originating in the DMV rostral to CS. Our results do support previous findings of vagal inhibitory pathways originating in the DMV caudal to CS.
Collapse
Affiliation(s)
- Maureen T Cruz
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
14
|
Sato T, Okada Y, Miyazaki T, Kato Y, Toda K. Taste Cell Responses in the Frog Are Modulated by Parasympathetic Efferent Nerve Fibers. Chem Senses 2005; 30:761-9. [PMID: 16243966 DOI: 10.1093/chemse/bji068] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied the anatomical properties of parasympathetic postganglionic neurons in the frog tongue and their modulatory effects on taste cell responses. Most of the parasympathetic ganglion cell bodies in the tongue were found in extremely small nerve bundles running near the fungiform papillae, which originate from the lingual branches of the glossopharyngeal (GP) nerve. The density of parasympathetic postganglionic neurons in the tongue was 8000-11,000/mm(3) of the extremely small nerve bundle. The mean major axis of parasympathetic ganglion cell bodies was 21 microm, and the mean length of parasympathetic postganglionic neurons was 1.45 mm. Electrical stimulation at 30 Hz of either the GP nerve or the papillary nerve produced slow hyperpolarizing potentials (HPs) in taste cells. After nicotinic acetyl choline receptors on the parasympathetic ganglion cells in the tongue had been blocked by intravenous (i.v.) injection of D-tubocurarine (1 mg/kg), stimulation of the GP nerve did not induce any slow HPs in taste cells but that of the papillary nerve did. A further i.v. injection of a substance P NK-1 antagonist, L-703,606, blocked the slow HPs induced by the papillary nerve stimulation. This suggests that the parasympathetic postganglionic efferent fibers innervate taste cells and are related to a generation of the slow HPs and that substance P is released from the parasympathetic postganglionic axon terminals. When the resting membrane potential of a taste cell was hyperpolarized by a prolonged slow HP, the gustatory receptor potentials for NaCl and sugar stimuli were enhanced in amplitude, but those for quinine-HCl and acetic acid stimuli remained unchanged. It is concluded that frog taste cell responses are modulated by activities of parasympathetic postganglionic efferent fibers innervating these cells.
Collapse
Affiliation(s)
- Toshihide Sato
- Division of Integrative Sensory Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | | | | | | | | |
Collapse
|
15
|
Browning KN, Coleman FH, Travagli RA. Characterization of pancreas-projecting rat dorsal motor nucleus of vagus neurons. Am J Physiol Gastrointest Liver Physiol 2005; 288:G950-5. [PMID: 15637183 DOI: 10.1152/ajpgi.00549.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The electrophysiological and morphological properties of rat dorsal motor nucleus of the vagus (DMV) neurons innervating the pancreas were examined by using whole cell patch clamp recordings from brain stem slices and postfixation morphological reconstructions of Neurobiotin-filled neurons. Recordings were made from 178 DMV neurons whose projections had been identified by previous apposition of the fluorescent neuronal tracer DiI to the body of the pancreas. DMV neurons projecting to the pancreas had an input resistance of 434 +/- 14 M omega, an action potential duration of 3 +/- 0.1 ms, and an afterhyperpolarization of 18 +/- 0.4 mV amplitude and 108 +/- 7 ms time constant of decay; these electrophysiological properties resembled those of gastric-projecting neurons but were significantly different from those of intestinal-projecting neurons. Interestingly, 14 of 178 pancreas-projecting neurons showed the presence of a slowly developing afterhyperpolarization whose presence was not reported in DMV neurons projecting to any other gastrointestinal area. The morphological characteristics of pancreas-projecting neurons (soma area 274 +/- 12 microm2; soma diameter of 25 +/- 0.7 microm; soma form factor 0.74 +/- 0.01; segments 9.7 +/- 0.41), however, were similar to those of intestinal- but differed from those of gastric-projecting neurons. In summary, these results suggest that pancreas-projecting rat DMV neurons are heterogeneous with respect to some electrophysiological and morphological properties. These differences might underlie functional differences in the vagal modulation of pancreatic functions.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | |
Collapse
|
16
|
y Valenzuela IMP, Browning KN, Travagli RA. Morphological differences between planes of section do not influence the electrophysiological properties of identified rat dorsal motor nucleus of the vagus neurons. Brain Res 2004; 1003:54-60. [PMID: 15019563 PMCID: PMC3062483 DOI: 10.1016/j.brainres.2003.10.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2003] [Indexed: 11/16/2022]
Abstract
Recent cytoarchitectonic studies have shown that the dorsal motor nucleus of the vagus (DMV) comprises neurons with different morphological features. Our own studies, conducted in horizontal brainstem slices, have shown that DMV neurons projecting to stomach areas can be distinguished from neurons projecting to the intestine on the basis of their electrophysiological as well as morphological properties. The majority of the in vitro experimental investigations, however, have been conducted on coronal brainstem slices. The aim of the present study was to assess whether the electrophysiological properties of DMV neurons are due to intrinsic membrane properties of the neurons or are dependent upon the plane of section, i.e., coronal vs. horizontal, in which the brainstem is cut. The fluorescent retrograde tracer DiI was applied to either the stomach or intestine of rats. Whole cell recordings were subsequently made from labeled DMV neurons in thin brainstem slices sectioned in either the horizontal or coronal plane. In the horizontal plane, both the somata and the dendritic tree of gastric-projecting neurons were smaller than intestinal-projecting neurons. In the coronal plane, however, apart from a smaller soma diameter in gastric-projecting neurons, morphological differences were not found between the groups. The electrophysiological differences observed between the groups were, however, consistent in both planes of section, that is, intestinal-projecting neurons had larger and longer afterhyperpolarization (AHP) as well as slower frequency-responses to depolarizing stimuli than gastric-projecting neurons. Our data suggest that intrinsic rather than morphological features govern the electrophysiological characteristics of DMV neurons.
Collapse
Affiliation(s)
| | - Kirsteen N. Browning
- Department of Internal Medicine–Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - R. Alberto Travagli
- Department of Internal Medicine–Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, University of Michigan, Ann Arbor, MI, USA
- Corresponding author. Department of Internal Medicine–Gastroenterology, University of Michigan, 6520 MSRB I, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0682, USA. Tel.: +1-734-615-8517; fax: +1-734-763-2535. (R.A. Travagli)
| |
Collapse
|
17
|
Sanger GJ. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain. Br J Pharmacol 2004; 141:1303-12. [PMID: 15023866 PMCID: PMC1574901 DOI: 10.1038/sj.bjp.0705742] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.
Collapse
Affiliation(s)
- Gareth J Sanger
- Gastrointestinal Research Department, Neurology-Gastroenterology CEDD, GlaxoSmithKline, Harlow, Essex, CM19 5AW, UK.
| |
Collapse
|
18
|
Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The Cholinergic Anti-inflammatory Pathway: A Missing Link in Neuroimmunomodulation. Mol Med 2003. [DOI: 10.1007/bf03402177] [Citation(s) in RCA: 434] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
19
|
Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 2003; 9:125-34. [PMID: 14571320 PMCID: PMC1430829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 06/27/2003] [Indexed: 04/27/2023] Open
Abstract
This review outlines the mechanisms underlying the interaction between the nervous and immune systems of the host in response to an immune challenge. The main focus is the cholinergic anti-inflammatory pathway, which we recently described as a novel function of the efferent vagus nerve. This pathway plays a critical role in controlling the inflammatory response through interaction with peripheral a7 subunit-containing nicotinic acetylcholine receptors expressed on macrophages. We describe the modulation of systemic and local inflammation by the cholinergic anti-inflammatory pathway and its function as an interface between the brain and the immune system. The clinical implications of this novel mechanism also are discussed.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Laboratory of Biomedical Science, North Shore LIJ-Research Institute
| | - Hong Wang
- Laboratory of Biomedical Science, North Shore LIJ-Research Institute
| | | | - Steven G Friedman
- Laboratory of Biomedical Science, North Shore LIJ-Research Institute
- Department of Vascular Surgery, North Shore University Hospital, Manhasset, NY
| | - Kevin J Tracey
- Laboratory of Biomedical Science, North Shore LIJ-Research Institute
| |
Collapse
|
20
|
Travagli RA, Hermann GE, Browning KN, Rogers RC. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? III. Activity-dependent plasticity in vago-vagal reflexes controlling the stomach. Am J Physiol Gastrointest Liver Physiol 2003; 284:G180-7. [PMID: 12529266 PMCID: PMC3055655 DOI: 10.1152/ajpgi.00413.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vago-vagal reflex circuits modulate digestive functions from the oral cavity to the transverse colon. Previous articles in this series have described events at the level of the sensory receptors encoding the peripheral stimuli, the transmission of information in the afferent vagus, and the conversion of this data within the dorsal vagal complex (DVC) to impulses in the preganglionic efferents. The control by vagal efferents of the postganglionic neurons impinging on the glands and smooth muscles of the target organs has also been illustrated. Here we focus on some of the mechanisms by which these apparently static reflex circuits can be made quite plastic as a consequence of the action of modulatory inputs from other central nervous system sources. A large body of evidence has shown that the neuronal elements that constitute these brain stem circuits have nonuniform properties and function differently according to status of their target organs and the level of activity in critical modulatory inputs. We propose that DVC circuits undergo a certain amount of short-term plasticity that allows the brain stem neuronal elements to act in harmony with neural systems that control behavioral and physiological homeostasis.
Collapse
Affiliation(s)
- R Alberto Travagli
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|