1
|
Pouokam E, Vallejo A, Martínez E, Traserra S, Jimenez M. Complementary mechanisms of modulation of spontaneous phasic contractions by the gaseous signalling molecules NO, H 2S, HNO and the polysulfide Na 2S 3 in the rat colon. J Basic Clin Physiol Pharmacol 2023; 34:495-507. [PMID: 34624185 DOI: 10.1515/jbcpp-2021-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Reactive oxygen and nitrogen species may be produced during inflammation leading to the formation of NO, H2S or HNO. Enzymes such as iNOS, CSE and CBS might also be responsible for polysulfide production. Since these signalling molecules might have an impact on colonic motility, the aim of this study was to compare their effect on rat colonic slow phasic contractions (SPC). METHODS Organ bath measurements with strips obtained from rat proximal colon were performed using the polysulfide Na2S3, sodium nitroprusside (NaNP), sodium hydrogen sulfide (NaHS), Angeli's salt as NO, H2S, and HNO donors, respectively. TTX (1 µM) was used to block neuronal activity. RESULTS All four molecules, concentration-dependently, inhibited the amplitude and frequency of SPC both in the circular and longitudinal muscle layer. The relative potency was NaNP>Angeli's salt>NaHS>Na2S3. The inhibitory response induced by NaNP (1 µM) and Angeli's salt (50 µM) was reversed by ODQ (10 µM) whereas the inhibitory effect of NaHS (1 mM) was reversed by apamin (1 µM) and glibenclamide (10 µM). Na2S3 (1 mM) response was partially reversed by apamin (1 µM) and glibenclamide (10 µM). High concentrations of Na2S3 caused an increase in tone. Low concentrations of NaHS or Na2S3 did not potentiate NaNP responses. CONCLUSIONS All signalling molecules inhibit SPC in both muscle layers. The effect is independent of neural activity and involves guanylyl cyclase (NO and HNO) and SKCa and KATP channels (NaHS or Na2S3). Other pathways might also be involved in Na2S3 responses. Accordingly, complementary mechanisms of inhibition might be attributable to these signalling molecules.
Collapse
Affiliation(s)
- Ervice Pouokam
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Adriana Vallejo
- Department of Cell Biology, Physiology and Immunology and Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emma Martínez
- Department of Cell Biology, Physiology and Immunology and Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sara Traserra
- Department of Cell Biology, Physiology and Immunology and Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology and Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Baker SA, Leigh WA, Del Valle G, De Yturriaga IF, Ward SM, Cobine CA, Drumm BT, Sanders KM. Ca 2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. eLife 2021; 10:64099. [PMID: 33399536 PMCID: PMC7806270 DOI: 10.7554/elife.64099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of smooth muscle cells (SMCs) using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+transients ~ 15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+-firing patterns and drive smooth muscle activity and overall colonic contractions.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Wesley A Leigh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Guillermo Del Valle
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Inigo F De Yturriaga
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, United States
| |
Collapse
|
3
|
Spencer NJ, Costa M, Hibberd TJ, Wood JD. Advances in colonic motor complexes in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G12-G29. [PMID: 33085903 DOI: 10.1152/ajpgi.00317.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary functions of the gastrointestinal (GI) tract are to absorb nutrients, water, and electrolytes that are essential for life. This is accompanied by the capability of the GI tract to mix ingested content to maximize absorption and effectively excrete waste material. There have been major advances in understanding intrinsic neural mechanisms involved in GI motility. This review highlights major advances over the past few decades in our understanding of colonic motor complexes (CMCs), the major intrinsic neural patterns that control GI motility. CMCs are generated by rhythmic coordinated firing of large populations of myenteric neurons. Initially, it was thought that serotonin release from the mucosa was required for CMC generation. However, careful experiments have now shown that neither the mucosa nor endogenous serotonin are required, although, evidence suggests enteroendocrine (EC) cells modulate CMCs. The frequency and extent of propagation of CMCs are highly dependent on mechanical stimuli (circumferential stretch). In summary, the isolated mouse colon emerges as a good model to investigate intrinsic mechanisms underlying colonic motility and provides an excellent preparation to explore potential therapeutic agents on colonic motility, in a highly controlled in vitro environment. In addition, during CMCs, the mouse colon facilitates investigations into the emergence of dynamic assemblies of extensive neural networks, applicable to the nervous system of different organisms.
Collapse
Affiliation(s)
- N J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - M Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - T J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - J D Wood
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Traserra S, Villarte S, Traini C, Palacin S, Vergara P, Vannucchi MG, Jimenez M. The asymmetric innervation of the circular and longitudinal muscle of the mouse colon differently modulates myogenic slow phasic contractions. Neurogastroenterol Motil 2020; 32:e13778. [PMID: 31845466 DOI: 10.1111/nmo.13778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Neuromuscular transmission has been extensively studied in the circular layer of the mouse colon where a co-transmission of purines acting on P2Y1 receptors and NO has been previously described. However, the corresponding mechanisms in the longitudinal layer are less known. METHODS Electrophysiological and myography techniques were used to evaluate spontaneous phasic contractions (SPC) and neural-mediated responses in the proximal, mid, and distal colon devoid of CD1 mice. Immunohistochemistry against c-kit and PDGFRα was performed in each colonic segment. KEY RESULTS SPC were recorded in both muscle layers at a similar frequency being about four contractions per minute (c.p.m.) in the proximal and distal colon compared to the mid colon (2 c.p.m.). In non-adrenergic, non-cholinergic conditions, L-NNA (1 mmol/L) increased contractility in the circular but not in the longitudinal layer. In the longitudinal muscle, both electrophysiological and mechanical neural-mediated inhibitory responses were L-NNA and ODQ (10 µmol/L) sensitive. NaNP (1 µmol/L) caused cessation of SPC and the response was blocked by ODQ. Neither ADPßS (10 µmol/L) nor CYPPA (10 µmol/L), which both targeted the purinergic pathway, altered longitudinal contractions. PDGFRα + cells were located in both muscle layers and were more numerous compared with cKit + cells, which both formed a heterologous cellular network. A decreasing gradient of the PDGFRα labeling was observed along the colon. CONCLUSION An inhibitory neural tone was absent in the longitudinal layer and neuronal inhibitory responses were mainly nitrergic. Despite the presence of PDGFRα + cells, purinergic responses were absent. Post-junctional pathways located in different cell types might be responsible for neurotransmitter transduction.
Collapse
Affiliation(s)
- Sara Traserra
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sonia Villarte
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Chiara Traini
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Sara Palacin
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Tan W, Lee G, Chen JH, Huizinga JD. Relationships Between Distention-, Butyrate- and Pellet-Induced Stimulation of Peristalsis in the Mouse Colon. Front Physiol 2020; 11:109. [PMID: 32132933 PMCID: PMC7040375 DOI: 10.3389/fphys.2020.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Luminal factors such as short-chain fatty acids are increasingly recognized for playing a regulatory role in peristaltic activity. Our objective was to understand the roles of butyrate and propionate in regulating peristaltic activity in relation to distention-induced activities. Methods Butyrate and propionate were perfused intraluminally under varying intraluminal pressures in murine colons bathed in Krebs solution. We used video recording and spatiotemporal maps to examine peristalsis induced by the intrinsic rhythmic colonic motor complex (CMC) as well as pellet-induced peristaltic reflex movements. Results The CMC showed several configurations at different levels of excitation, culminating in long distance contractions (LDCs) which possess a triangular shape in murine colon spatiotemporal maps. Butyrate increased the frequency of CMCs but was a much weaker stimulus than distention and only contributed to significant changes under low distention. Propionate inhibited CMCs by decreasing either their amplitudes or frequencies, but only in low distention conditions. Butyrate did not consistently counteract propionate-induced inhibition likely due to the multiple and distinct mechanisms of action for these signaling molecules in the lumen. Pellet movement occurred through ongoing CMCs as well as pellet induced peristaltic reflex movements and butyrate augmented both types of peristaltic motor patterns to decrease the amount of time required to expel each pellet. Conclusions Butyrate is effective in promoting peristalsis, but only when the level of colonic activity is low such as under conditions of low intraluminal pressure. This suggests that it may play a significant role in patients with poor fiber intake, where there is low mechanical stimulation in the lumen.
Collapse
Affiliation(s)
- Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Grace Lee
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Ji-Hong Chen
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Corsetti M, Costa M, Bassotti G, Bharucha AE, Borrelli O, Dinning P, Di Lorenzo C, Huizinga JD, Jimenez M, Rao S, Spiller R, Spencer NJ, Lentle R, Pannemans J, Thys A, Benninga M, Tack J. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nat Rev Gastroenterol Hepatol 2019; 16:559-579. [PMID: 31296967 PMCID: PMC7136172 DOI: 10.1038/s41575-019-0167-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Alterations in colonic motility are implicated in the pathophysiology of bowel disorders, but high-resolution manometry of human colonic motor function has revealed that our knowledge of normal motor patterns is limited. Furthermore, various terminologies and definitions have been used to describe colonic motor patterns in children, adults and animals. An example is the distinction between the high-amplitude propagating contractions in humans and giant contractions in animals. Harmonized terminology and definitions are required that are applicable to the study of colonic motility performed by basic scientists and clinicians, as well as adult and paediatric gastroenterologists. As clinical studies increasingly require adequate animal models to develop and test new therapies, there is a need for rational use of terminology to describe those motor patterns that are equivalent between animals and humans. This Consensus Statement provides the first harmonized interpretation of commonly used terminology to describe colonic motor function and delineates possible similarities between motor patterns observed in animal models and humans in vitro (ex vivo) and in vivo. The consolidated terminology can be an impetus for new research that will considerably improve our understanding of colonic motor function and will facilitate the development and testing of new therapies for colonic motility disorders.
Collapse
Affiliation(s)
- Maura Corsetti
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marcello Costa
- Human Physiology and Centre of Neuroscience, College of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Gabrio Bassotti
- Department of Medicine, University of Perugia Medical School, Perugia, Italy
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Osvaldo Borrelli
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Sick Children, London, UK
| | - Phil Dinning
- Human Physiology and Centre of Neuroscience, College of Medicine, Flinders University, Bedford Park, South Australia, Australia
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Carlo Di Lorenzo
- Department of Pediatric Gastroenterology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcel Jimenez
- Department of Cell Physiology, Physiology and Immunology and Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Satish Rao
- Division of Gastroenterology/Hepatology, Augusta University, Augusta, GA, USA
| | - Robin Spiller
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nick J Spencer
- Discipline of Human Physiology, School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Roger Lentle
- Digestive Biomechanics Group, College of Health, Massey University, Palmerston North, New Zealand
| | - Jasper Pannemans
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands
| | - Alexander Thys
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands
| | - Marc Benninga
- Translational Research Center for Gastrointestinal disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands.
| |
Collapse
|
7
|
Beck K, Voussen B, Reigl A, Vincent AD, Parsons SP, Huizinga JD, Friebe A. Cell-specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon. Neurogastroenterol Motil 2019; 31:e13589. [PMID: 30947401 DOI: 10.1111/nmo.13589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nitric oxide (NO) mediates inhibitory neurotransmission and is a critical component of neuronal programs that generate propulsive contractions. NO acts via its receptor NO-sensitive guanylyl cyclase (NO-GC) which is expressed in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Organ bath studies with colonic rings from NO-GC knockout mice (GCKO) have indicated NO-GC to modulate spontaneous contractions. The cell-specific effects of NO-GC on the dominant pan-colonic propulsive contraction, the long distance contractions (LDCs), of whole colon preparations have not yet been described. METHODS Contractions of whole colon preparations from wild type (WT), global, and cell-specific GCKO were recorded. After transformation into spatiotemporal maps, motility patterns were analyzed. Simultaneous perfusion of the colon enabled the correlation of outflow with LDCs to analyze contraction efficiency. KEY RESULTS Deletion of NO-GC in both ICC and SMC (ie, in GCKO and SMC/ICC-GCKO) caused loss of typical LDC activity and instead generated high-frequency LDC-like contractions with inefficient propulsive activity. Frequency was also increased in WT, SMC-GCKO, and ICC-GCKO colon in the presence of L-NAME to block neuronal NO synthase. LDC efficiency was dependent on NO-GC in SMC as it was reduced in GCKO, SMC-GCKO, and ICC/SMC-GCKO colon; LDC efficiency was decreased in all genotypes in the presence of L-NAME. CONCLUSIONS AND INFERENCES NO/cGMP signaling is critical for normal peristaltic movements; as NO-GC in both SMC and ICC is essential, both cell types appear to work in synchrony. The efficiency of contractions to expel fluid is particularly influenced by NO-GC in SMC.
Collapse
Affiliation(s)
- Katharina Beck
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - Barbara Voussen
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - Amelie Reigl
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - Alexander D Vincent
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Sean P Parsons
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jan D Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Andreas Friebe
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol Gastrointest Liver Physiol 2018; 315:G896-G907. [PMID: 30095295 DOI: 10.1152/ajpgi.00237.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of short-chain fatty acids (SCFAs) in the control of colonic motility is controversial. Germ-free (GF) mice are unable to produce these metabolites and serve as a model to study how their absence affects colonic motility. GF transit is slower than controls, and colonization of these mice improves transit and serotonin [5-hydroxytryptamine (5-HT)] levels. Our aim was to determine the role SCFAs play in improving transit and whether this is dependent on mucosal 5-HT signaling. Motility was assessed in GF mice via spatiotemporal mapping. First, motor patterns in the whole colon were measured ex vivo with or without luminal SCFA, and outflow from the colon was recorded to quantify outflow caused by individual propulsive contractions. Second, artificial fecal pellet propulsion was measured. Motility was then assessed in tryptophan hydroxylase-1 (TPH1) knockout (KO) mice, devoid of mucosal 5-HT, with phosphate buffer, butyrate, or propionate intraluminal perfusion. GF mice exhibited a lower proportion of propulsive contractions, lower volume of outflow/contraction, slower velocity of contractions, and slower propulsion of fecal pellets compared with controls. SCFAs changed motility patterns to that of controls in all parameters. Butyrate administration increased the proportion of propulsive contractions in controls yet failed to in TPH1 KO mice. Propionate inhibited propulsive contractions in all mice. Our results reveal significant abnormalities in the propulsive nature of colonic motor patterns in GF mice, explaining the decreased transit time in in vivo studies. We show that butyrate but not propionate activates propulsive motility and that this may require mucosal 5-HT. NEW & NOTEWORTHY Understanding the role that the microbiota play in governing the physiology of colonic motility is lacking. Here, we offer for the first time, to our knowledge, a detailed analysis of colonic motor patterns and pellet propulsion using spatiotemporal mapping in the absence of microbiota. We show a striking difference in germ-free and control phenotypes and attribute this to a lack of fermentation-produced short-chain fatty acid. We then show that butyrate but not propionate can restore motility and that the butyrate effect likely requires mucosal 5-hydroxytryptamine.
Collapse
Affiliation(s)
- Alexander D Vincent
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Xuan-Yu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Sean P Parsons
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Waliul I Khan
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
9
|
Beck K, Friebe A, Voussen B. Nitrergic signaling via interstitial cells of Cajal and smooth muscle cells influences circular smooth muscle contractility in murine colon. Neurogastroenterol Motil 2018; 30:e13300. [PMID: 29377328 DOI: 10.1111/nmo.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Regulation of gastrointestinal motility involves excitatory and inhibitory neurotransmission. Nitric oxide (NO), the major inhibitory neurotransmitter, acts via its receptor NO-sensitive guanylyl cyclase (NO-GC). In the GI tract, NO-GC is expressed in several cell types such as smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Using cell-specific knockout mice, we have previously shown that NO-GC modulates spontaneous contractions in colonic longitudinal smooth muscle. However, its detailed role in the colonic circular smooth muscle is still unclear. METHODS Myography was performed to evaluate spontaneous contractions in rings of proximal colon (2.5 mm) from global (GCKO) and cell-specific knockout mice for NO-GC. Immunohistochemistry and in situ hybridization were used to specify NO-GC expression. KEY RESULTS Colonic circular smooth muscle showed three different contraction patterns: high-frequency ripples, slow phasic contractions, and large contractions. Ripples formed independently of NO-GC. Slow phasic contractions occurred intermittently in WT, SMC-GCKO, and ICC-GCKO tissue, whereas they were more prominent and prolonged in GCKO and SMC/ICC-GCKO tissue. Tetrodotoxin and the NO-GC inhibitor ODQ transformed slow phasic contractions of WT and single cell-specific knockout into GCKO-like contractions. ODQ increased the frequency of large contractions in WT and ICC-GCKO colon but not in GCKO, SMC-GCKO, and SMC/ICC-GCKO preparations. Tetrodotoxin and hexamethonium abolished large contractions. CONCLUSIONS AND INFERENCES We conclude that short rings of murine colon can be effectively used to record spontaneous contractions. Although NO-GC in SMC determines smooth muscle tone, concerted action of NO-GC in both SMC and ICC modulates slow phasic contractions and large contractions.
Collapse
Affiliation(s)
- K Beck
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - A Friebe
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - B Voussen
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Radenkovic G, Radenkovic D, Velickov A. Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells. J Cell Mol Med 2017; 22:778-785. [PMID: 29193736 PMCID: PMC5783873 DOI: 10.1111/jcmm.13375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
Neural crest cells (NCC) can migrate into different parts of the body and express their strong inductive potential. In addition, they are multipotent and are able to differentiate into various cell types with diverse functions. In the primitive gut, NCC induce differentiation of muscular structures and interstitial cells of Cajal (ICC), and they themselves differentiate into the elements of the enteric nervous system (ENS), neurons and glial cells. ICC develop by way of mesenchymal cell differentiation in the outer parts of the primitive gut wall around the myenteric plexus (MP) ganglia, with the exception of colon, where they appear simultaneously also at the submucosal border of the circular muscular layer around the submucosal plexus (SMP) ganglia. However, in a complex process of reciprocal induction of NCC and local mesenchyma, c‐kit positive precursors are the first to differentiate, representing probably the common precursors of ICC and smooth muscle cells (SMC). C‐kit positive precursors could represent a key impact factor regarding the final differentiation of NCC into neurons and glial cells with neurons subsequently excreting stem cell factor (SCF) and other signalling molecules. Under the impact of SCF, a portion of c‐kit positive precursors lying immediately around the ganglia differentiate into ICC, while the rest differentiate into SMC.
Collapse
Affiliation(s)
- Goran Radenkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Dina Radenkovic
- UCL Medical School, University College London (UCL), London, UK
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
11
|
Hibberd TJ, Costa M, Travis L, Brookes SJH, Wattchow DA, Feng J, Hu H, Spencer NJ. Neurogenic and myogenic patterns of electrical activity in isolated intact mouse colon. Neurogastroenterol Motil 2017; 29:1-12. [PMID: 28418103 DOI: 10.1111/nmo.13089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Relatively little is known about the electrical rhythmicity of the whole colon, where long neural pathways are preserved. METHODS Smooth muscle electrical activity was recorded extracellularly from the serosa of isolated flat-sheet preparations consisting of the whole mouse colon (n=31). KEY RESULTS Two distinct electrical patterns were observed. The first, long intense spike bursts, occurred every 349±256 seconds (0.2±0.2 cpm), firing action potentials for 31±11 seconds at 2.1±0.5 Hz. They were hexamethonium- and tetrodotoxin-sensitive, but persisted in nicardipine as 2 Hz electrical oscillations lacking action potentials. This pattern is called here neurogenic spike bursts. The second pattern, short spike bursts, occurred about every 30 seconds (2.0±0.6 cpm), with action potentials firing at about 1 Hz for 9 seconds (1.0±0.2 Hz, 9±4 seconds). Short spike bursts were hexamethonium- and tetrodotoxin-resistant but nicardipine-sensitive and thus called here myogenic spike bursts. Neurogenic spike bursts transiently delayed myogenic spike bursts, while blocking neurogenic activity enhanced myogenic spike burst durations. External stimuli significantly affected neurogenic but not myogenic spike bursts. Aboral electrical or mechanical stimuli evoked premature neurogenic spike bursts. Circumferential stretch significantly decreased intervals between neurogenic spike bursts. Lesioning the colon down to 10 mm segments significantly increased intervals or abolished neurogenic spike bursts, while myogenic spike bursts persisted. CONCLUSIONS & INFERENCES Distinct neurogenic and myogenic electrical patterns were recorded from mouse colonic muscularis externa. Neurogenic spike bursts likely correlate with neurogenic colonic migrating motor complexes (CMMC) and are highly sensitive to mechanical stimuli. Myogenic spike bursts may correspond to slow myogenic contractions, whose duration can be modulated by enteric neural activity.
Collapse
Affiliation(s)
- T J Hibberd
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - M Costa
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - L Travis
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D A Wattchow
- Discipline of Surgery & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - J Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - H Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - N J Spencer
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
12
|
Wang L, Liang Y, Chen Q, Ahmed N, Wang F, Hu B, Yang P. Identification and Distribution of the Interstitial Cells of Cajal in the Abomasum of Goats. Cell Transplant 2017; 27:335-344. [PMID: 28933185 PMCID: PMC5898686 DOI: 10.1177/0963689717722561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The interstitial cells of Cajal (ICCs) are regarded as pacemakers and are involved in neurotransmission in the gastrointestinal tract (GIT) of animals. However, limited information is available about the existence of ICCs within the GIT of ruminants. In this study, we investigated the ultrastructural characteristics and distribution of ICCs in goat abomasum using transmission electron microscopy and c-kit immunohistochemistry. Two different kinds of c-kit immunoreactive cells were observed in the abomasum. The first was identified as ICCs, which appeared to be multipolar or bipolar in shape, with some processes. These c-kit immunoreactive cells were deposited in the submucosal layer, myenteric plexus between the circular and longitudinal muscle layers, and within the longitudinal and circular muscle layers of the abomasum. The second type of cell was round in shape and was identified as mast cells, which were located in the submucosal layer as well as in the lamina propria. Ultrastructurally, ICCs were also observed as stellate or spindle-shaped cells, which were consistent in shape with our c-kit immunoreactive cells. In the cytoplasm of ICCs, numerous mitochondria, rough endoplasmic reticulum, and caveolae were detected. ICCs were located in the myenteric plexus between the longitudinal and circular muscle layers (ICC-MY), with the longitudinal and circular muscle layer was replaced as “intramuscular layers” (ICC-IM), and in the submucosal layer (ICC-SM). In addition, we found ICCs surrounding nerve fibers and smooth muscle cells, where they formed heterocellular junctions in the form of close membrane associations or gap junctions and homocellular junctions among the processes of the ICCs. In the current study, we provide the first complete characterization of ICCs within the goat abomasum and propose that ICCs might have a key role in producing contractions in the ruminant stomach for proper absorption of nutrients.
Collapse
Affiliation(s)
- Lingling Wang
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yu Liang
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiusheng Chen
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Nisar Ahmed
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Feng Wang
- 2 College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Hu
- 3 College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ping Yang
- 1 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.,2 College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Jimenez M, Gil V, Martinez‐Cutillas M, Mañé N, Gallego D. Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility. Br J Pharmacol 2017; 174. [PMID: 28631296 PMCID: PMC5554320 DOI: 10.1111/bph.13918] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The biology of H2 S is a still developing area of research and several biological functions have been recently attributed to this gaseous molecule in many physiological systems, including the cardiovascular, urogenital, respiratory, digestive and central nervous system (CNS). H2 S exerts anti-inflammatory effects and can be considered an endogenous mediator with potential effects on gastrointestinal motility. During the last few years, we have investigated the role of H2 S as a regulator of gastrointestinal motility using both animal and human tissues. The aim of the present work is to review published data regarding the potential role of H2 S as a signalling molecule regulating physiopathological processes in gastrointestinal motor function. H2 S is endogenously produced by defined enzymic pathways in different cell types of the intestinal wall including neurons and smooth muscle. Inhibition of H2 S biosynthesis increases motility and H2 S donors cause smooth muscle relaxation and inhibition of propulsive motor patterns. Impaired H2 S production has been described in animal models with gastrointestinal motor dysfunction. The mechanism(s) of action underlying these effects may include several ion channels, although no specific receptor has been identified. At this time, even though there is much experimental evidence for H2 S as a modulator of gastrointestinal motility, we still do not have conclusive experimental evidence to definitively propose H2 S as an inhibitory neurotransmitter in the gastrointestinal tract, causing nerve-mediated relaxation.
Collapse
Affiliation(s)
- M Jimenez
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIBarcelonaSpain
| | - V Gil
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - M Martinez‐Cutillas
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - N Mañé
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - D Gallego
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIBarcelonaSpain
| |
Collapse
|
14
|
Smith TK, Koh SD. A model of the enteric neural circuitry underlying the generation of rhythmic motor patterns in the colon: the role of serotonin. Am J Physiol Gastrointest Liver Physiol 2017; 312:G1-G14. [PMID: 27789457 PMCID: PMC5283906 DOI: 10.1152/ajpgi.00337.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023]
Abstract
We discuss the role of multiple cell types involved in rhythmic motor patterns in the large intestine that include tonic inhibition of the muscle layers interrupted by rhythmic colonic migrating motor complexes (CMMCs) and secretomotor activity. We propose a model that assumes these motor patterns are dependent on myenteric descending 5-hydroxytryptamine (5-HT, serotonin) interneurons. Asynchronous firing in 5-HT neurons excite inhibitory motor neurons (IMNs) to generate tonic inhibition occurring between CMMCs. IMNs release mainly nitric oxide (NO) to inhibit the muscle, intrinsic primary afferent neurons (IPANs), glial cells, and pacemaker myenteric pacemaker interstitial cells of Cajal (ICC-MY). Mucosal release of 5-HT from enterochromaffin (EC) cells excites the mucosal endings of IPANs that synapse with 5-HT descending interneurons and perhaps ascending interneurons, thereby coupling EC cell 5-HT to myenteric 5-HT neurons, synchronizing their activity. Synchronized 5-HT neurons generate a slow excitatory postsynaptic potential in IPANs via 5-HT7 receptors and excite glial cells and ascending excitatory nerve pathways that are normally inhibited by NO. Excited glial cells release prostaglandins to inhibit IMNs (disinhibition) to allow full excitation of ICC-MY and muscle by excitatory motor neurons (EMNs). EMNs release ACh and tachykinins to excite pacemaker ICC-MY and muscle, leading to the simultaneous contraction of both the longitudinal and circular muscle layers. Myenteric 5-HT neurons also project to the submucous plexus to couple motility with secretion, especially during a CMMC. Glial cells are necessary for switching between different colonic motor behaviors. This model emphasizes the importance of myenteric 5-HT neurons and the likely consequence of their coupling and uncoupling to mucosal 5-HT by IPANs during colonic motor behaviors.
Collapse
Affiliation(s)
- Terence Keith Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
15
|
Spencer NJ, Dinning PG, Brookes SJ, Costa M. Insights into the mechanisms underlying colonic motor patterns. J Physiol 2016; 594:4099-116. [PMID: 26990133 PMCID: PMC4967752 DOI: 10.1113/jp271919] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/26/2016] [Indexed: 12/28/2022] Open
Abstract
In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Phil G Dinning
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
- Departments of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, Australia
| | - Simon J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
16
|
Zhu YF, Wang XY, Parsons SP, Huizinga JD. Stimulus-induced pacemaker activity in interstitial cells of Cajal associated with the deep muscular plexus of the small intestine. Neurogastroenterol Motil 2016; 28:1064-74. [PMID: 26968691 DOI: 10.1111/nmo.12808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/01/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The ICC-DMP have been proposed to generate stimulus-dependent pacemaker activity, rhythmic transient depolarizations, that take part in orchestrating segmentation and clustered propulsive motor patterns in the small intestine. However, little is known about the fundamental properties of ICC-DMP. METHODS This study was undertaken to increase our understanding of intrinsic properties of the ICC-DMP through calcium imaging and intracellular electrical recordings. KEY RESULTS Without stimulation, most ICC-DMP were quiescent. In some preparations ICC-DMP generated rhythmic low-frequency calcium oscillations (<10 cpm) with or without high frequency activity superimposed (>35 cpm). Immunohistochemistry proved the existence of NK1R on the ICC-DMP and close contacts between ICC-DMP and substance P-positive nerves. Substance P (25 nM) induced low-frequency calcium oscillations that were synchronized across the ICC-DMP network. Substance P also induced low frequency rhythmic transient depolarizations (<10cpm) in circular muscle cells close to the ICC-DMP. An intracellular recording from a positively identified ICC-DMP showed rhythmic transient depolarizations with superimposed high frequency activity. To investigate if quiescent ICC-DMP were chronically inhibited by nitrergic activity, nNOS was inhibited, but without effect. CONCLUSIONS & INFERENCES Substance P changes non-synchronized high frequency flickering or quiescence in ICC-DMP into strong rhythmic calcium transients that are synchronized within the network; they are associated with rhythmic transient depolarizations within the same frequency range. We hypothesize that Substance P, released from nerves, can evoke rhythmicity in ICC-DMP, thereby providing it with potential pacemaker activity.
Collapse
Affiliation(s)
- Y F Zhu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - X-Y Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - S P Parsons
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - J D Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Li H, Chen JH, Yang Z, Huang M, Yu Y, Tan S, Luo H, Huizinga JD. Neurotensin Changes Propulsive Activity into a Segmental Motor Pattern in the Rat Colon. J Neurogastroenterol Motil 2016; 22:517-28. [PMID: 26882114 PMCID: PMC4930308 DOI: 10.5056/jnm15181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/31/2015] [Accepted: 01/10/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIMS Neurotensin is a gut-brain peptide with both inhibitory and excitatory actions on the colonic musculature; our objective was to understand the implications of this for motor patterns occurring in the intact colon of the rat. METHODS The effects of neurotensin with concentrations ranging from 0.1-100 nM were studied in the intact rat colon in vitro, by investigating spatio-temporal maps created from video recordings of colonic motility before and after neurotensin. RESULTS Low concentration of neurotensin (0.1-1 nM) inhibited propagating long distance contractions and rhythmic propagating motor complexes; in its place a slow propagating rhythmic segmental motor pattern developed. The neurotensin receptor 1 antagonist SR-48692 prevented the development of the segmental motor pattern. Higher concentrations of neurotensin (10 nM and 100 nM) were capable of restoring long distance contraction activity and inhibiting the segmental activity. The slow propagating segmental contraction showed a rhythmic contraction-- relaxation cycle at the slow wave frequency originating from the interstitial cells of Cajal associated with the myenteric plexus pacemaker. High concentrations given without prior additions of low concentrations did not evoke the segmental motor pattern. These actions occurred when neurotensin was given in the bath solution or intraluminally. The segmental motor pattern evoked by neurotensin was inhibited by the neural conduction blocker lidocaine. CONCLUSIONS Neurotensin (0.1-1 nM) inhibits the dominant propulsive motor patterns of the colon and a distinct motor pattern of rhythmic slow propagating segmental contractions develops. This motor pattern has the hallmarks of haustral boundary contractions.
Collapse
Affiliation(s)
- Hongfei Li
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - Ji-Hong Chen
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China.,Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Zixian Yang
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - Min Huang
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - Yuanjie Yu
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - Shiyun Tan
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China
| | - Jan D Huizinga
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China.,Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Chen JH, Yang Z, Yu Y, Huizinga JD. Haustral boundary contractions in the proximal 3-taeniated rabbit colon. Am J Physiol Gastrointest Liver Physiol 2016; 310:G181-92. [PMID: 26635318 DOI: 10.1152/ajpgi.00171.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
The rabbit proximal colon is similar in structure to the human colon. Our objective was to study interactions of different rhythmic motor patterns focusing on haustral boundary contractions, which create the haustra, using spatiotemporal mapping of video recordings. Haustral boundary contractions were seen as highly rhythmic circumferential ring contractions that propagated slowly across the proximal colon, preferentially but not exclusively in the anal direction, at ∼0.5 cycles per minute; they were abolished by nerve conduction blockers. When multiple haustral boundary contractions propagated in the opposite direction, they annihilated each other upon encounter. Ripples, myogenic propagating ring contractions at ∼9 cycles per min, induced folding and unfolding of haustral muscle folds, creating an anarchic appearance of contractile activity, with different patterns in the three intertaenial regions. Two features of ripple activity were prominent: frequent changes in propagation direction and the occurrence of dislocations showing a frequency gradient with the highest intrinsic frequency in the distal colon. The haustral boundary contractions showed an on/off/on/off pattern at the ripple frequency, and the contraction amplitude at any point of the colon showed waxing and waning. The haustral boundary contractions are therefore shaped by interaction of two pacemaker activities hypothesized to occur through phase-amplitude coupling of pacemaker activities from interstitial cells of Cajal of the myenteric plexus and of the submuscular plexus. Video evidence shows the unique role haustral folds play in shaping contractile activity within the haustra. Muscarinic agents not only enhance the force of contraction, they can eliminate one and at the same time induce another neurally dependent motor pattern.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and Farncombe Family Digestive Health Research Institute, McMaster University Department of Medicine, Hamilton, Ontario, Canada
| | - Zixian Yang
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and
| | - Yuanjie Yu
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and
| | - Jan D Huizinga
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and Farncombe Family Digestive Health Research Institute, McMaster University Department of Medicine, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Banciu DD, Banciu A, Radu BM. Electrophysiological Features of Telocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:287-302. [PMID: 27796895 DOI: 10.1007/978-981-10-1061-3_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Telocytes (TCs) are interstitial cells described in multiple structures, including the gastrointestinal tract, respiratory tract, urinary tract, uterus, and heart. Several studies have indicated the possibility that TCs are involved in the pacemaker potential in these organs. It is supposed that TCs are interacting with the neighboring muscular cells and their network contributes to the initiation and propagation of the electrical potentials. In order to understand the contribution of TCs to various excitability mechanisms, it is necessary to analyze the plasma membrane proteins (e.g., ion channels) functionally expressed in these cells. So far, potassium, calcium, and chloride currents, but not sodium currents, have been described in TCs in primary cell culture from different tissues. Moreover, TCs have been described as sensors for mechanical stimuli (e.g., contraction, extension, etc.). In conclusion, TCs might play an essential role in gastrointestinal peristalsis, in respiration, in pregnant uterus contraction, or in miction, but further highlighting studies are necessary to understand the molecular mechanisms and the cell-cell interactions by which TCs contribute to the tissue excitability and pacemaker potentials initiation/propagation.
Collapse
Affiliation(s)
- Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 050095, Romania. .,Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona, 37134, Italy.
| |
Collapse
|
20
|
Ex vivo motility in the base of the rabbit caecum and its associated structures: an electrophysiological and spatiotemporal analysis. J Physiol Biochem 2015; 72:45-57. [PMID: 26671063 DOI: 10.1007/s13105-015-0455-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/25/2015] [Indexed: 01/11/2023]
Abstract
We examined the coordination between contractile events at different sites in the basal portion of the rabbit caecum and its associated structures that were identified by electrophysiological recordings with simultaneous one-dimensional, and a novel two-dimensional, spatiotemporal mapping technique. The findings of this work provide evidence that the caecum and proximal colon/ampulla coli act reflexly to augment colonic outflow when the caecum is distended and mass peristalsis instituted, the action of the latter overriding the inherent rhythm and direction of haustral propagation in the adjacent portion of the proximal colon but not in the terminal ileum. Further, the findings suggest that the action of the sacculus rotundus may result from its distension with chyme by ileal peristalsis and that the subsequent propagation of contraction along the basal wall of the caecum towards the colon may be augmented by this local distension.
Collapse
|
21
|
Tamada H, Kiyama H. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/W(v) mutant mouse colon. J Smooth Muscle Res 2015; 51:1-9. [PMID: 26004376 PMCID: PMC5137270 DOI: 10.1540/jsmr.51.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.
Collapse
Affiliation(s)
- Hiromi Tamada
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi, Japan
| | | |
Collapse
|
22
|
Lies B, Beck K, Keppler J, Saur D, Groneberg D, Friebe A. Nitrergic signalling via interstitial cells of Cajal regulates motor activity in murine colon. J Physiol 2015; 593:4589-601. [PMID: 26227063 DOI: 10.1113/jp270511] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022] Open
Abstract
In the enteric nervous systems, NO is released from nitrergic neurons as a major inhibitory neurotransmitter. NO acts via NO-sensitive guanylyl cyclase (NO-GC), which is found in different gastrointestinal (GI) cell types including smooth muscle cells (SMCs) and interstitial cells of Cajal (ICC). The precise mechanism of nitrergic signalling through these two cell types to regulate colonic spontaneous contractions is not fully understood yet. In the present study we investigated the impact of endogenous and exogenous NO on colonic contractile motor activity using mice lacking nitric oxide-sensitive guanylyl cyclase (NO-GC) globally and specifically in SMCs and ICC. Longitudinal smooth muscle of proximal colon from wild-type (WT) and knockout (KO) mouse strains exhibited spontaneous contractile activity ex vivo. WT and smooth muscle-specific guanylyl cyclase knockout (SMC-GCKO) colon showed an arrhythmic contractile activity with varying amplitudes and frequencies. In contrast, colon from global and ICC-specific guanylyl cyclase knockout (ICC-GCKO) animals showed a regular contractile rhythm with constant duration and amplitude of the rhythmic contractions. Nerve blockade (tetrodotoxin) or specific blockade of NO signalling (L-NAME, ODQ) did not significantly affect contractions of GCKO and ICC-GCKO colon whereas the arrhythmic contractile patterns of WT and SMC-GCKO colon were transformed into uniform motor patterns. In contrast, the response to electric field-stimulated neuronal NO release was similar in SMC-GCKO and global GCKO. In conclusion, our results indicate that basal enteric NO release acts via myenteric ICC to influence the generation of spontaneous contractions whereas the effects of elevated endogenous NO are mediated by SMCs in the murine proximal colon.
Collapse
Affiliation(s)
- Barbara Lies
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - Katharina Beck
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - Jonas Keppler
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - Dieter Saur
- II. Medizinische Klinik und Poliklinik, Technische Universität München, München, Germany
| | - Dieter Groneberg
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Mañé N, Martínez-Cutillas M, Gallego D, Jimenez M. Enteric motor pattern generators involve both myogenic and neurogenic mechanisms in the human colon. Front Physiol 2015; 6:205. [PMID: 26257657 PMCID: PMC4508510 DOI: 10.3389/fphys.2015.00205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/06/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Noemí Mañé
- Cell Biology, Physiology and Immunology, Universidad Autonoma de Barcelona Barcelona, Spain
| | | | - Diana Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Barcelona, Spain
| | - Marcel Jimenez
- Cell Biology, Physiology and Immunology, Universidad Autonoma de Barcelona Barcelona, Spain ; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Barcelona, Spain
| |
Collapse
|
24
|
Yu Y, Chen JH, Li H, Yang Z, Du X, Hong L, Liao H, Jiang L, Shi J, Zhao L, Tan S, Luo H, Huizinga JD. Involvement of 5-HT3 and 5-HT4 receptors in colonic motor patterns in rats. Neurogastroenterol Motil 2015; 27:914-28. [PMID: 25807879 DOI: 10.1111/nmo.12550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/21/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Colonic migrating motor complexes in the rat constitute two distinct propulsive motor patterns, pan-colonic rhythmic long distance contractions (LDCs), and rhythmic propulsive motor complexes (RPMCs) occurring primarily in the mid/distal colon. Interstitial cells of Cajal govern their rhythmicity, but their occurrence is dependent on neural programs. Our aim was to investigate the involvement of 5-HT3 and 5-HT4 receptors in the generation and pharmacological control of the motor patterns. METHODS Effects of 5-HT-related drugs on colonic motor patterns were analyzed through spatio-temporal maps created from video recordings of whole organ motility. KEY RESULTS 5-HT3 antagonists abolished RPMCs and LDCs. 5-HT4 agonists inhibited LDCs; they promoted RPMCs, which was blocked by the 5-HT4 antagonist GR 125487. 5-HT and the 5-HT3 agonist m-CPBG strongly inhibited LDCs and RPMCs. CONCLUSIONS & INFERENCES The generation of LDCs involves ongoing 5-HT release acting on 5-HT3 and 5-HT4 receptors. The spontaneous generation of RPMCs involves ongoing 5-HT release acting on 5-HT3 but not 5-HT4 receptors. Prucalopride and mosapride promote RPMCs, an effect that is inhibited by the 5-HT4 receptor antagonist GR 125487. A 5-HT3 agonist does not promote RPMCs. Segmentation, including a pattern of sequential segmental activity not previously described, can occur without significant involvement of 5-HT3 and 5-HT4 receptors. 5-HT and a 5-HT3 agonist are strongly inhibitory indicating that 5-HT receptors are present in inhibitory pathways which are normally not involved in the generation of spontaneous or distention-induced motor patterns.
Collapse
Affiliation(s)
- Y Yu
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - J-H Chen
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - H Li
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Z Yang
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - X Du
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - L Hong
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - H Liao
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - L Jiang
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - J Shi
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - L Zhao
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - S Tan
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - H Luo
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - J D Huizinga
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
25
|
Huizinga JD, Parsons SP, Chen JH, Pawelka A, Pistilli M, Li C, Yu Y, Ye P, Liu Q, Tong M, Zhu YF, Wei D. Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity. Am J Physiol Cell Physiol 2015; 309:C403-14. [PMID: 26135802 DOI: 10.1152/ajpcell.00414.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/26/2015] [Indexed: 12/23/2022]
Abstract
Phase-amplitude coupling of two pacemaker activities of the small intestine, the omnipresent slow wave activity generated by interstitial cells of Cajal of the myenteric plexus (ICC-MP) and the stimulus-dependent rhythmic transient depolarizations generated by ICC of the deep muscular plexus (ICC-DMP), was recently hypothesized to underlie the orchestration of the segmentation motor pattern. The aim of the present study was to increase our understanding of phase-amplitude coupling through modeling. In particular the importance of propagation velocity of the ICC-DMP component was investigated. The outcome of the modeling was compared with motor patterns recorded from the rat or mouse intestine from which propagation velocities within the different patterns were measured. The results show that the classical segmentation motor pattern occurs when the ICC-DMP component has a low propagation velocity (<0.05 cm/s). When the ICC-DMP component has a propagation velocity in the same order of magnitude as that of the slow wave activity (∼1 cm/s), cluster type propulsive activity occurs which is in fact the dominant propulsive activity of the intestine. Hence, the only difference between the generation of propagating cluster contractions and the Cannon-type segmentation motor pattern is the propagation velocity of the low-frequency component, the rhythmic transient depolarizations originating from the ICC-DMP. Importantly, the proposed mechanism explains why both motor patterns have distinct rhythmic waxing and waning of the amplitude of contractions. The hypothesis is brought forward that the velocity is modulated by neural regulation of gap junction conductance within the ICC-DMP network.
Collapse
Affiliation(s)
- Jan D Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada; and Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Sean P Parsons
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada; and
| | - Ji-Hong Chen
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada; and Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Andrew Pawelka
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada; and
| | - Marc Pistilli
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada; and
| | - Chunpei Li
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Yuanjie Yu
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Pengfei Ye
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Qing Liu
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Mengting Tong
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Yong Fang Zhu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada; and
| | - Defei Wei
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
26
|
Pawelka AJ, Huizinga JD. Induction of rhythmic transient depolarizations associated with waxing and waning of slow wave activity in intestinal smooth muscle. Am J Physiol Gastrointest Liver Physiol 2015; 308:G427-33. [PMID: 25540235 DOI: 10.1152/ajpgi.00409.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cannon described in 1902 the segmentation motor activity of the small intestine (Canon WB. J Med Res 7: 72-75, 1902). This motor pattern can arise when low-frequency transient depolarizations are evoked in the interstitial cells of Cajal associated with the deep muscular plexus (ICC-DMP) network, which then affect the omnipresent slow wave activity: changing its regular amplitude into a waxing and waning pattern. The objective of the present study was to investigate physiological stimuli that could induce the low-frequency component. Intracellular recordings were obtained from circular muscle with or without attached mucosa. Decanoic acid (1 mM) and butyric acid (10 mM) both evoked low-frequency transient depolarizations but through different mechanisms. Decanoic acid-induced waxing and waning was initiated by purely myogenic means when perfused onto exposed circular muscle. Butyric acid required the intact mucosa and uninhibited neural activity to elicit the low-frequency response. Evidence is provided that the transient rhythmic depolarizations occur in the absence of interstitial cells of Cajal associated with the myenteric plexus (ICC-MP). Onset of the slow transient depolarizations was stimulated by addition of N(ω)-nitro-l-arginine (l-NNA; 100 μM); thus the low-frequency component seems to be under chronic inhibition by nitric oxide. Excitatory tachykinergic stimulation induced the low-frequency component since substance P (0.5 μM) evoked it in the presence of neural blockade. In summary, interplay between two networks of myogenic pacemakers, neural activity, and nutrient factors such as fatty acids plays a role in the generation of the rhythmic low-frequency component that is essential for the development of the checkered segmentation motor pattern.
Collapse
Affiliation(s)
- Andrew J Pawelka
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jan D Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Mañé N, Jimenez M. Interplay between myogenic pacemakers and enteric neurons determine distinct motor patterns in the rat colon. Neurogastroenterol Motil 2014; 26:1508-12. [PMID: 25088991 DOI: 10.1111/nmo.12393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/13/2014] [Indexed: 01/14/2023]
Abstract
Waxing and waning of slow waves amplitude has been recently associated with a segmentation motor pattern in the murine small intestine. The 'wax and wane' phenomenon in this area of the gastrointestinal tract seems to be the result of modulation of slow waves by a second pacemaker of a lower frequency displayed by the interstitial cells of Cajal near the deep muscular plexus (ICC-DMP). In the rat colon, smooth muscle cyclic depolarizations causing low-frequency (LF) contractions (0.9 ± 0.1 cpm) occur together with slow wave activity associated to high-frequency (HF) contractions (14 ± 0.3 cpm; ripples). In the present manuscript, we demonstrate the presence of 'wax and wane' in rat colonic slow waves. Depolarization from the 'wax' to the 'wane' was 7.6 ± 1.2 mV, i.e., smooth muscle cells went from a resting membrane potential (RMP) of -50.0 mV to a RMP of -42.4 mV. The amplitude of the slow wave decreased from 14.0 ± 2.2 mV to 3.4 ± 0.7 mV. The wax and wane phenomenon occurred at 0.9 ± 0.1 cpm, coinciding with the frequency of cyclic depolarizations. Therefore, we hypothesized that the 'wax and wane' of slow waves in the rat colon could be the result of their interaction with the LF pacemaker. We describe three different myogenic motor patterns that depend on the level of smooth muscle and ICC excitation: (i) LF propulsive contractions, (ii) regular slow waves causing ripples, and (iii) a wax and wane pattern that may lead to segmentation. Different intra- and extra-luminal inputs probably determine the dominating motor pattern in each area through the enteric nervous system.
Collapse
Affiliation(s)
- N Mañé
- Department of Cell Biology, Physiology and Immunology and Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
28
|
Gil V, Parsons S, Gallego D, Huizinga J, Jimenez M. Effects of hydrogen sulphide on motility patterns in the rat colon. Br J Pharmacol 2014; 169:34-50. [PMID: 23297830 DOI: 10.1111/bph.12100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/26/2012] [Accepted: 12/17/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H2 S) is an endogenous gaseous signalling molecule with putative functions in gastrointestinal motility regulation. Characterization of H2 S effects on colonic motility is crucial to establish its potential use as therapeutic agent in the treatment of colonic disorders. EXPERIMENTAL APPROACH H2 S effects on colonic motility were characterized using video recordings and construction of spatio-temporal maps. Microelectrode and muscle bath studies were performed to investigate the mechanisms underlying H2 S effects. NaHS was used as the source of H2 S. KEY RESULTS Rhythmic propulsive motor complexes (RPMCs) and ripples were observed in colonic spatio-temporal maps. Serosal addition of NaHS concentration-dependently inhibited RPMCs. In contrast, NaHS increased amplitude of the ripples without changing their frequency. Therefore, ripples became the predominant motor pattern. Neuronal blockade with lidocaine inhibited RPMCs, which were restored after administration of carbachol. Subsequent addition of NaHS inhibited RPMCs. Luminal addition of NaHS did not modify motility patterns. NaHS inhibited cholinergic excitatory junction potentials, carbachol-induced contractions and hyperpolarized smooth muscle cells, but did not modify slow wave activity. CONCLUSIONS AND IMPLICATIONS H2 S modulated colonic motility inhibiting propulsive contractile activity and enhancing the amplitude of ripples, promoting mixing. Muscle hyperpolarization and inhibition of neurally mediated cholinergic responses contributed to the inhibitory effect on propulsive activity. H2 S effects were not related to changes in the frequency of slow wave activity originating in the network of interstitial cells of Cajal located near the submuscular plexus. Luminal H2 S did not modify colonic motility probably because of epithelial detoxification.
Collapse
Affiliation(s)
- V Gil
- Department of Cell Biology, Physiology and Immunology/Neuroscience Institute, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
29
|
Wang XY, Chen JH, Li K, Zhu YF, Wright GWJ, Huizinga JD. Discrepancies between c-Kit positive and Ano1 positive ICC-SMP in the W/Wv and wild-type mouse colon; relationships with motor patterns and calcium transients. Neurogastroenterol Motil 2014; 26:1298-310. [PMID: 25039457 DOI: 10.1111/nmo.12395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/13/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Interstitial cells of Cajal associated with the submuscular plexus (ICC-SMP) generate omnipresent slow-wave activity in the colon and are associated with prominent motor patterns. Our aim was to investigate colon motor dysfunction in W/W(v) mice in which the ICC are reportedly reduced. METHODS Whole organ colon motility was studied using spatio-temporal mapping; immunohistochemical staining was carried out for c-Kit and Ano1; calcium imaging was applied to ICC-SMP. KEY RESULTS Discrepancies between Ano1 and c-Kit staining were found in both wild-type and W/W(v) colon. ICC-SMP were reduced to ~50% in the W/W(v) mouse colon according to c-Kit immunohistochemistry, but Ano1 staining indicated a normal network of ICC-SMP. The latter was consistent with rhythmic calcium transients occurring at the submucosal border of the colon in W/W(v) mice, similar to the rhythmic transients in wild-type ICC-SMP. Furthermore, the motor pattern associated with ICC-SMP pacemaking, the so-called 'ripples' were normal in the W/W(v) colon. CONCLUSIONS & INFERENCES c-Kit is not a reliable marker for quantifying ICC-SMP in the mouse colon. Ano1 staining revealed a normal network of ICC-SMP consistent with the presence of a normal 'ripples' motor pattern. We detected a class of Ano1 positive c-Kit negative cells that do not depend on Kit expression for maintenance, a feature shared with ICC progenitors.
Collapse
Affiliation(s)
- Xuan-Yu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Mitsui R, Miyamoto S, Takano H, Hashitani H. Properties of submucosal venules in the rat distal colon. Br J Pharmacol 2014; 170:968-77. [PMID: 23992146 DOI: 10.1111/bph.12347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/06/2013] [Accepted: 06/21/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Venules within the gut wall may have intrinsic mechanisms for maintaining the circulation even upon the intestinal wall distension. We aimed to explore spontaneous and nerve-mediated contractile activity of colonic venules. EXPERIMENTAL APPROACH Changes in the diameter of submucosal venules of the rat distal colon were measured using video microscopy. The innervation of the microvasculature was investigated using fluorescence immunohistochemistry. KEY RESULTS Submucosal venules exhibited spontaneous constrictions that were abolished by blockers of L-type Ca(2+) channels (1 μM nicardipine), Ca(2+)-ATPase (10 μM cyclopiazonic acid), IP3 receptor (100 μM 2-APB), Ca(2+)-activated Cl(-) channels (100 μM DIDS) or store-operated Ca(2+) entry channels (10 μM SKF96365). Transmural nerve stimulation (TNS at 10 Hz) induced a phasic venular constriction that was blocked by phentolamine (1 μM, α-adrenoceptor antagonist) or sympathetic nerve depletion using guanethidine (10 μM). Stimulation of primary afferent nerves with TNS (at 20 Hz) or capsaicin (100 nM) evoked a sustained venular dilatation that was attenuated by calcitonin gene-related peptide (CGRP) 8-37 (2 μM), a CGRP receptor antagonist. Immunohistochemistry revealed sympathetic and primary afferent nerves running along submucosal venules. CONCLUSIONS AND IMPLICATIONS Submucosal venules of the rat distal colon exhibit spontaneous constrictions that appear to primarily rely on Ca(2+) release from sarcoplasmic reticulum and subsequent opening of Ca(2+)-activated Cl(-) channels that trigger Ca(2+) influx through L-type Ca(2+) channels. Venular contractility is modulated by sympathetic as well as CGRP-containing primary afferent nerves, suggesting that submucosal venules may play an active role in regulating the microcirculation of the digestive tract.
Collapse
Affiliation(s)
- Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | |
Collapse
|
31
|
Huizinga JD, Chen JH. Interstitial cells of Cajal: update on basic and clinical science. Curr Gastroenterol Rep 2014; 16:363. [PMID: 24408748 DOI: 10.1007/s11894-013-0363-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The basic science and clinical interest in the networks of interstitial cells of Cajal (ICC) keep growing, and here, research from 2010 to mid-2013 is highlighted. High-resolution gastrointestinal manometry and spatiotemporal mapping are bringing exciting new insights into motor patterns, their function and their myogenic and neurogenic origins, as well as the role of ICC. Critically important knowledge is emerging on the partaking of PDGFRα+ cells in ICC pacemaker networks. Evidence is emerging that ICC and PDGFRα+ cells have unique direct roles in muscle innervation. Chronic constipation is associated with loss and injury to ICC, which is stimulating extensive research into maintenance and repair of ICC after injury. In gastroparesis, high-resolution electrical and mechanical studies are beginning to elucidate the pathophysiological role of ICC and the pacemaker system in this condition. Receptors and ion channels that play a role in ICC function are being discovered and characterized, which paves the way for pharmacological interventions in gut motility disorders through ICC.
Collapse
Affiliation(s)
- Jan D Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University, HSC-3N8, 1200 Main Street West, Hamilton, ON, Canada, L8N 3Z5,
| | | |
Collapse
|
32
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
33
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
34
|
Huizinga JD, Chen JH. The myogenic and neurogenic components of the rhythmic segmentation motor patterns of the intestine. Front Neurosci 2014; 8:78. [PMID: 24782705 PMCID: PMC3989585 DOI: 10.3389/fnins.2014.00078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/28/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Ji-Hong Chen
- Key Laboratory of Hubei Province for Digestive System Diseases, Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases Wuhan, China
| |
Collapse
|
35
|
Dynamics of inhibitory co-transmission, membrane potential and pacemaker activity determine neuromyogenic function in the rat colon. Pflugers Arch 2014; 466:2305-21. [DOI: 10.1007/s00424-014-1500-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/26/2023]
|
36
|
Iizuka Y, Kuwahara A, Karaki SI. Role of PGE2 in the colonic motility: PGE2 generates and enhances spontaneous contractions of longitudinal smooth muscle in the rat colon. J Physiol Sci 2014; 64:85-96. [PMID: 24170253 PMCID: PMC10717406 DOI: 10.1007/s12576-013-0295-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022]
Abstract
The aim of this study was to determine which PGE2 receptors (EP1-4 receptors) influence colonic motility. Mucosa-free longitudinal smooth muscle strips of the rat middle colon spontaneously induced frequent phasic contractions (giant contractions, GCs) in vitro, and the GCs were almost completely abolished by a cyclooxygenase inhibitor, piroxicam, and by an EP3 receptor antagonist, ONO-AE3-240, but enhanced by tetrodotoxin (TTX). In the presence of piroxicam, exogenous PGE2, both ONO-AE-248 (EP3 agonist), and ONO-DI-004 (EP1 agonist) induced GC-like contractions, and increased the frequency and amplitude. These effects of EP receptor agonists were insensitive to TTX and ω-conotoxins. In immunohistochemistry, the EP1 and EP3 receptors were expressed in the longitudinal smooth muscle cells. These results suggest that the endogenous PGE2 spontaneously generates and enhances the frequent phasic contractions directly activating the EP1 and EP3 receptors expressed on longitudinal smooth muscle cells in the rat middle colon.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Colon/drug effects
- Colon/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprostone/analogs & derivatives
- Dinoprostone/metabolism
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Gastrointestinal Motility/drug effects
- In Vitro Techniques
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Piroxicam/pharmacology
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E, EP1 Subtype/agonists
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/agonists
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yumiko Iizuka
- Laboratory of Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences/Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
- Department of Nutrition, National Hospital Organization Shizuoka Medical Center, 762-1 Nagasawa, Shimizu-cho, Sunto-gun, Shizuoka 411-0915 Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences/Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Shin-Ichiro Karaki
- Laboratory of Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences/Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| |
Collapse
|
37
|
Wright GWJ, Parsons SP, Loera-Valencia R, Wang XY, Barajas-López C, Huizinga JD. Cholinergic signalling-regulated KV7.5 currents are expressed in colonic ICC-IM but not ICC-MP. Pflugers Arch 2013; 466:1805-18. [PMID: 24375291 DOI: 10.1007/s00424-013-1425-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 12/17/2022]
Abstract
Interstitial cells of Cajal (ICC) and the enteric nervous system orchestrate the various rhythmic motor patterns of the colon. Excitation of ICC may evoke stimulus-dependent pacemaker activity and will therefore have a profound effect on colonic motility. The objective of the present study was to evaluate the potential role of K(+) channels in the regulation of ICC excitability. We employed the cell-attached patch clamp technique to assess single channel activity from mouse colon ICC, immunohistochemistry to determine ICC K(+) channel expression and single cell RT-PCR to identify K(+) channel RNA. Single channel activity revealed voltage-sensitive K(+) channels, which were blocked by the KV7 blocker XE991 (n = 8), which also evoked inward maxi channel activity. Muscarinic acetylcholine receptor stimulation with carbachol inhibited K(+) channel activity (n = 8). The single channel conductance was 3.4 ± 0.1 pS (n = 8), but with high extracellular K(+), it was 18.1 ± 0.6 pS (n = 22). Single cell RT-PCR revealed Ano1-positive ICC that were positive for KV7.5. Double immunohistochemical staining of colons for c-Kit and KV7.5 in situ revealed that intramuscular ICC (ICC-IM), but not ICC associated with the myenteric plexus (ICC-MP), were positive for KV7.5. It also revealed dense cholinergic innervation of ICC-IM. ICC-IM and ICC-MP networks were found to be connected. We propose that the pacemaker network in the colon consists of both ICC-MP and ICC-IM and that one way of exciting this network is via cholinergic KV7.5 channel inhibition in ICC-IM.
Collapse
Affiliation(s)
- George W J Wright
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, HSC-3N8, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada,
| | | | | | | | | | | |
Collapse
|
38
|
Costa M, Dodds KN, Wiklendt L, Spencer NJ, Brookes SJH, Dinning PG. Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat. Am J Physiol Gastrointest Liver Physiol 2013; 305:G749-59. [PMID: 24052530 DOI: 10.1152/ajpgi.00227.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal motility involves interactions between myogenic and neurogenic processes intrinsic to the gut wall. We have compared the presence of propagating myogenic contractions of the isolated colon in four experimental animals (guinea pig, mouse, rabbit, and rat), following blockade of enteric neural activity. Isolated colonic preparations were distended with fluid, with the anal end either closed or open. Spatiotemporal maps of changes in diameter were constructed from video recordings. Distension-induced peristaltic contractions were abolished by tetrodotoxin (TTX; 0.6 μM) in all animal species. Subsequent addition of carbachol (0.1-1 μM) did not evoke myogenic motor patterns in the mouse or guinea pig, although some activity was observed in rabbit and rat colon. These myogenic contractions propagated both orally and anally and differed from neurogenic propagating contractions in their frequency, extent of propagation, and polarity. Niflumic acid (300 μM), used to block myogenic activity, also blocked neural peristalsis and thus cannot be used to discriminate between these mechanisms. In all species, except the mouse colon, small myogenic "ripple" contractions were revealed in TTX, but in both rat and rabbit an additional, higher-frequency ripple-type contraction was superimposed. Following blockade of enteric nerve function, a muscarinic agonist can evoke propulsive myogenic peristaltic contractions in isolated rabbit and rat colon, but not in guinea pig or mouse colon. Marked differences between species exist in the ability of myogenic mechanisms to propel luminal content, but in all species there is normally a complex interplay between neurogenic and myogenic processes.
Collapse
Affiliation(s)
- M Costa
- Dept. of Human Physiology, School of Medicine, Flinders Univ., South Australia 5042.
| | | | | | | | | | | |
Collapse
|
39
|
Traini C, Cipriani G, Evangelista S, Santicioli P, Faussone-Pellegrini MS, Vannucchi MG. Chronic treatment with otilonium bromide induces changes in L-type Ca²⁺ channel, tachykinins, and nitric oxide synthase expression in rat colon muscle coat. Neurogastroenterol Motil 2013; 25:e728-39. [PMID: 23901937 DOI: 10.1111/nmo.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Otilonium bromide (OB) is a quaternary ammonium derivative used for the treatment of intestinal hypermotility and is endowed with neurokinin2 receptor (NK2r) antagonist and Ca²⁺ channel blocker properties. Therefore, the possibility that OB might play a role in the neurokinin receptor/Substance-P/nitric oxide (NKr/SP/NO) circuit was investigated after chronic exposition to the drug. METHODS Rats were treated with OB 2-20 mg kg⁻¹ for 10 and 30 days. In the proximal colon, the expression and distribution of muscle NOsynthase 1 (NOS1), NK1r, NK2r, SP and Cav 1.2 subunit (for L-type Ca²⁺ channel) and the spontaneous activity and stimulated responses to NK1r and NK2r agonists were investigated. KEY RESULTS Immunohistochemistry showed a redistribution of NK1r and L-type Ca²⁺ channel in muscle cells with no change of NK2r at 30 days, a significant increase in muscle NOS1 expression at 10 days and a significant decrease in the SP content early in the ganglia and later in the intramuscular nerve fibers. Functional studies showed no change in spontaneous activity but a significant increase in maximal contraction induced by NK1r agonist. CONCLUSIONS & INFERENCES Chronic exposition to OB significantly affects the NKr/SP/NO circuit. The progressive decrease in SP-expression might be the consequence of the persistent presence of OB, the increase of NOS1 expression in muscle cells at 10 days in an attempt to guarantee an adequate NO production, and, at 30 days, the redistribution of the L-type Ca²⁺ channel and NK1r as a sign to compensate the drug channel block by re-cycling both of them. The physiological data suggest NK1r hypersensitivity.
Collapse
Affiliation(s)
- C Traini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Carbone SE, Dinning PG, Costa M, Spencer NJ, Brookes SJH, Wattchow DA. Ascending excitatory neural pathways modulate slow phasic myogenic contractions in the isolated human colon. Neurogastroenterol Motil 2013; 25:670-6. [PMID: 23634776 DOI: 10.1111/nmo.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/16/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND In animal models, enteric reflex pathways have potent effects on motor activity; their roles have been much less extensively studied in human gut. The aim of this study was to determine if ascending excitatory interneuronal pathways can modulate spontaneous phasic contractions in isolated preparations of human colonic circular muscle. METHODS Human colonic preparations were cut into T shapes, with vertical bar of the 'T' pharmacologically isolated. Electrical stimulation and the nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), were applied to the isolated region and circular muscle contractile activity was measured from the cross-bar of the T, more than 10 mm orally from the region of stimulation. KEY RESULTS The predominant form of spontaneous muscle activity consisted of tetrodotoxin-resistant, large amplitude, slow phasic contractions (SPCs), occurring at average intervals of 124 ± 68 s. Addition of a high concentration of hexamethonium (1 mmol L(-1)) to the superfusing solution significantly increased the interval between SPCs to 278.1 ± 138.3 s (P < 0.005). Focal electrical stimulation more than 10 mm aboral to the muscle recording site advanced the onset of the next SPC, and this effect persisted in hexamethonium. However, the effect of electrical stimulation was blocked by tetrodotoxin (TTX, 1 μmol L(-1)). Application of the nicotinic agonist DMPP (1 mmol L(-1)) to the aboral chamber often stimulated a premature SPC (n = 4). CONCLUSIONS & INFERENCES The major form of spontaneous contractility in preparations of human colonic circular muscle is SPCs, which are myogenic in origin. Activation of ascending excitatory neural pathways, which involve nicotinic receptors, can modulate the timing of SPCs and thus influence human colonic motility.
Collapse
Affiliation(s)
- S E Carbone
- Discipline of Human Physiology, Flinders Medical Science and Technology, Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Chen JH, Zhang Q, Yu Y, Li K, Liao H, Jiang L, Hong L, Du X, Hu X, Chen S, Yin S, Gao Q, Yin X, Luo H, Huizinga JD. Neurogenic and myogenic properties of pan-colonic motor patterns and their spatiotemporal organization in rats. PLoS One 2013; 8:e60474. [PMID: 23577116 PMCID: PMC3618275 DOI: 10.1371/journal.pone.0060474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
Background and Aims Better understanding of intrinsic control mechanisms of colonic motility will lead to better treatment options for colonic dysmotility. The aim was to investigate neurogenic and myogenic control mechanisms underlying pan-colonic motor patterns. Methods Analysis of in vitro video recordings of whole rat colon motility was used to explore motor patterns and their spatiotemporal organizations and to identify mechanisms of neurogenic and myogenic control using pharmacological tools. Results Study of the pan-colonic spatiotemporal organization of motor patterns revealed: fluid-induced or spontaneous rhythmic propulsive long distance contractions (LDCs, 0.4–1.5/min, involving the whole colon), rhythmic propulsive motor complexes (RPMCs) (0.8–2.5/min, dominant in distal colon), ripples (10–14/min, dominant in proximal colon), segmentation and retrograde contractions (0.1–0.8/min, prominent in distal and mid colon). Spontaneous rhythmic LDCs were the dominant pattern, blocked by tetrodotoxin, lidocaine or blockers of cholinergic, nitrergic or serotonergic pathways. Change from propulsion to segmentation and distal retrograde contractions was most prominent after blocking 5-HT3 receptors. In the presence of all neural blockers, bethanechol consistently evoked rhythmic LDC-like propulsive contractions in the same frequency range as the LDCs, indicating the existence of myogenic mechanisms of initiation and propulsion. Conclusions Neurogenic and myogenic control systems orchestrate distinct and variable motor patterns at different regions of the pan-colon. Cholinergic, nitrergic and serotonergic pathways are essential for rhythmic LDCs to develop. Rhythmic motor patterns in presence of neural blockade indicate the involvement of myogenic control systems and suggest a role for the networks of interstitial cells of Cajal as pacemakers.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University and Wuhan University Institute of Digestive and Liver Diseases, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kito Y, Teramoto N. Effects of Hange-shashin-to (TJ-14) and Keishi-ka-shakuyaku-to (TJ-60) on contractile activity of circular smooth muscle of the rat distal colon. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1059-66. [PMID: 22917628 DOI: 10.1152/ajpgi.00219.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Japanese Kampo medicines Hange-shashin-to (TJ-14) and Keishi-ka-shakuyaku-to (TJ-60) have been used to treat symptoms of human diarrhea on an empirical basis as Japanese traditional medicines. However, it remains unclear how these drugs affect smooth muscle tissues in the distal colon. The aim of the present study was to investigate the effects of TJ-14 and TJ-60 on the contractile activity of circular smooth muscle from the rat distal colon. TJ-14 and TJ-60 (both 1 mg/ml) inhibited spontaneous contractions of circumferentially cut preparations with the mucosa intact. Blockade of nitric oxide (NO) synthase or soluble guanylate cyclase activity abolished the inhibitory effects of TJ-60 but only attenuated the inhibitory effects of TJ-14. Apamin (1 μM), a blocker of small-conductance Ca(2+)-activated K(+) channels (SK channels), attenuated the inhibitory effects of 5 mg/ml TJ-60 but not those of 5 mg/ml TJ-14. TJ-14 suppressed contractile responses (phasic contractions and off-contractions) evoked by transmural nerve stimulation and increased basal tone, whereas TJ-60 had little effect on these parameters. These results suggest that 1 mg/ml TJ-14 or TJ-60 likely inhibits spontaneous contractions of the rat distal colon through the production of NO. Activation of SK channels seems to be involved in the inhibitory effects of 5 mg/ml TJ-60. Since TJ-14 has potent inhibitory effects on myogenic and neurogenic contractile activity, TJ-14 may be useful in suppressing gastrointestinal motility.
Collapse
Affiliation(s)
- Yoshihiko Kito
- Department of Pharmacology, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan.
| | | |
Collapse
|
43
|
Tamada H, Komuro T. Ultrastructural characterization of interstitial cells of Cajal associated with the submucosal plexus in the proximal colon of the guinea pig. Cell Tissue Res 2012; 347:319-26. [PMID: 22290633 DOI: 10.1007/s00441-011-1312-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/20/2011] [Indexed: 01/29/2023]
Abstract
Interstitial cells of Cajal (ICC) associated with the submucosal (submucous) plexus (ICC-SP) in the proximal colon of the guinea pig were studied by immunohistochemistry and electron microscopy. Whole-mount stretch preparations with c-Kit immunohistochemistry revealed that a number of ICC-SP constituted a dense cellular network around the submucosal plexus. Some of these ICC-SP were observed in the vicinity of the muscularis mucosae in sections immunostained for c-Kit and α-smooth muscle actin. Ultrastructural observation demonstrated, for the first time, that ICC-SP of the proximal colon of the guinea pig retained typical ultrastructural characteristics of ICC repeatedly reported in association with the tunica muscularis of the gastrointestinal tract: a basal lamina, caveolae, many mitochondria, abundant intermediate filaments and the formation of gap junctions with the same type of cells. The most remarkable ultrastructural finding was the presence of thick bundles composed of the processes of ICC-SP connected to each other via large gap junctions. These ICC-SP might be involved in the main mucosal functions of the proximal colon of the guinea pig, namely the transportation of water and electrolytes, possibly via their involvement in the spontaneous contractions of the muscularis mucosae.
Collapse
Affiliation(s)
- Hiromi Tamada
- Laboratory of Histology and Neuroscience, Department of Health Science and Social Welfare, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | | |
Collapse
|
44
|
Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S. Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 2011; 5:93. [PMID: 21833164 PMCID: PMC3153851 DOI: 10.3389/fnins.2011.00093] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Normal motility of the colon is critical for quality of life and efforts to normalize abnormal colon function have had limited success. A better understanding of control systems of colonic motility is therefore essential. We report here a hypothesis with supporting experimental data to explain the origin of rhythmic propulsive colonic motor activity induced by general distention. The theory holds that both networks of interstitial cells of Cajal (ICC), those associated with the submuscular plexus (ICC-SMP) and those associated with the myenteric plexus (ICC-MP), orchestrate propagating contractions as pacemaker cells in concert with the enteric nervous system (ENS). ICC-SMP generate an omnipresent slow wave activity that causes propagating but non-propulsive contractions ("rhythmic propagating ripples") enhancing absorption. The ICC-MP generate stimulus-dependent cyclic depolarizations propagating anally and directing propulsive activity ("rhythmic propulsive motor complexes"). The ENS is not essential for both rhythmic motor patterns since distention and pharmacological means can produce the motor patterns after blocking neural activity, but it supplies the primary stimulus in vivo. Supporting data come from studies on segments of the rat colon, simultaneously measuring motility through spatiotemporal mapping of video recordings, intraluminal pressure, and outflow measurements.
Collapse
Affiliation(s)
- Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Interstitial cells of Cajal: a novel hypothesis for the pathophysiology of irritable bowel syndrome. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2011; 25:277-9. [PMID: 21647464 DOI: 10.1155/2011/478370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Irritable bowl syndrome (IBS) affects a large proportion of the world's population, and accounts for a considerable number of visits to gastroenterologists and general practitioners. Despite its high prevalence, the precise mechanism of IBS has not been identified to date. The interstitial cells of Cajal (ICC) participate in the production of slow waves and the regulation of their propagation through the gastrointestinal system; thus, they are important components of gastrointestinal motility. The present review proposes that ICC play a central role in the pathophysiology of IBS. This hypothesis is based on many links between ICC and currently proposed mechanisms of IBS pathophysiology. It appears that ICC may be involved in almost all of the previously explained pathogenic mechanisms of IBS. If proven, this hypothesis may provide a key to solving the IBS mystery.
Collapse
|
46
|
Chronic constipation: lessons from animal studies. Best Pract Res Clin Gastroenterol 2011; 25:59-71. [PMID: 21382579 DOI: 10.1016/j.bpg.2010.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 11/23/2010] [Accepted: 12/15/2010] [Indexed: 01/31/2023]
Abstract
Chronic constipation is a highly debilitating condition, affecting a significant proportion of the community. The burden to the health care system and impact on individual patients quality of life is immense. Unfortunately, the aetiology underlying chronic constipation is poorly understood and animal models are being used increasingly to investigate possible intrinsic neurogenic and myogenic mechanisms leading to relevant colonic sensori-motor dysfunction. Recently, major advances have been made in our understanding of the mechanisms that underlie propagating contractions along the large intestine, such as peristalsis and colonic migrating motor complexes in laboratory animals, particularly in guinea-pigs and mice. The first recordings of cyclical propagating contractions along the isolated whole human colon have now also been made. This review will highlight some of these advances and how impairments to these motility patterns may contribute to delayed colonic transit, known to exist in a proportion of patients with chronic constipation.
Collapse
|
47
|
Kuznetsov SV. About mechanisms of genesis, structure, and functional role of endogenous rhythms (To the 100-Annivesary of Aleksei Valentinovich Voino-Yasenetskii). J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093009060027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Mikkelsen HB. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions. J Cell Mol Med 2010; 14:818-32. [PMID: 20132411 PMCID: PMC3823114 DOI: 10.1111/j.1582-4934.2010.01025.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are recognized as pacemaker cells for gastrointestinal movement and are suggested to be mediators of neuromuscular transmission. Intestinal motility disturbances are often associated with a reduced number of ICC and/or ultrastructural damage, sometimes associated with immune cells. Macrophages and mast cells in the intestinal muscularis externa of rodents can be found in close spatial contact with ICC. Macrophages are a constant and regularly distributed cell population in the serosa and at the level of Auerbach's plexus (AP). In human colon, ICC are in close contact with macrophages at the level of AP, suggesting functional interaction. It has therefore been proposed that ICC and macrophages interact. Macrophages and mast cells are considered to play important roles in the innate immune defence by producing pro-inflammatory mediators during classical activation, which may in itself result in damage to the tissue. They also take part in alternative activation which is associated with anti-inflammatory mediators, tissue remodelling and homeostasis, cancer, helminth infections and immunophenotype switch. ICC become damaged under various circumstances - surgical resection, possibly post-operative ileus in rodents - where innate activation takes place, and in helminth infections - where alternative activation takes place. During alternative activation the muscularis macrophage can switch phenotype resulting in up-regulation of F4/80 and the mannose receptor. In more chronic conditions such as Crohn's disease and achalasia, ICC and mast cells develop close spatial contacts and piecemeal degranulation is possibly triggered.
Collapse
Affiliation(s)
- Hanne B Mikkelsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
49
|
|
50
|
Wang XY, Albertí E, White EJ, Mikkelsen HB, Larsen JO, Jiménez M, Huizinga JD. Igf1r+/CD34+ immature ICC are putative adult progenitor cells, identified ultrastructurally as fibroblast-like ICC in Ws/Ws rat colon. J Cell Mol Med 2009; 13:3528-40. [PMID: 19220583 PMCID: PMC4516506 DOI: 10.1111/j.1582-4934.2009.00689.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 01/23/2009] [Indexed: 02/06/2023] Open
Abstract
The colon of Ws/Ws mutant rats shows impairment of pacemaker activity and altered inhibitory neurotransmission. The present study set out to find structural correlates to these findings to resolve mechanisms. In the colon of Ws/Ws rats, interstitial cells of Cajal associated with Auerbach's plexus (ICC-AP) were significantly decreased and ICC located at the submuscular plexus and intramuscular ICC were rarely observed based on immunohistochemistry and electron microscopy. Ultrastructural investigations revealed that there was no overall loss of all types of interstitial cells combined. Where loss of ICC was observed, a marked increase in fibroblast-like ICC (FL-ICC) was found at the level of AP. Immunoelectron microscopy proved FL-ICC to be c-Kit(-) but gap junction coupled to each other and to c-Kit(+) ICC; they were associated with enteric nerves and occupied space normally occupied by ICC in the wild-type rat colon, suggesting them to be immature ICC. In addition, a marked increase in immunoreactivity for insulin-like growth factor 1 receptor (Igf1r) occurred, co-localized with CD34 but not with c-Kit. A significantly higher number of Igf1r(+)/CD34(+) cells were found in Ws/Ws compared to wild-type rat colons. These CD34(+)/Igf1r(+) cells in the Ws/Ws colon occupied the same space as FL-ICC. Hence we propose that a subset of immature ICC (FL-ICC) consists of adult progenitor cells. Immunohistochemistry revealed a reduction of neurons positive for neuronal nitric oxide synthase. The functional capabilities of the immature ICC and the regenerative capabilities of the adult progenitor cells need further study. The morphological features described here show that the loss of pacemaker activity is not associated with failure to develop a network of interstitial cells around AP but a failure to develop this network into fully functional pacemaker cells. The reduction in nitrergic innervation associated with the Ws mutation may be the result of a reduction in nitrergic neurons.
Collapse
Affiliation(s)
- XY Wang
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
| | - E Albertí
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBarcelona, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y Digestivas(CIBERehd)
| | - EJ White
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
| | - HB Mikkelsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, The Panum InstituteCopenhagen, Denmark
| | - JO Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, The Panum InstituteCopenhagen, Denmark
| | - M Jiménez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - JD Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
| |
Collapse
|