1
|
Butt E, Günder T, Stürzebecher P, Kowalski I, Schneider P, Buschmann N, Schäfer S, Bender A, Hermanns HM, Zernecke A. Cholesterol uptake in the intestine is regulated by the LASP1-AKT-NPC1L1 signaling pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G25-G35. [PMID: 38713618 DOI: 10.1152/ajpgi.00222.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Günder
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Paulina Stürzebecher
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Isabel Kowalski
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Pia Schneider
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Nils Buschmann
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Schäfer
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alicia Bender
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike M Hermanns
- Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Haqani MI, Nakano M, Nagano AJ, Nakamura Y, Tsudzuki M. Association analysis of production traits of Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Sci Rep 2023; 13:21307. [PMID: 38042890 PMCID: PMC10693557 DOI: 10.1038/s41598-023-48293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
This study was designed to perform an association analysis and identify SNP markers associated with production traits of Japanese quail using restriction-site-associated DNA sequencing. Weekly body weight data from 805 quail were collected from hatching to 16 weeks of age. A total number of 3990 eggs obtained from 399 female quail were used to assess egg quality traits. Egg-related traits were measured at the beginning of egg production (first stage) and at 12 weeks of age (second stage). Five eggs were analyzed at each stage. Traits, such as egg weight, egg length and short axes, eggshell strength and weight, egg equator thickness, yolk weight, diameter, and colour, albumen weight, age of first egg, total number of laid eggs, and egg production rate, were assessed. A total of 383 SNPs and 1151 associations as well as 734 SNPs and 1442 associations were identified in relation to quail production traits using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. The GLM-identified SNPs were located on chromosomes 1-13, 15, 17-20, 24, 26-28, and Z, underlying phenotypic traits, except for egg and albumen weight at the first stage and yolk yellowness at the second stage. The MLM-identified SNPs were positioned on defined chromosomes associated with phenotypic traits except for the egg long axis at the second stage of egg production. Finally, 35 speculated genes were identified as candidate genes for the targeted traits based on their nearest positions. Our findings provide a deeper understanding and allow a more precise genetic improvement of production traits of Galliformes, particularly in Japanese quail.
Collapse
Affiliation(s)
- Mohammad Ibrahim Haqani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| | - Michiharu Nakano
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Yoshiaki Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
| | - Masaoki Tsudzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| |
Collapse
|
3
|
Butt E, Howard CM, Raman D. LASP1 in Cellular Signaling and Gene Expression: More than Just a Cytoskeletal Regulator. Cells 2022; 11:cells11233817. [PMID: 36497077 PMCID: PMC9741313 DOI: 10.3390/cells11233817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biochemistry II, University Clinic Wuerzburg, 97080 Wuerzburg, Germany
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| | - Cory M. Howard
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, MS 1010, Toledo, OH 43614, USA
- Correspondence: (E.B.); (D.R.); Tel.: +49-(0)931-201-48333 (E.B.); +1-419-383-4616 (D.R.)
| |
Collapse
|
4
|
Role of the CXCR4-LASP1 Axis in the Stabilization of Snail1 in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092372. [PMID: 32825729 PMCID: PMC7563118 DOI: 10.3390/cancers12092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.
Collapse
|
5
|
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol Rev 2020; 100:573-602. [PMID: 31670611 PMCID: PMC7327232 DOI: 10.1152/physrev.00016.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.
Collapse
Affiliation(s)
- Amy C Engevik
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Herrmann AB, Müller ML, Orth MF, Müller JP, Zernecke A, Hochhaus A, Ernst T, Butt E, Frietsch JJ. Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance. J Cell Mol Med 2020; 24:2942-2955. [PMID: 31957290 PMCID: PMC7077607 DOI: 10.1111/jcmm.14910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1-mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell-mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance.
Collapse
Affiliation(s)
- Andreas B Herrmann
- Institut für Experimentelle Biomedizin II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Martha-Lena Müller
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Martin F Orth
- Labor für Pädiatrische Sarkombiologie, Medizinische Fakultät, Pathologisches Institut, LMU München, München, Germany
| | - Jörg P Müller
- Center for Molecular Biomedicine, Institut für Molekulare Zellbiologie, Universitätsklinikum Jena, Jena, Germany
| | - Alma Zernecke
- Institut für Experimentelle Biomedizin II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Hochhaus
- Abteilung für Hämatologie und internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Ernst
- Abteilung für Hämatologie und internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Elke Butt
- Institut für Experimentelle Biomedizin II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jochen J Frietsch
- Abteilung für Hämatologie und internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
7
|
Butt E, Raman D. New Frontiers for the Cytoskeletal Protein LASP1. Front Oncol 2018; 8:391. [PMID: 30298118 PMCID: PMC6160563 DOI: 10.3389/fonc.2018.00391] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
In the recent two decades, LIM and SH3 protein 1 (LASP1) has been developed from a simple actin-binding structural protein to a tumor biomarker and subsequently to a complex, nuclear transcriptional regulator. Starting with a brief historical perspective, this review will mainly compare and contrast LASP1 and LASP2 from the angle of the newest data and importantly, examine their role in transcriptional regulation. We will summarize the current knowledge through pictorial models and tables including the roles of different microRNAs in the differential regulation of LASP1 levels and patient outcome rather than specify in detail all tumor entities. Finally, the novel functional roles of LASP1 in secretion of vesicles, expression of matrix metalloproteinases and transcriptional regulation as well as the activation of survival and proliferation pathways in different cancer types are described.
Collapse
Affiliation(s)
- Elke Butt
- Institute for Experimental Biomedicine II, University Clinic, Wuerzburg, Germany
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
8
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
9
|
Lien CY, Tixier-Boichard M, Wu SW, Wang WF, Ng CS, Chen CF. Detection of QTL for traits related to adaptation to sub-optimal climatic conditions in chickens. Genet Sel Evol 2017; 49:39. [PMID: 28427323 PMCID: PMC5399330 DOI: 10.1186/s12711-017-0314-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growth traits can be used as indicators of adaptation to sub-optimal conditions. The current study aimed at identifying quantitative trait loci (QTL) that control performance under variable temperature conditions in chickens. METHODS An F2 population was produced by crossing the Taiwan Country chicken L2 line (selected for body weight, comb area, and egg production) with an experimental line of Rhode Island Red layer R- (selected for low residual feed consumption). A total of 844 animals were genotyped with the 60 K Illumina single nucleotide polymorphism (SNP) chip. Whole-genome interval linkage mapping and a genome-wide association study (GWAS) were performed for body weight at 0, 4, 8, 12, and 16 weeks of age, shank length at 8 weeks of age, size of comb area at 16 weeks of age, and antibody response to sheep red blood cells at 11 weeks of age (7 and 14 days after primary immunization). Relevant genes were identified based on functional annotation of candidate genes and potentially relevant SNPs were detected by comparing whole-genome sequences of several birds between the parental lines. RESULTS Whole-genome QTL analysis revealed 47 QTL and 714 effects associated with 178 SNPs were identified by GWAS with 5% Bonferroni genome-wide significance. Little overlap was observed between the QTL and GWAS results, with only two chromosomal regions detected by both approaches, i.e. one on GGA24 (GGA for Gallus gallus chromosome) for BW04 and one on GGAZ for six growth-related traits. Based on whole-genome sequence, differences between the parental lines based on several birds were screened in the genome-wide QTL regions and in a region detected by both methods, resulting in the identification of 106 putative candidate genes with a total of 15,443 SNPs, of which 41 were missense and 1698 were not described in the dbSNP archive. CONCLUSIONS The QTL detected in this study for growth and morphological traits likely influence adaptation of chickens to sub-tropical climate. Using whole-genome sequence data, we identified candidate SNPs for further confirmation of QTL in the F2 design. A strong QTL effect found on GGAZ underlines the importance of sex-linked inheritance for growth traits in chickens.
Collapse
Affiliation(s)
- Ching-Yi Lien
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Department of Animal Science, National Chung Hsing University, 145 Xingda Rd., South District, Taichung, 40227, Taiwan.,Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua District, Tainan, 71246, Taiwan
| | | | - Shih-Wen Wu
- Fonghuanggu Bird and Ecology Park, National Museum of Natural Science, 1-9 Renyi Rd., Lugu Township, Nantou County, 55841, Taiwan
| | - Woei-Fuh Wang
- Biodiversity Research Center, Academia Sinica, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Rd., South District, Taichung, 40227, Taiwan. .,Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, No. 250, Guoguang Rd., South District, Taichung, 40227, Taiwan.
| |
Collapse
|
10
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
11
|
Vaman V. S. A, Poppe H, Houben R, Grunewald TGP, Goebeler M, Butt E. LASP1, a Newly Identified Melanocytic Protein with a Possible Role in Melanin Release, but Not in Melanoma Progression. PLoS One 2015; 10:e0129219. [PMID: 26061439 PMCID: PMC4465371 DOI: 10.1371/journal.pone.0129219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 12/25/2022] Open
Abstract
The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release.
Collapse
Affiliation(s)
- Anjana Vaman V. S.
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Heiko Poppe
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas G. P. Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology, Ludwig Maximilians University Munich, Munich, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Elke Butt
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Brenneman KE, Gonzales A, Roland KL, Curtiss R. Use of Ensure® nutrition shakes as an alternative formulation method for live recombinant Attenuated Salmonella Typhi vaccines. BMC Microbiol 2015; 15:76. [PMID: 25879849 PMCID: PMC4391280 DOI: 10.1186/s12866-015-0409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/12/2015] [Indexed: 11/12/2022] Open
Abstract
Background To be effective, orally administered live Salmonella vaccines must first survive their encounter with the low pH environment of the stomach. To enhance survival, an antacid is often given to neutralize the acidic environment of the stomach just prior to or concomitant with administration of the vaccine. One drawback of this approach, from the perspective of the clinical trial volunteer, is that the taste of a bicarbonate-based acid neutralization system can be unpleasant. Thus, we explored an alternative method that would be at least as effective as bicarbonate and with a potentially more acceptable taste. Because ingestion of protein can rapidly buffer stomach pH, we examined the possibility that the protein-rich Ensure® Nutrition shakes would be effective alternatives to bicarbonate. Results We tested one Salmonella enterica serovar Typhimurium and three Salmonella Typhi vaccine strains and found that all strains survived equally well when incubated in either Ensure® or bicarbonate. In a low gastric pH mouse model, Ensure® worked as well or better than bicarbonate to enhance survival through the intestinal tract, although neither agent enhanced the survival of the S. Typhi test strain possessing a rpoS mutation. Conclusions Our data show that a protein-rich drink such as Ensure® Nutrition shakes can serve as an alternative to bicarbonate for reducing gastric pH prior to administration of a live Salmonella vaccine.
Collapse
Affiliation(s)
- Karen E Brenneman
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,Present address - 23andMe, Inc, 1390 Shorebird Way, Mountain View, CA, 94043, USA.
| | - Amanda Gonzales
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Kenneth L Roland
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Roy Curtiss
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
13
|
Fernandes I, Schöck F. The nebulin repeat protein Lasp regulates I-band architecture and filament spacing in myofibrils. ACTA ACUST UNITED AC 2014; 206:559-72. [PMID: 25113030 PMCID: PMC4137052 DOI: 10.1083/jcb.201401094] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With just two nebulin repeats, the Drosophila protein Lasp controls muscle thin filament length and filament spacing. Mutations in nebulin, a giant muscle protein with 185 actin-binding nebulin repeats, are the major cause of nemaline myopathy in humans. Nebulin sets actin thin filament length in sarcomeres, potentially by stabilizing thin filaments in the I-band, where nebulin and thin filaments coalign. However, the precise role of nebulin in setting thin filament length and its other functions in regulating power output are unknown. Here, we show that Lasp, the only member of the nebulin family in Drosophila melanogaster, acts at two distinct sites in the sarcomere and controls thin filament length with just two nebulin repeats. We found that Lasp localizes to the Z-disc edges to control I-band architecture and also localizes at the A-band, where it interacts with both actin and myosin to set proper filament spacing. Furthermore, introducing a single amino acid change into the two nebulin repeats of Lasp demonstrated different roles for each domain and established Lasp as a suitable system for studying nebulin repeat function.
Collapse
Affiliation(s)
- Isabelle Fernandes
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
14
|
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, Rossi P, Jannini EA, Dolci S. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 2014; 31:1408-21. [PMID: 23553930 DOI: 10.1002/stem.1392] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Abstract
Sox2 is a pluripotency-conferring gene expressed in primordial germ cells (PGCs) and postnatal oocytes, but the role it plays during germ cell development and early embryogenesis is unknown. Since Sox2 ablation causes early embryonic lethality shortly after blastocyst implantation, we generated mice bearing Sox2-conditional deletion in germ cells at different stages of their development through the Cre/loxP recombination system. Embryos lacking Sox2 in PGCs show a dramatic decrease of germ cell numbers at the time of their specification. At later stages, we found that Sox2 is strictly required for PGC proliferation. On the contrary, Sox2 deletion in meiotic oocytes does not impair postnatal oogenesis and early embryogenesis, indicating that it is not essential for oocyte maturation or for zygotic development. We also show that Sox2 regulates Kit expression in PGCs and binds to discrete transcriptional regulatory sequences of this gene, which is known to be important for PGCs survival and proliferation. Sox2 also stimulates the expression of Zfp148, which is required for normal development of fetal germ cells, and Rif1, a potential regulator of PGC pluripotency.
Collapse
Affiliation(s)
- Federica Campolo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Torvergata, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. PLoS One 2014; 9:e87411. [PMID: 24489912 PMCID: PMC3906194 DOI: 10.1371/journal.pone.0087411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials.
Collapse
|
16
|
Li JH, Li XL, Wu J, Jia FY, Lin L. Nesfatin-1 inhibits gastric acid secretion by cultured rat gastric mucosa cells. Shijie Huaren Xiaohua Zazhi 2012; 20:1123-1130. [DOI: 10.11569/wcjd.v20.i13.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify the effect of nesfatin-1 on gastric acid secretion and the expression of the H+/K+-ATPase mRNA and protein in rat gastric mucosa cells in vitro.
METHODS: Gastric mucosa cells were isolated from SD rats by enzymolysis and identified by immunofluorescence staining. Cultured rat gastric mucosa cells were divided into control group and nesfatin-1 group, and the nesfatin-1 group was pretreated with different concentrations (0, 10-4, 10-3, 10-2, 10-1 μmol/L) of nesfatin-1 for different durations (0, 1, 2, 3, 4 h). The effect of nesfatin-1 on gastric acid secretion was investigated by monitoring 14C-aminopyrine (14C-AP) accumulation, and the expression of H+/K+-ATPase α and β subunit mRNA and protein was examined by real-time PCR and Western blot.
RESULTS: Pretreatment with nesfatin-1 at a dose of 10-1 or 10-2 μmol/L for 2 or 3 h inhibited gastric acid secretion, but nesfatin-1 at a dose of 10-3 or 10-4 μmol/L had no such effect. Nesfatin-1 at a dose of 10-1 μmol/L inhibited the expression of H+/K+-ATPase α subunit mRNA after pretreatment for 1, 2, or 3 h and inhibited the expression of H+/K+-ATPase β subunit mRNAs after pretreatment for 1 or 2 h. In the dose range between 10-4 to 10-1 μmol/L, nesfatin-1 dose-dependently inhibited the expression of H+/K+-ATPase α subunit and β subunit mRNA after pretreatment for 2 h. Nesfatin-1 at a dose of 10-1 μmmol/L inhibited H+/K+-ATPase α subunit protein expression after pretreatment for 1, 2 or 3 h and inhibited H+/K+-ATPase β subunit protein expression after pretreatment for 2 or 3 h. In the dose range between 10-3 to 10-1 μmol/L, nesfatin-1 dose-dependently inhibited H+/K+-ATPase α and β subunit protein expression after pretreatment for 2 h.
CONCLUSION: Our data suggest that nesfatin-1 inhibits gastric acid secretion by rat gastric mucosa cells in vitro possibly by down-regulating the expression of H+/K+-ATPase mRNA and protein..
Collapse
|
17
|
Stölting M, Wiesner C, van Vliet V, Butt E, Pavenstädt H, Linder S, Kremerskothen J. Lasp-1 regulates podosome function. PLoS One 2012; 7:e35340. [PMID: 22514729 PMCID: PMC3325968 DOI: 10.1371/journal.pone.0035340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 03/15/2012] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells form a variety of adhesive structures to connect with their environment and to regulate cell motility. In contrast to classical focal adhesions, podosomes, highly dynamic structures of different cell types, are actively engaged in matrix remodelling and degradation. Podosomes are composed of an actin-rich core region surrounded by a ring-like structure containing signalling molecules, motor proteins as well as cytoskeleton-associated proteins. Lasp-1 is a ubiquitously expressed, actin-binding protein that is known to regulate cytoskeleton architecture and cell migration. This multidomain protein is predominantely present at focal adhesions, however, a second pool of Lasp-1 molecules is also found at lamellipodia and vesicle-like microdomains in the cytosol.In this report, we show that Lasp-1 is a novel component and regulator of podosomes. Immunofluorescence studies reveal a localization of Lasp-1 in the podosome ring structure, where it colocalizes with zyxin and vinculin. Life cell imaging experiments demonstrate that Lasp-1 is recruited in early steps of podosome assembly. A siRNA-mediated Lasp-1 knockdown in human macrophages affects podosome dynamics as well as their matrix degradation capacity. In summary, our data indicate that Lasp-1 is a novel component of podosomes and is involved in the regulation of podosomal function.
Collapse
Affiliation(s)
- Miriam Stölting
- Medizinische Klinik D, Abteilung für Molekulare Nephrologie, Universitätsklinikum Münster, Münster, Germany
| | - Christiane Wiesner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Vanessa van Vliet
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Elke Butt
- Institut für Klinische Biochemie, Universität Würzburg, Würzburg, Germany
| | - Hermann Pavenstädt
- Medizinische Klinik D, Abteilung für Molekulare Nephrologie, Universitätsklinikum Münster, Münster, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Joachim Kremerskothen
- Medizinische Klinik D, Abteilung für Molekulare Nephrologie, Universitätsklinikum Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
18
|
Abstract
Acid-related disorders represent a major healthcare concern. In recent years, our understanding of the physiologic processes underlying gastric acid secretion has improved notably. The identity of several apical ion transport proteins, which are necessary for acid secretion to take place, has been resolved. The recent developments have uncovered potential therapeutic targets for the treatment of acid-related disorders. This brief review provides an update on the mechanisms of gastric acid secretion, with a particular focus on apical ion transport.
Collapse
Affiliation(s)
- Sascha Kopic
- Departments of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- John G. Forte
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720;
| | - Lixin Zhu
- Department of Pediatrics, Digestive Disease and Nutrition Center, The State University of New York, Buffalo, New York 14214;
| |
Collapse
|
20
|
Abstract
The parietal cell is responsible for secreting concentrated hydrochloric acid into the gastric lumen. To fulfill this task, it is equipped with a broad variety of functionally coupled apical and basolateral ion transport proteins. The concerted scientific effort over the last years by a variety of researchers has provided us with the molecular identity of many of these transport mechanisms, thereby contributing to the clarification of persistent controversies in the field. This article will briefly review the current model of parietal cell physiology and ion transport in particular and will update the existing models of apical and basolateral transport in the parietal cell.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - Michael Murek
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - John P. Geibel
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This review summarizes the last year's literature regarding the regulation and measurement of gastric exocrine and endocrine secretion. RECENT FINDINGS Parietal cells, distributed along much of the length of the oxyntic glands, with highest density in the neck and base, secrete HCl as well as transforming growth factor-alpha, amphiregulin, heparin-binding epidermal growth factor-like growth factor, and sonic hedgehog. Acid facilitates the digestion of protein and absorption of iron, calcium, vitamin B(12) as well as prevents bacterial overgrowth, enteric infection, and possibly food allergy. The major stimulants of acid secretion are gastrin, histamine, and acetylcholine. Ghrelin and orexin also stimulate acid secretion. The main inhibitor of acid secretion is somatostatin. Nitric oxide and dopamine also inhibit acid secretion. Although Helicobacter pylori is associated with duodenal ulcer disease, most patients infected with the organism produce less than normal amount of acid. The cytoskeletal proteins ezrin and moesin participate in parietal cell acid and chief cell pepsinogen secretion, respectively. SUMMARY Despite our vast knowledge, the understanding of the regulation of gastric acid secretion in health and disease is far from complete. A better understanding of the pathways and mechanisms regulating acid secretion should lead to improved management of patients with acid-induced disorders as well as those who secrete too little acid.
Collapse
|
22
|
Nakagawa H, Suzuki H, Machida S, Suzuki J, Ohashi K, Jin M, Miyamoto S, Terasaki AG. Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions. PLoS One 2009; 4:e7530. [PMID: 19851499 PMCID: PMC2761545 DOI: 10.1371/journal.pone.0007530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Division of Biology, Faculty of Science, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang H, Chen X, Bollag WB, Bollag RJ, Sheehan DJ, Chew CS. Lasp1 gene disruption is linked to enhanced cell migration and tumor formation. Physiol Genomics 2009; 38:372-85. [PMID: 19531578 DOI: 10.1152/physiolgenomics.00048.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lasp1 is an actin-binding, signaling pathway-regulated phosphoprotein that is overexpressed in several cancers. siRNA knockdown in cell lines retards cell migration, suggesting the possibility that Lasp1 upregulation influences cancer metastasis. Herein, we utilized a recently developed gene knockout model to assess the role of Lasp1 in modulating nontransformed cell functions. Wound healing and tumor initiation progressed more rapidly in Lasp1(-/-) mice compared with Lasp1(+/+) controls. Embryonic fibroblasts (MEFs) derived from Lasp1(-/-) mice also migrated more rapidly in vitro. These MEFs characteristically possessed increased focal adhesion numbers and displayed more rapid attachment compared with wild-type MEFs. Differential microarray analyses revealed alterations in message expression for proteins implicated in cell migration, adhesion, and cytoskeletal organization. Notably, the focal adhesion protein, lipoma preferred partner (LPP), a zyxin family member and putative Lasp1 binding protein, was increased about twofold. Because LPP gene disruption reduces cell migration, we hypothesize that LPP plays a role in enhancing the migratory capacity of Lasp1(-/-) MEFs, perhaps by modifying the subcellular localization of other motility-associated proteins. The striking contrast in the functional effects of loss of Lasp1 in innate cells compared with cell lines reveals distinct differences in mechanisms of motility and attachment in these models.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chew CS, Chen X, Zhang H, Berg EA, Zhang H. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2delta6. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1159-72. [PMID: 18832449 PMCID: PMC2604800 DOI: 10.1152/ajpgi.90345.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S(136), that undergoes increased phosphorylation upon elevation of intracellular Ca(2+) concentration. A phosphospecific antibody (pS(136)) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (M(r)) of approximately 50 kDa was identified with "in gel" assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)alpha cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT(286/287)) antibody when activated. Carbachol-stimulated phosphorylation of S(136) was inhibited by the CAMK2 inhibitor KN93 (IC(50) 38 microM) and by the calmodulin antagonist W7 (IC(50) 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2delta6, which has the same domain structure and M(r) as CAM2alpha, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2delta6 in the mediation of D52 phosphorylation.
Collapse
Affiliation(s)
- Catherine S. Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xunsheng Chen
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanfang Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Eric A. Berg
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Han Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|