1
|
Bersell KR, Yang T, Mosley JD, Glazer AM, Hale AT, Kryshtal DO, Kim K, Steimle JD, Brown JD, Salem JE, Campbell CC, Hong CC, Wells QS, Johnson AN, Short L, Blair MA, Behr ER, Petropoulou E, Jamshidi Y, Benson MD, Keyes MJ, Ngo D, Vasan RS, Yang Q, Gerszten RE, Shaffer C, Parikh S, Sheng Q, Kannankeril PJ, Moskowitz IP, York JD, Wang TJ, Knollmann BC, Roden DM. Transcriptional Dysregulation Underlies Both Monogenic Arrhythmia Syndrome and Common Modifiers of Cardiac Repolarization. Circulation 2023; 147:824-840. [PMID: 36524479 PMCID: PMC9992308 DOI: 10.1161/circulationaha.122.062193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.
Collapse
Affiliation(s)
- Kevin R Bersell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Tao Yang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jonathan D Mosley
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew T Hale
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Dmytro O Kryshtal
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Kyungsoo Kim
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - Jonathan D Brown
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Joe-Elie Salem
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, CIC-1901, Sorbonne University, Paris, France (J-E.S.)
- Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France (J-E.S.)
| | - Courtney C Campbell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore (C.C.H.)
| | - Quinn S Wells
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| | - Amanda N Johnson
- Molecular Physiology and Biophysics (A.N.J.), Vanderbilt University, Nashville, TN
| | - Laura Short
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Marcia A Blair
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | - Evmorfia Petropoulou
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Yalda Jamshidi
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Mark D Benson
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.D.B.)
| | - Michelle J Keyes
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Debby Ngo
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | | | - Qiong Yang
- Boston University School of Medicine, MA (R.S.V., Q.Y.)
| | - Robert E Gerszten
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Christian Shaffer
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Shan Parikh
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | | | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - John D York
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Thomas J Wang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| |
Collapse
|
2
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
3
|
Ton AT, Nguyen W, Sweat K, Miron Y, Hernandez E, Wong T, Geft V, Macias A, Espinoza A, Truong K, Rasoul L, Stafford A, Cotta T, Mai C, Indersmitten T, Page G, Miller PE, Ghetti A, Abi-Gerges N. Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 2021; 11:12014. [PMID: 34103608 PMCID: PMC8187365 DOI: 10.1038/s41598-021-91528-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.
Collapse
Affiliation(s)
- Anh Tuan Ton
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - William Nguyen
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Katrina Sweat
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Yannick Miron
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Eduardo Hernandez
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tiara Wong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Valentyna Geft
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andrew Macias
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ana Espinoza
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ky Truong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Lana Rasoul
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Alexa Stafford
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tamara Cotta
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Christina Mai
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tim Indersmitten
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Guy Page
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA.
| |
Collapse
|
4
|
Hézső T, Naveed M, Dienes C, Kiss D, Prorok J, Árpádffy-Lovas T, Varga R, Fujii E, Mercan T, Topal L, Kistamás K, Szentandrássy N, Almássy J, Jost N, Magyar J, Bányász T, Baczkó I, Varró A, Nánási PP, Virág L, Horváth B. Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Sci Rep 2021; 11:9565. [PMID: 33953276 PMCID: PMC8100105 DOI: 10.1038/s41598-021-88903-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Enhancement of the late Na+ current (INaL) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS967 is an agent considered as a selective blocker of INaL. In the present study, effects of GS967 on INaL and action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. The effects of GS967 (1 µM) were compared to those of the class I/B antiarrhythmic compound mexiletine (40 µM). Under conventional voltage clamp conditions, INaL was significantly suppressed by GS967 and mexiletine, causing 80.4 ± 2.2% and 59.1 ± 1.8% reduction of the densities of INaL measured at 50 ms of depolarization, and 79.0 ± 3.1% and 63.3 ± 2.7% reduction of the corresponding current integrals, respectively. Both drugs shifted the voltage dependence of the steady-state inactivation curve of INaL towards negative potentials. GS967 and mexiletine dissected inward INaL profiles under AP voltage clamp conditions having densities, measured at 50% of AP duration (APD), of −0.37 ± 0.07 and −0.28 ± 0.03 A/F, and current integrals of −56.7 ± 9.1 and −46.6 ± 5.5 mC/F, respectively. Drug effects on peak Na+ current (INaP) were assessed by recording the maximum velocity of AP upstroke (V+max) in multicellular preparations. The offset time constant was threefold faster for GS967 than mexiletine (110 ms versus 289 ms), while the onset of the rate-dependent block was slower in the case of GS967. Effects on beat-to-beat variability of APD was studied in isolated myocytes. Beat-to-beat variability was significantly decreased by both GS967 and mexiletine (reduction of 42.1 ± 6.5% and 24.6 ± 12.8%, respectively) while their shortening effect on APD was comparable. It is concluded that the electrophysiological effects of GS967 are similar to those of mexiletine, but with somewhat faster offset kinetics of V+max block. However, since GS967 depressed V+max and INaL at the same concentration, the current view that GS967 represents a new class of drugs that selectively block INaL has to be questioned and it is suggested that GS967 should be classified as a class I/B antiarrhythmic agent.
Collapse
Affiliation(s)
- Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary
| | - Richárd Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary
| | - Erika Fujii
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary
| | - Tanju Mercan
- Department of Biophysics, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary.,Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary.,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary.,Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary. .,MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary. .,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary. .,Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dóm tér 12, 6701, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Potet F, Egecioglu DE, Burridge PW, George AL. GS-967 and Eleclazine Block Sodium Channels in Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Mol Pharmacol 2020; 98:540-547. [DOI: 10.1124/molpharm.120.000048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
|
6
|
Bos JM, Crotti L, Rohatgi RK, Castelletti S, Dagradi F, Schwartz PJ, Ackerman MJ. Mexiletine Shortens the QT Interval in Patients With Potassium Channel–Mediated Type 2 Long QT Syndrome. Circ Arrhythm Electrophysiol 2019; 12:e007280. [DOI: 10.1161/circep.118.007280] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J. Martijn Bos
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.M.B., R.K.R., M.J.A.), Mayo Clinic, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., S.C., F.D., P.J.S.)
- Department of Medicine and Surgery, University of Milano-Bicocca, Italy (L.C.)
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy (L.C.)
| | - Ram K. Rohatgi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.M.B., R.K.R., M.J.A.), Mayo Clinic, Rochester, MN
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS, Center for Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., S.C., F.D., P.J.S.)
| | - Federica Dagradi
- Istituto Auxologico Italiano, IRCCS, Center for Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., S.C., F.D., P.J.S.)
| | - Peter J. Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., S.C., F.D., P.J.S.)
| | - Michael J. Ackerman
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.M.B., R.K.R., M.J.A.), Mayo Clinic, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. β-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII. J Mol Cell Cardiol 2018; 123:168-179. [PMID: 30240676 DOI: 10.1016/j.yjmcc.2018.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Late Na+ current (INaL) significantly contributes to shaping cardiac action potentials (APs) and increased INaL is associated with cardiac arrhythmias. β-adrenergic receptor (βAR) stimulation and its downstream signaling via protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways are known to regulate INaL. However, it remains unclear how each of these pathways regulates INaL during the AP under physiological conditions. Here we performed AP-clamp experiments in rabbit ventricular myocytes to delineate the impact of each signaling pathway on INaL at different AP phases to understand the arrhythmogenic potential. During the physiological AP (2 Hz, 37 °C) we found that INaL had a basal level current independent of PKA, but partially dependent on CaMKII. βAR activation (10 nM isoproterenol, ISO) further enhanced INaL via both PKA and CaMKII pathways. However, PKA predominantly increased INaL early during the AP plateau, whereas CaMKII mainly increased INaL later in the plateau and during rapid repolarization. We also tested the role of key signaling pathways through exchange protein activated by cAMP (Epac), nitric oxide synthase (NOS) and reactive oxygen species (ROS). Direct Epac stimulation enhanced INaL similar to the βAR-induced CaMKII effect, while NOS inhibition prevented the βAR-induced CaMKII-dependent INaL enhancement. ROS generated by NADPH oxidase 2 (NOX2) also contributed to the ISO-induced INaL activation early in the AP. Taken together, our data reveal differential modulations of INaL by PKA and CaMKII signaling pathways at different AP phases. This nuanced and comprehensive view on the changes in INaL during AP deepens our understanding of the important role of INaL in reshaping the cardiac AP and arrhythmogenic potential under elevated sympathetic stimulation, which is relevant for designing therapeutic treatment of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Internal Medicine/Cardiology, University of California, Davis, CA, USA.
| |
Collapse
|