1
|
Boyes NG, Mannozzi J, Rapin N, Alvarez A, Al-Hassan MH, Lessanework B, Lahti DS, Olver TD, O'Leary DS, Tomczak CR. Augmented sympathoexcitation slows postexercise heart rate recovery. J Appl Physiol (1985) 2023; 135:1300-1311. [PMID: 37883101 PMCID: PMC11550897 DOI: 10.1152/japplphysiol.00549.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Slow heart rate recovery following exercise may be influenced by persistent sympathoexcitation. This study examined 1) the effect of muscle metaboreflex activation (MMA) on heart rate recovery following dynamic exercise; and 2) whether the effect of MMA on heart rate recovery is reversible by reducing sympathoexcitation [baroreflex activation via phenylephrine (PE)] in canines. Twenty-two young adults completed control and MMA protocols during cycle ergometry at 110% ventilatory threshold with 5 min recovery. Heart rate recovery kinetics [tau (τ), amplitude, end-exercise, and end-recovery heart rate] and root mean square of successive differences (RMSSD) were measured. Five chronically instrumented canines completed control, MMA (50%-60% imposed reduction in hindlimb blood flow), and MMA with end-exercise PE infusion (MMA + PE) protocols during moderate exercise (6.4 km·h-1) and 3 min recovery. Heart rate recovery kinetics and MAP were measured. MAP increased during MMA versus control in canines (P < 0.001). Heart rate recovery τ was slower during MMA versus control in humans (17% slower; P = 0.011) and canines (150% slower; P = 0.002). Heart rate recovery τ was faster during MMA + PE versus MMA (40% faster; P = 0.034) and was similar to control in canines (P = 0.426). Amplitude, end-exercise, and end-recovery heart rate were similar between conditions in humans (all P ≥ 0.122) and in canines (all P ≥ 0.084). MMA decreased RMSSD in early recovery (P = 0.004). MMA-induced sympathoexcitation slows heart rate recovery and this effect is markedly attenuated with PE. Therefore, elevated sympathoexcitation via MMA impairs heart rate recovery and inhibition of this stimulus normalizes, in part, heart rate recovery.NEW & NOTEWORTHY Augmented sympathoexcitation, via muscle metaboreflex activation, functionally slows heart rate recovery in both young healthy adults and chronically instrumented canines. Furthermore, elevated sympathoexcitation corresponded with lower parasympathetic activity, as assessed by heart rate variability, during the first 3 min of recovery. Finally, sympathoinhibition, via phenylephrine infusion, normalizes heart rate recovery during muscle metaboreflex activation.
Collapse
Affiliation(s)
- Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph Mannozzi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Nicole Rapin
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alberto Alvarez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Mohamed-Hussein Al-Hassan
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Beruk Lessanework
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Dana S Lahti
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Donal S O'Leary
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Korsak A, Kellett DO, Aziz Q, Anderson C, D’Souza A, Tinker A, Ackland GL, Gourine AV. Immediate and sustained increases in the activity of vagal preganglionic neurons during exercise and after exercise training. Cardiovasc Res 2023; 119:2329-2341. [PMID: 37516977 PMCID: PMC10597628 DOI: 10.1093/cvr/cvad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS The brain controls the heart by dynamic recruitment and withdrawal of cardiac parasympathetic (vagal) and sympathetic activity. Autonomic control is essential for the development of cardiovascular responses during exercise, however, the patterns of changes in the activity of the two autonomic limbs, and their functional interactions in orchestrating physiological responses during exercise, are not fully understood. The aim of this study was to characterize changes in vagal parasympathetic drive in response to exercise and exercise training by directly recording the electrical activity of vagal preganglionic neurons in experimental animals (rats). METHODS AND RESULTS Single unit recordings were made using carbon-fibre microelectrodes from the populations of vagal preganglionic neurons of the nucleus ambiguus (NA) and the dorsal vagal motor nucleus of the brainstem. It was found that (i) vagal preganglionic neurons of the NA and the dorsal vagal motor nucleus are strongly activated during bouts of acute exercise, and (ii) exercise training markedly increases the resting activity of both populations of vagal preganglionic neurons and augments the excitatory responses of NA neurons during exercise. CONCLUSIONS These data show that central vagal drive increases during exercise and provide the first direct neurophysiological evidence that exercise training increases vagal tone. The data argue against the notion of exercise-induced central vagal withdrawal during exercise. We propose that robust increases in the activity of vagal preganglionic neurons during bouts of exercise underlie activity-dependent plasticity, leading to higher resting vagal tone that confers multiple health benefits associated with regular exercise.
Collapse
Affiliation(s)
- Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Daniel O Kellett
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Qadeer Aziz
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Andrew Tinker
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Ishii K, Idesako M, Asahara R, Liang N, Matsukawa K. Central command suppresses pressor-evoked bradycardia at the onset of voluntary standing up in conscious cats. Exp Physiol 2023; 108:28-37. [PMID: 36404613 PMCID: PMC10103771 DOI: 10.1113/ep090718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Standing up can cause hypotension and tachycardia. Accumulated evidence poses the simple question, does the cardiac baroreflex operate at the onset of standing up? If the cardiac baroreflex is suppressed, what mechanism is responsible for baroreflex inhibition? What is the main finding and its importance? In cats, we found blunting of cardiac baroreflex sensitivity in the pressor range at the onset of voluntary hindlimb standing, but not of passive hindlimb standing. This finding suggests that central command suppresses pressor-evoked bradycardia at the onset of standing up, probably in advance, to prevent or buffer orthostatic hypotension. ABSTRACT It remains unclear whether cardiac baroreflex function is preserved or suppressed at the onset of standing up. To answer the question and, if cardiac baroreflex is suppressed, to investigate the mechanism responsible for the suppression, we compared the sensitivity of the arterial cardiac baroreflex at the onset of voluntary and passive hindlimb standing in conscious cats. Cardiac baroreflex sensitivity was estimated from the maximal slope of the baroreflex curve between the responses of systolic arterial blood pressure and heart rate to a brief occlusion of the abdominal aorta. The systolic arterial blood pressure response to standing up without aortic occlusion was greater in the voluntary case than in the passive case. Cardiac baroreflex sensitivity was clearly decreased at the onset of voluntary standing up compared with rest (P = 0.005) and the onset of passive standing up (P = 0.007). The cardiac baroreflex sensitivity at the onset of passive standing up was similar to that at rest (P = 0.909). The findings suggest that central command would transmit a modulatory signal to the cardiac baroreflex system during the voluntary initiation of standing up. Furthermore, the present data tempt speculation on a close relationship between central inhibition of the cardiac baroreflex and the centrally induced tachycardiac response to standing up.
Collapse
Affiliation(s)
- Kei Ishii
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| | - Mitsuhiro Idesako
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| | - Ryota Asahara
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| | - Nan Liang
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
- Cognitive Motor Neuroscience, Human Health SciencesGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Kanji Matsukawa
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| |
Collapse
|
4
|
Ishii K, Idesako M, Asahara R, Liang N, Matsukawa K. Central modulation of cardiac baroreflex moment-to-moment sensitivity during treadmill exercise in conscious cats. Physiol Rep 2022; 10:e15371. [PMID: 35757967 PMCID: PMC9234745 DOI: 10.14814/phy2.15371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022] Open
Abstract
It remains undetermined whether the cardiac component of the entire arterial baroreflex is blunted even at the onset of low-intensity exercise. We sought to examine the moment-to-moment sensitivity of the cardiac baroreflex during walking at different speeds and the presumed mechanisms responsible for baroreflex modulation in conscious cats. Arterial baroreflex sensitivity for heart rate was estimated from the baroreflex ratio between changes in systolic arterial blood pressure and heart rate and from the slope of the baroreflex curve between the cardiovascular responses to brief occlusion of the abdominal aorta. Treadmill walking was performed for 1 min at three levels of speed (low: 20-30 m/min, moderate: 40 m/min, and high: 50-60 m/min) or for 3 min at the stepwise change of speed (low to high to low transition). Cardiac baroreflex sensitivity was blunted at the onset of walking, irrespective of speed. Thereafter, the blunted cardiac baroreflex sensitivity was restored around 15 s of walking at any speed, while the blunting occurred again at 45 s of high-speed walking. The inhibition of cardiac baroreflex sensitivity also occurred (1) during the speed transition from low to high and (2) at 45 s of high-speed exercise of the stepwise exercise. The blunted cardiac baroreflex sensitivity was restored immediately to the resting level during the speed transition from high to low, despite sustained pressor and tachycardiac responses. Therefore, moment-to-moment modulation of the cardiac baroreflex during exercise would occur in association with motor intention (i.e., exercise onset) and effort (i.e., treadmill speed).
Collapse
Affiliation(s)
- Kei Ishii
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Mitsuhiro Idesako
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ryota Asahara
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Cognitive Motor Neuroscience, Human Health SciencesGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
5
|
Sato T, Ichise N, Terashima Y, Kato A, Yamazaki H, Jimbo S, Tohse N. Response to exercise-induced blood pressure elevation is blunted in wrist-cuff automated oscillometric measurement in healthy young college students. Physiol Rep 2021; 8:e14570. [PMID: 32931160 PMCID: PMC7507412 DOI: 10.14814/phy2.14570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background A wrist‐cuff automated oscillometric device is portable and useful for self‐monitoring of blood pressure (BP) at home and outdoors when an upper arm device is not available. Although the height of the forearm in wrist BP measurement is acknowledged to be the major cause of measurement error, it remains unclear whether exercise affects subsequent wrist BP measurement. Methods and Results Ninety‐seven healthy college students (median age of 20 years with an age range of 19 to 36 years, 70.1% males) participated in this study. Care was taken to keep the position of the wrist at a level near the upper arm level in BP measurement. At rest, BP measured by a wrist‐cuff oscillometric device (Omron HEM‐6183) was generally acceptable when it was compared with BP measured by an upper arm oscillometric device (Omron HEM‐7130‐HP) and with BP measured by the auscultatory method using a mercury sphygmomanometer. However, the ratio of systolic BP measured by oscillometric devices just after a two‐step exercise test to that before exercise on the wrist (1.22 ± 0.14) was significantly lower than the ratio on the upper arm (1.27 ± 0.14), and the difference was significantly correlated with exercise‐induced increase in pulse rate (Spearman's ρ = 0.23), suggesting a possible role of autonomic nerve activity in the blunted response to exercise‐induced BP elevation in wrist BP measurement. Conclusions The results indicate that the blunted response to exercise‐induced BP elevation should be considered in wrist BP measurement when using a wrist‐cuff oscillometric device.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshinori Terashima
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Aoi Kato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shunsuke Jimbo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Ang R, Marina N. Low-Frequency Oscillations in Cardiac Sympathetic Neuronal Activity. Front Physiol 2020; 11:236. [PMID: 32256390 PMCID: PMC7093552 DOI: 10.3389/fphys.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Sudden cardiac death caused by ventricular arrhythmias is among the leading causes of mortality, with approximately half of all deaths attributed to heart disease worldwide. Periodic repolarization dynamics (PRD) is a novel marker of repolarization instability and strong predictor of death in patients post-myocardial infarction that is believed to occur in association with low-frequency oscillations in sympathetic nerve activity. However, this hypothesis is based on associations of PRD with indices of sympathetic activity that are not directly linked to cardiac function, such as muscle vasoconstrictor activity and the variability of cardiovascular autospectra. In this review article, we critically evaluate existing scientific evidence obtained primarily in experimental animal models, with the aim of identifying the neuronal networks responsible for the generation of low-frequency sympathetic rhythms along the neurocardiac axis. We discuss the functional significance of rhythmic sympathetic activity on neurotransmission efficacy and explore its role in the pathogenesis of ventricular repolarization instability. Most importantly, we discuss important gaps in our knowledge that require further investigation in order to confirm the hypothesis that low frequency cardiac sympathetic oscillations play a causative role in the generation of PRD.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
7
|
Hamm W, VON Stülpnagel L, Rizas KD, Vdovin N, Klemm M, Bauer A, Brunner S. Dynamic Changes of Cardiac Repolarization Instability during Exercise Testing. Med Sci Sports Exerc 2020; 51:1517-1522. [PMID: 30664030 DOI: 10.1249/mss.0000000000001912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Physical exercise triggers efferent cardiac sympathetic activation. Here, we tracked the spatiotemporal properties of cardiac repolarization on a beat-to-beat basis throughout a standardized exercise test and hypothesized a detectable change at the point of the anaerobic threshold (AT). METHODS The study included 20 healthy adults (age 35.3 ± 6.7 yr) undergoing a standardized incremental exercise test on a cycle ergometer. During exercise testing, high-resolution (2000 Hz) ECG monitoring in Frank lead configuration was performed. Three-dimensional beat-to-beat repolarization instability (dT°) was assessed by a novel vector-based method according to a previously published technology. In parallel, the lactate threshold (LT) was detected according to Dickhuth and Mader. RESULTS We could identify a characteristic pattern of dT° signal during exercise testing. With increasing physical activity, dT° increased concordantly to heart rate. At an average of 164 ± 38 W, dT° and heart rate abruptly showed a discordant behavior, characterized by a transient drop of dT°. The maximal discordance between dT° and heart rate was defined as ATdT° and highly significantly correlated with LTDickhuth (r = 0.841, P < 0.001) and LTMader (r = 0.819, P < 0.001), which were at 156 ± 39 and 172 ± 46 W, respectively. The characteristic of dT° could not be provoked by fast atrial pacing in the absence of exercise. CONCLUSIONS Repolarization instability shows a characteristic pattern during standardized exercise in healthy individuals that allows for a noninvasive estimation of AT.
Collapse
Affiliation(s)
- Wolfgang Hamm
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, GERMANY.,German Center for Cardiovascular Research (DZHK), GERMANY
| | - Lukas VON Stülpnagel
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, GERMANY.,German Center for Cardiovascular Research (DZHK), GERMANY
| | - Konstantinos D Rizas
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, GERMANY.,German Center for Cardiovascular Research (DZHK), GERMANY
| | - Nikolay Vdovin
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, GERMANY.,German Center for Cardiovascular Research (DZHK), GERMANY
| | - Mathias Klemm
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, GERMANY.,German Center for Cardiovascular Research (DZHK), GERMANY
| | - Axel Bauer
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, GERMANY.,German Center for Cardiovascular Research (DZHK), GERMANY
| | - Stefan Brunner
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, GERMANY
| |
Collapse
|
8
|
The mind-body problem: Circuits that link the cerebral cortex to the adrenal medulla. Proc Natl Acad Sci U S A 2019; 116:26321-26328. [PMID: 31871146 DOI: 10.1073/pnas.1902297116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Which regions of the cerebral cortex are the origin of descending commands that influence internal organs? We used transneuronal transport of rabies virus in monkeys and rats to identify regions of cerebral cortex that have multisynaptic connections with a major sympathetic effector, the adrenal medulla. In rats, we also examined multisynaptic connections with the kidney. In monkeys, the cortical influence over the adrenal medulla originates from 3 distinct networks that are involved in movement, cognition, and affect. Each of these networks has a human equivalent. The largest influence originates from a motor network that includes all 7 motor areas in the frontal lobe. These motor areas are involved in all aspects of skeletomotor control, from response selection to motor preparation and movement execution. The motor areas provide a link between body movement and the modulation of stress. The cognitive and affective networks are located in regions of cingulate cortex. They provide a link between how we think and feel and the function of the adrenal medulla. Together, the 3 networks can mediate the effects of stress and depression on organ function and provide a concrete neural substrate for some psychosomatic illnesses. In rats, cortical influences over the adrenal medulla and the kidney originate mainly from 2 motor areas and adjacent somatosensory cortex. The cognitive and affective networks, present in monkeys, are largely absent in rats. Thus, nonhuman primate research is essential to understand the neural substrate that links cognition and affect to the function of internal organs.
Collapse
|
9
|
Asahara R, Endo K, Liang N, Matsukawa K. An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass. Eur J Appl Physiol 2018; 118:1689-1702. [DOI: 10.1007/s00421-018-3901-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
|
10
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Hart EC, Head GA, Carter JR, Wallin BG, May CN, Hamza SM, Hall JE, Charkoudian N, Osborn JW. Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization. Am J Physiol Heart Circ Physiol 2017; 312:H1031-H1051. [PMID: 28364017 DOI: 10.1152/ajpheart.00703.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Over the past several decades, studies of the sympathetic nervous system in humans, sheep, rabbits, rats, and mice have substantially increased mechanistic understanding of cardiovascular function and dysfunction. Recently, interest in sympathetic neural mechanisms contributing to blood pressure control has grown, in part because of the development of devices or surgical procedures that treat hypertension by manipulating sympathetic outflow. Studies in animal models have provided important insights into physiological and pathophysiological mechanisms that are not accessible in human studies. Across species and among laboratories, various approaches have been developed to record, quantify, analyze, and interpret sympathetic nerve activity (SNA). In general, SNA demonstrates "bursting" behavior, where groups of action potentials are synchronized and linked to the cardiac cycle via the arterial baroreflex. In humans, it is common to quantify SNA as bursts per minute or bursts per 100 heart beats. This type of quantification can be done in other species but is only commonly reported in sheep, which have heart rates similar to humans. In rabbits, rats, and mice, SNA is often recorded relative to a maximal level elicited in the laboratory to control for differences in electrode position among animals or on different study days. SNA in humans can also be presented as total activity, where normalization to the largest burst is a common approach. The goal of the present paper is to put together a summary of "best practices" in several of the most common experimental models and to discuss opportunities and challenges relative to the optimal measurement of SNA across species.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/guidelines-for-measuring-sympathetic-nerve-activity/.
Collapse
Affiliation(s)
- Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Geoffrey A Head
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts; and
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
12
|
Murata J, Murata S, Soma M, Nakae H, Sato Y, Kogo H, Umeki N. Relationship between the changes in blood flow and volume in the finger during a Braille character discrimination task. Skin Res Technol 2017; 23:514-518. [PMID: 28295631 DOI: 10.1111/srt.12363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE We hypothesized that skin blood flow (SBF) of fingers are modulated during concentrated finger perception and that the changes in SBF reflect fluctuations in finger volume (FV). The aim of this study, therefore, was examine the relationship between the changes in SBF and FV during Braille reading. METHODS We measured SBF of the finger, cutaneous vascular conductance (CVC), FV, and arterial blood pressure during Braille reading performed under blind conditions in thirty healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 15 seconds using their forefinger, and to touch a blank plate as a control for the Braille discrimination procedure. RESULTS Arterial blood pressure slightly increased during Braille reading but remained unchanged during the touching of the blank plate. SBF, CVC, and FV were reduced during Braille reading (decreased by -26%, -29%, and -0.3 mL/100 mL respectively). Furthermore, a significant relationship was observed between the changes in SBF and FV (r=.613) during Braille reading. CONCLUSION These results suggested that SBF of fingers is modulated during concentrated finger perception, and that the variability of blood flow reflects the response in FV.
Collapse
Affiliation(s)
- J Murata
- Department of Physical and Occupational Therapy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - S Murata
- Course of Physical Therapy, Department of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - M Soma
- Course of Rehabilitation, Department of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi, Japan
| | - H Nakae
- Course of Rehabilitation, Department of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi, Japan
| | - Y Sato
- Course of Rehabilitation, Department of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi, Japan
| | - H Kogo
- Department of Physical and Occupational Therapy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Umeki
- Department of Physical and Occupational Therapy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
13
|
Asahara R, Matsukawa K, Ishii K, Liang N, Endo K. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command. J Appl Physiol (1985) 2016; 121:1115-1126. [DOI: 10.1152/japplphysiol.00401.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022] Open
Abstract
When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco2) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco2. Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation.
Collapse
Affiliation(s)
- Ryota Asahara
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Liang
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Endo
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Matsukawa K, Ishii K, Asahara R, Idesako M. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat. J Appl Physiol (1985) 2016; 121:932-943. [PMID: 27539494 DOI: 10.1152/japplphysiol.00299.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/11/2016] [Indexed: 11/22/2022] Open
Abstract
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuhiro Idesako
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Asahara R, Kadowaki A, Wakasugi R, Takahashi M. Central command generated prior to arbitrary motor execution induces muscle vasodilatation at the beginning of dynamic exercise. J Appl Physiol (1985) 2016; 120:1424-33. [DOI: 10.1152/japplphysiol.00103.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue (arbitrary vs. cued start). We measured the cardiovascular variables during both exercises and the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of noncontracting vastus lateralis muscles as index of tissue blood flow and femoral blood flow to nonexercising leg during one-legged cycling. Two-legged cycling with arbitrary start caused a decrease in total peripheral resistance (TPR), which was smaller during the exercise with cued start. The greater reduction of TPR with arbitrary start was also recognized at the beginning of one-legged cycling. Oxy-Hb of noncontracting muscle increased by 3.6 ± 1% ( P < 0.05) during one-legged cycling with arbitrary start, whereas such increase in Oxy-Hb was absent with cued start. The increases in femoral blood flow and vascular conductance of nonexercising leg were evident ( P < 0.05) at 10 s from the onset of one-legged cycling with arbitrary start, whereas those were smaller or absent with cued start. It is likely that when voluntary exercise is started arbitrarily, central command is generated prior to motor execution and then contributes to muscle vasodilatation at the beginning of exercise. Such centrally induced muscle vasodilatation may be weakened and/or masked in the case of exercise with cued start.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology and
| | | | - Nan Liang
- Department of Integrative Physiology and
| | - Kana Endo
- Department of Integrative Physiology and
| | | | | | | | | | - Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
Takahashi M, Nakamoto T, Matsukawa K, Ishii K, Watanabe T, Sekikawa K, Hamada H. Cardiac parasympathetic outflow during dynamic exercise in humans estimated from power spectral analysis of P-P interval variability. Exp Physiol 2015; 101:397-409. [PMID: 26690240 DOI: 10.1113/ep085420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/03/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Should we use the high-frequency (HF) component of P-P interval as an index of cardiac parasympathetic nerve activity during moderate exercise? What is the main finding and its importance? The HF component of P-P interval variability remained even at a heart rate of 120-140 beats min(-1) and was further reduced by atropine, indicating incomplete cardiac vagal withdrawal during moderate exercise. The HF component of R-R interval is invalid as an estimate of cardiac parasympathetic outflow during moderate exercise; instead, the HF component of P-P interval variability should be used. The high-frequency (HF) component of R-R interval variability has been widely used as an indirect estimate of cardiac parasympathetic (vagal) outflow to the sino-atrial node of the heart. However, we have recently found that the variability of the R-R interval becomes much smaller during dynamic exercise than that of the P-P interval above a heart rate (HR) of ∼100 beats min(-1). We hypothesized that cardiac parasympathetic outflow during dynamic exercise with a higher intensity may be better estimated using the HF component of P-P interval variability. To test this hypothesis, the HF components of both P-P and R-R interval variability were analysed using a Wavelet transform during dynamic exercise. Twelve subjects performed ergometer exercise to increase HR from the baseline of 69 ± 3 beats min(-1) to three different levels of 100, 120 and 140 beats min(-1). We also examined the effect of atropine sulfate on the HF components in eight of the 12 subjects during exercise at an HR of 140 beats min(-1) . The HF component of P-P interval variability was significantly greater than that of R-R interval variability during exercise, especially at the HRs of 120 and 140 beats min(-1). The HF component of P-P interval variability was more reduced by atropine than that of R-R interval variability. We conclude that cardiac parasympathetic outflow to the sino-atrial node can be estimated better by the HF component of P-P interval variability during exercise and that cardiac parasympathetic nerve activity exists during moderate dynamic exercise.
Collapse
Affiliation(s)
- Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Nakamoto
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tae Watanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyokazu Sekikawa
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Thomson RL, Rogers DK, Howe PRC, Buckley JD. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling. Res Sports Med 2015; 24:1-15. [PMID: 26289798 DOI: 10.1080/15438627.2015.1076414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P < 0.001), rHRIsig (2.25 ± 1.0 to 1.14 ± 0.7 beats · min(-1) · s(-1), P < 0.001) and rHRIexp (3.79 ± 2.07 to 1.98 ± 1.05 beats · min(-1) · s(-1), P = 0.001), and increased pre-exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P < 0.001). Pre-post run difference in time-trial performance was related to difference in rHRIsig (r = 0.58, P = 0.04 and r = 0.75, P = 0.003) but not rHRIexp (r = -0.04, P = 0.9 and r = 0.27, P = 0.4) when controlling for differences in pre-exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.
Collapse
Affiliation(s)
- Rebecca L Thomson
- a Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research , University of South Australia , Adelaide , Australia
| | - Daniel K Rogers
- a Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research , University of South Australia , Adelaide , Australia
| | - Peter R C Howe
- b Clinical Nutrition Research Centre , University of Newcastle, Callaghan , New South Wales , Australia
| | - Jonathan D Buckley
- a Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research , University of South Australia , Adelaide , Australia
| |
Collapse
|
18
|
Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 2015; 95:549-601. [PMID: 25834232 DOI: 10.1152/physrev.00035.2013] [Citation(s) in RCA: 482] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| |
Collapse
|
19
|
|
20
|
Barbosa TC, Fernandes IA, Magalhães N, Cavalcanti IL, Secher NH, Nóbrega ACL, Vianna LC. Oscillatory blood pressure response to the onset of cycling exercise in men: role of group III/IV muscle afferents. Exp Physiol 2015; 100:302-11. [PMID: 25581883 DOI: 10.1113/expphysiol.2014.083857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/07/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Neural feedback from group III/IV muscle afferents has a key role in regulation of cardiovascular responses to exercise. Blood pressure oscillates in the first seconds of dynamic exercise, but the contribution of muscle afferent feedback to this pattern is unclear. What is the main finding and its importance? We demonstrate that attenuation of group III/IV muscle afferent feedback by spinal fentanyl impairs the pressor response after 10 s of moderate leg cycling exercise, but this afferent feedback does not appear to be necessary for induction of the oscillatory pattern of blood pressure at the onset of exercise. We investigated whether attenuation of the central projections of group III/IV skeletal muscle afferents via lumbar intrathecal administration of the μ-opioid receptor agonist fentanyl affects the oscillatory blood pressure (BP) response to the onset of dynamic exercise. Eight healthy, recreationally active men (28 ± 3 years old) performed 40 s of cycling at 80 W (60 r.p.m.) before (control) and after fentanyl administration, while heart rate, stroke volume, cardiac output, systolic, mean and diastolic BP and total vascular conductance were continuously monitored. Sytolic and mean BP responses to cycling included an initial increase (from 0 to 3 s), followed by a transient decrease below resting levels (from 3 to 10 s) and then a sustained increase (>10 s). In the presence of fentanyl, systolic and mean BP responses closely matched those in control conditions in the first 10 s, but were blunted thereafter (P < 0.05). In contrast, fentanyl did not modify the heart rate, stroke volume, cardiac output, diastolic BP or total vascular conductance responses to 40 s of cycling (P > 0.05). These findings suggest that during moderate leg cycling exercise the muscle afferents contribute to the BP response after ∼10 s, but that they do not appear to be implicated in the oscillation of BP at the onset of exercise.
Collapse
Affiliation(s)
- Thales C Barbosa
- Department of Physiology and Pharmacology, Fluminense Federal University, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Boström PA, Graham EL, Georgiadi A, Ma X. Impact of exercise on muscle and nonmuscle organs. IUBMB Life 2014; 65:845-50. [PMID: 24078392 DOI: 10.1002/iub.1209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Abstract
Exercise is known to prevent and treat metabolic diseases such as diabetes. However, the underlying mechanisms are not fully understood, and there is currently much focus on detailing such pathways. Traditionally, much emphasis has been placed on skeletal muscle; however, recently, nonmuscle organs such as adipose tissue have been highlighted in mediating protective actions after training. Moreover, novel paracrine- and endocrine-signaling molecules have been shown to trigger important responses in nonmuscle organs after exercise. This is exciting because, when administered exogenously, such signals have obvious therapeutic potential. In this review, the authors have described some general and historical aspects of training and disease protection. The authors have also highlighted some of the current knowledge on how exercise impacts nonmuscle organs.
Collapse
Affiliation(s)
- Pontus A Boström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Siahkouhian M, Khodadadi D. Narita target heart rate equation underestimates the predicted adequate exercise level in sedentary young boys. Asian J Sports Med 2014; 4:175-80. [PMID: 24427475 PMCID: PMC3880660 DOI: 10.5812/asjsm.34255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/17/2013] [Indexed: 11/21/2022] Open
Abstract
Purpose Optimal training intensity and the adequate exercise level for physical fitness is one of the most important interests of coaches and sports physiologists. The aim of this study was to investigate the validity of the Narita et al target heart rate equation for the adequate exercise training level in sedentary young boys. Methods Forty two sedentary young boys (19.07±1.16 years) undertook a blood lactate transition threshold maximal treadmill test to volitional exhaustion with continuous respiratory gas measurements according to the Craig method. The anaerobic threshold (AT) of the participants then was calculated using the Narita target heart rate equation. Results Hopkin's spreadsheet to obtain confidence limit and the chance of the true difference between gas measurements and Narita target heart rate equation revealed that the Narita equation most likely underestimates the measured anaerobic threshold in sedentary young boys (168.76±15 vs. 130.08±14.36) (Difference ±90% confidence limit: 38.1±18). Intraclass correlation coefficient (ICC) showed a poor agreement between the criterion method and Narita equation (ICC= 0.03). Conclusion According to the results, the Narita equation underestimates the measured AT. It seems that the Narita equation is a good predictor of aerobic not AT which can be investigated in the future studies.
Collapse
Affiliation(s)
- Marefat Siahkouhian
- Address: Department of Physical Education & Sport Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | | |
Collapse
|
23
|
Fisher JP. Autonomic control of the heart during exercise in humans: role of skeletal muscle afferents. Exp Physiol 2013; 99:300-5. [DOI: 10.1113/expphysiol.2013.074377] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James P. Fisher
- School of Sport, Exercise & Rehabilitation Sciences; College of Life and Environmental Sciences; University of Birmingham; Edgbaston Birmingham UK
| |
Collapse
|
24
|
Heart rate variability indices for very short-term (30 beat) analysis. Part 2: validation. J Clin Monit Comput 2013; 27:577-85. [DOI: 10.1007/s10877-013-9473-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
|
25
|
Abstract
We used retrograde transneuronal transport of rabies virus from the rat kidney to identify the areas of the cerebral cortex that are potential sources of central commands for the neural regulation of this organ. Our results indicate that multiple motor and nonmotor areas of the cerebral cortex contain output neurons that indirectly influence kidney function. These cortical areas include the primary motor cortex (M1), the rostromedial motor area (M2), the primary somatosensory cortex, the insula and other regions surrounding the rhinal fissure, and the medial prefrontal cortex. The vast majority of the output neurons from the cerebral cortex were located in two cortical areas, M1 (68%) and M2 (15%). If the visceromotor functions of M1 and M2 reflect their skeletomotor functions, then the output to the kidney from each cortical area could make a unique contribution to autonomic control. The output from M1 could add precision and organ-specific regulation to descending visceromotor commands, whereas the output from M2 could add anticipatory processing which is essential for allostatic regulation. We also found that the output from M1 and M2 to the kidney originates predominantly from the trunk representations of these two cortical areas. Thus, a map of visceromotor representation appears to be embedded within the classic somatotopic map of skeletomotor representation.
Collapse
|
26
|
Murata J, Matsukawa K, Komine H, Tsuchimochi H. Modulation of radial blood flow during Braille character discrimination task. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:25-32. [PMID: 22425805 DOI: 10.1556/aphysiol.99.2012.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. RESULTS HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). CONCLUSIONS These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception.
Collapse
Affiliation(s)
- Jun Murata
- Nagasaki University Department of Physical and Occupational Therapy, Graduate School of Biomedical Sciences 1-7-1 Sakamoto Nagasaki 852-8520 Japan.
| | | | | | | |
Collapse
|
27
|
Lee SM, Choi EK, Chung GS, Oh S, Park KS. Quantification of cardiac autonomic nervous activities in ambulatory dogs by eliminating cardiac electric activities using cubic smoothing spline. Physiol Meas 2012; 33:131-45. [PMID: 22227824 DOI: 10.1088/0967-3334/33/2/131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the development of an implantable radio transmitter system, direct measurement of cardiac autonomic nervous activities (CANAs) became possible for ambulatory animals for a couple of months. However, measured CANAs include not only CANA but also cardiac electric activity (CEA) that can affect the quantification of CANAs. In this study, we propose a novel CEA removal method using moving standard deviation and cubic smoothing spline. This method consisted of two steps of detecting CEA segments and eliminating CEAs in detected segments. Using implanted devices, we recorded stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA) and superior left ganglionated plexi nerve activity (SLGPNA) directly from four ambulatory dogs. The CEA-removal performance of the proposed method was evaluated and compared with commonly used high-pass filtration (HPF) for various heart rates and CANA amplitudes. Results tested with simulated CEA and simulated true CANA revealed stable and excellent performance of the suggested method compared to the HPF method. The averaged relative error percentages of the proposed method were less than 0.67%, 0.65% and 1.76% for SGNA, VNA and SLGPNA, respectively.
Collapse
Affiliation(s)
- Seung Min Lee
- Graduate Program in Bioengineering, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Matsukawa K. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals. Exp Physiol 2011; 97:20-8. [PMID: 21984731 DOI: 10.1113/expphysiol.2011.057661] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
29
|
Kadowaki A, Matsukawa K, Wakasugi R, Nakamoto T, Liang N. Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats. Am J Physiol Heart Circ Physiol 2011; 300:H1373-85. [PMID: 21297027 DOI: 10.1152/ajpheart.01296.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the motor activity, preceding the tachycardia response. The increase in CSNA lasted for 4-5 s and returned to the baseline, even though the motor activity was not ended. The increase of 6 ± 1 beats/min in heart rate appeared with the same time course of the increase in CSNA. In contrast, CVNA never decreased but increased throughout the motor activity, in parallel with a rise in mean arterial blood pressure (MAP). The peak increase in CVNA was 37 ± 9% at 5 s after the motor onset. The rise in MAP gradually developed to 21 ± 2 mmHg and was sustained throughout the spontaneous motor activity. Partial sinoaortic denervation (SAD) blunted the baroreflex sensitivity of the MAP-CSNA and MAP-CVNA relationship to 22-33% of the control. Although partial SAD blunted the initial increase in CSNA to 53% of the control, the increase in CSNA was sustained throughout the motor activity. In contrast, partial SAD almost abolished the increase in CVNA during the motor activity, despite the augmented elevation of 31 ± 1 mmHg in MAP. Because afferent inputs from both muscle receptors and arterial baroreceptors were absent or greatly attenuated in the partial SAD condition, only central command was operating during spontaneous fictive motor activity in decerebrate cats. Therefore, it is likely that central command causes activation of cardiac sympathetic outflow but does not produce withdrawal of cardiac parasympathetic outflow during spontaneous motor activity.
Collapse
Affiliation(s)
- Akito Kadowaki
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
30
|
Park SA, Kim JK. Estrogen Attenuates the Pressor Response Mediated by the Group III Mechanoreflex. J Korean Acad Nurs 2011; 41:191-6. [DOI: 10.4040/jkan.2011.41.2.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seung-Ae Park
- Doctoral Student, Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Jong-Kyung Kim
- Assistant Professor, Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| |
Collapse
|
31
|
Wakasugi R, Nakamoto T, Matsukawa K. The effects of adrenalectomy and autonomic blockades on the exercise tachycardia in conscious rats. Auton Neurosci 2010; 155:59-67. [PMID: 20153986 DOI: 10.1016/j.autneu.2010.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 11/15/2022]
Abstract
Heart rate (HR) during exercise is controlled by cardiac sympathetic (CSNA) and vagal (CVNA) efferent nerve activity and plasma catecholamines. To determine their relative contribution to the exercise tachycardia, we examined the effects of adrenalectomy (ADX) and autonomic blockades on the HR response during treadmill exercise for 32min in 13 conscious rats. The baseline HR was not influenced by ADX, suggesting no significant role of adrenal catecholamines on the baseline HR. Since the baseline HR was increased 61beats/min by atropine methyl nitrate (1.5mg/kg) and decreased 26beats/min by atenolol (3mg/kg), CVNA determined the baseline HR more than CSNA. ADX did not affect the immediate increase in HR at 0-12s from the exercise onset but reduced the subsequent increase in HR at 13-30s. These increases in HR at the early period of exercise were more blunted by atenolol than atropine. On the other hand, the peak tachycardia response of 99+/-8beats/min at the end of exercise, which was the same between the intact and ADX conditions, was blunted to 73% by atenolol, to 77% by atropine, and to 35% by combined atenolol and atropine, respectively. In conclusion, it is likely that the tachycardia at the beginning of dynamic exercise is predominantly determined by the cardiac autonomic nerve activity, especially by a prompt increase in CSNA, and that the hormonal mechanism due to adrenal epinephrine contributes to a further increase in HR approximately in 13s from the onset of exercise.
Collapse
Affiliation(s)
- Rie Wakasugi
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
32
|
The enhancing effect of propofol anesthesia on skeletal muscle mechanoreflex in conscious cats. Auton Neurosci 2009; 151:111-6. [DOI: 10.1016/j.autneu.2009.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 11/17/2022]
|
33
|
Tsuchimochi H, Nakamoto T, Matsukawa K. Centrally evoked increase in adrenal sympathetic outflow elicits immediate secretion of adrenaline in anaesthetized rats. Exp Physiol 2009; 95:93-106. [PMID: 19700518 DOI: 10.1113/expphysiol.2009.048553] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine whether feedforward control by central command activates preganglionic adrenal sympathetic nerve activity (AdSNA) and releases catecholamines from the adrenal medulla, we investigated the effects of electrical stimulation of the hypothalamic locomotor region on preganglionic AdSNA and secretion rate of adrenal catecholamines in anaesthetized rats. Pre- or postganglionic AdSNA was verified by temporary sympathetic ganglionic blockade with trimethaphan. Adrenal venous blood was collected every 30 s to determine adrenal catecholamine output and blood flow. Hypothalamic stimulation for 30 s (50 Hz, 100-200 microA) induced rapid activation of preganglionic AdSNA by 83-181% depending on current intensity, which was followed by an immediate increase of 123-233% in adrenal adrenaline output. Hypothalamic stimulation also increased postganglionic AdSNA by 42-113% and renal sympathetic nerve activity by 94-171%. Hypothalamic stimulation induced preferential secretion of adrenal adrenaline compared with noradrenaline, because the ratio of adrenaline to noradrenaline increased greatly during hypothalamic stimulation. As soon as the hypothalamic stimulation was terminated, preganglionic AdSNA returned to the prestimulation level in a few seconds, and the elevated catecholamine output decayed within 30-60 s. Adrenal blood flow and vascular resistance were not affected or slightly decreased by hypothalamic stimulation. Thus, it is likely that feedforward control of catecholamine secretion from the adrenal medulla plays a role in conducting rapid hormonal control of the cardiovascular system at the beginning of exercise.
Collapse
Affiliation(s)
- Hirotsugu Tsuchimochi
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
34
|
Tsuchimochi H, Hayes SG, McCord JL, Kaufman MP. Both central command and exercise pressor reflex activate cardiac sympathetic nerve activity in decerebrate cats. Am J Physiol Heart Circ Physiol 2009; 296:H1157-63. [PMID: 19234088 DOI: 10.1152/ajpheart.01219.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both static and dynamic exercise are known to increase cardiac pump function as well as arterial blood pressure. Feedforward control by central command and feedback control by the exercise pressor reflex are thought to be the neural mechanisms causing these effects during exercise. It remains unknown as to how each mechanism activates cardiac sympathetic nerve activity (CSNA) during exercise, especially at its onset. Thus we examined the response of CSNA to stimulation of the mesencephalic locomotor region (MLR, i.e., central command) and to static muscle contraction of the triceps surae muscles or stretch of the calcaneal tendon in decerebrate cats. We found that MLR stimulation immediately increased CSNA, which was followed by a gradual increase in heart rate, mean arterial pressure, and ventral root activity in a stimulus intensity-dependent manner. The latency of the increase in CSNA from the onset of MLR stimulation ranged from 67 to 387 ms. Both static contraction and tendon stretch also rapidly increased CSNA. Their latency from the development of tension in response to ventral root stimulation ranged from 78 to 670 ms. These findings suggest that both central command and the muscle mechanoreflex play a role in controlling cardiac sympathetic outflow at the onset of exercise.
Collapse
Affiliation(s)
- Hirotsugu Tsuchimochi
- Penn State Heart and Vascular Inst., 500 University Dr., Mail Code H047, Hershey Medical Ctr., Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
35
|
Slingerland L, Robben J, Schaafsma I, Kooistra H. Response of cats to familiar and unfamiliar human contact using continuous direct arterial blood pressure measurement. Res Vet Sci 2008; 85:575-82. [DOI: 10.1016/j.rvsc.2007.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/30/2022]
|
36
|
Takahashi M, Matsukawa K, Nakamoto T, Tsuchimochi H, Sakaguchi A, Kawaguchi K, Onari K. Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia. J Appl Physiol (1985) 2007; 103:1669-77. [PMID: 17761788 DOI: 10.1152/japplphysiol.00503.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heart rate (HR) is controlled solely by via cardiac parasympathetic outflow in tetraplegic individuals, who lack supraspinal control of sympathetic outflows and circulating catecholamines but have intact vagal pathways. A high-frequency component (HF; at 0.15–0.40 Hz) of the power spectrum of HR variability and its relative value against total power (HF/Total) were assessed using a wavelet transform to identify cardiac parasympathetic outflow. The relative contribution of cardiac parasympathetic and sympathetic outflows to controlling HR was estimated by comparing the HF/Total-HR relationship between age-matched tetraplegic and normal men. Six tetraplegic men with complete cervical spinal cord injury performed static arm exercise at 35% of the maximal voluntary contraction until exhaustion. Although resting cardiac output and arterial blood pressure were lower in tetraplegic than normal subjects, HR, HF, and HF/Total were not statistically different between the two groups. When tetraplegic subjects developed the same force during exercise as normal subjects, HF and HF/Total decreased to 67–90% of the preexercise control and gradually recovered 1.5 min after exercise. The amount and time course of the changes in HF/Total during and after exercise coincided well between both groups. In contrast, the increase in HR at the start of exercise was blunted in tetraplegic compared with normal subjects, and the HR recovery following exercise was also delayed. It is likely that, although the withdrawal response of cardiac parasympathetic outflow is preserved in tetraplegic subjects, sympathetic decentralization impairs the rapid acceleration of HR at the onset of exercise and the rapid deceleration following exercise.
Collapse
Affiliation(s)
- Makoto Takahashi
- Dept. of Sports Medicine, Graduate School of Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Matsukawa K, Nakamoto T. Muscle mechanosensitive reflex is suppressed in the conscious condition: effect of anesthesia. J Appl Physiol (1985) 2007; 104:82-7. [PMID: 17962571 DOI: 10.1152/japplphysiol.00938.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that a muscle mechanosensitive reflex is suppressed in the conscious condition, we examined the effect of anesthesia on the cardiovascular responses to passive mechanical stretch of the hindlimb triceps surae muscle in six conscious cats. The triceps surae muscle was manually stretched for 30 s by extending the hip and knee joints and subsequently by dorsiflexing the ankle joint; the lateral gastrocnemius muscle was lengthened by 19 +/- 2.6 mm. Heart rate (HR) and mean arterial blood pressure (MAP) did not change significantly during passive stretch of the muscle in the conscious condition. At 10-40 min after intravenously administering pentobarbital sodium (20-25 mg/kg), the identical passive stretch of the triceps surae muscle was able to induce the cardiovascular responses; HR and MAP were increased by 14 +/- 1.3 beats/min and 14 +/- 1.4 mmHg, respectively, and the cardiovascular responses were sustained throughout the passive stretch. In contrast, stretching skin on the triceps surae muscle evoked no significant changes in HR and MAP in the anesthetized condition. When anesthesia became light 40-90 min after injection of pentobarbital and the animals started to show spontaneous body movement, the cardiovascular response to passive muscle stretch tended to be blunted again. It is therefore concluded that passive mechanical stretch of skeletal muscle is capable of evoking the reflex cardiovascular response, which is suppressed in the conscious condition but exaggerated by anesthesia.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Dept. of Physiology, Graduate School of Health Sciences, Hiroshima Univ., Kasumi 1-2-3, Minami-ku Hiroshima 734-8551, Japan.
| | | |
Collapse
|
38
|
Matsukawa K, Nakamoto T, Inomoto A. Gadolinium does not blunt the cardiovascular responses at the onset of voluntary static exercise in cats: a predominant role of central command. Am J Physiol Heart Circ Physiol 2006; 292:H121-9. [PMID: 16980340 DOI: 10.1152/ajpheart.00028.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiovascular adaptation at the onset of voluntary static exercise is controlled by the autonomic nervous system. Two neural mechanisms are responsible for the cardiovascular adaptation: one is central command descending from higher brain centers, and the other is a muscle mechanosensitive reflex from activation of mechanoreceptors in the contracting muscles. To examine which mechanism played a major role in producing the initial cardiovascular adaptation during static exercise, we studied the effect of intravenous administration of gadolinium (55 micromol/kg), a blocker of stretch-activated ion channels, on the increases in heart rate (HR) and mean arterial blood pressure (MAP) at the onset of voluntary static exercise (pressing a bar with a forelimb) in conscious cats. HR increased by 31 +/- 5 beats/min and MAP increased by 15 +/- 1 mmHg at the onset of voluntary static exercise. Gadolinium affected neither the baseline values nor the initial increases of HR and MAP at the onset of exercise, although the peak force applied to the bar tended to decrease to 65% of the control value before gadolinium. Furthermore, we examined the effect of gadolinium on the reflex responses in HR and MAP (18 +/- 7 beats/min and 30 +/- 6 mmHg, respectively) during passive mechanical stretch of a forelimb or hindlimb in anesthetized cats. Gadolinium significantly blunted the passive stretch-induced increases in HR and MAP, suggesting that gadolinium blocks the stretch-activated ion channels and thereby attenuates the reflex cardiovascular responses to passive mechanical stretch of a limb. We conclude that the initial cardiovascular adaptation at the onset of voluntary static exercise is predominantly induced by feedforward control of central command descending from higher brain centers but not by a muscle mechanoreflex.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Dept. of Physiology, Graduate School of Health Sciences, Hiroshima Univ., Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | |
Collapse
|
39
|
Billman GE. Heart rate response to onset of exercise: evidence for enhanced cardiac sympathetic activity in animals susceptible to ventricular fibrillation. Am J Physiol Heart Circ Physiol 2006; 291:H429-35. [PMID: 16501028 DOI: 10.1152/ajpheart.00020.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large heart rate (HR) increase at the onset of exercise has been linked to an increased risk for adverse cardiovascular events, including cardiac death. However, the relationship between changes in cardiac autonomic regulation induced by exercise onset and the confirmed susceptibility to ventricular fibrillation (VF) has not been established. Therefore, a retrospective analysis of the HR response to exercise onset was made in mongrel dogs with healed myocardial infarctions that were either susceptible (S, n = 131) or resistant (R, n = 114) to VF (induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise). The ECG was recorded, and time series analysis of HR variability (vagal activity index, the 0.24-1.04-Hz frequency component of R-R interval variability) was measured before and 30, 60, and 120 s after the onset of exercise (treadmill running). Exercise elicited significantly (ANOVA, P < 0.0001) greater increases in HR in susceptible dogs at all three times (e.g., at 60 s: R, 46.8 +/- 2.3 vs. S, 57.1 +/- 2.2 beats/min). However, the vagal activity index decreased to a similar extent in both groups of dogs (at 60 s: R, -2.8 +/- 0.1 vs. S, -3.0 +/- 0.2 ln ms2). Beta-adrenoceptor blockade (BB, propranolol 1.0 mg/kg iv) reduced the HR increase and eliminated the differences noted between the groups [at 60 s: R (n = 26), 40.4 +/- 3.2 vs. S (n = 31), 37.5 +/- 2.4 beats/min]. After BB, exercise once again elicited similar declines in vagal activity in both groups (at 60 s: R, -3.6 +/- 0.5 vs. S, -3.2 +/- 0.4 ln ms2). When considered together, these data suggest that at the onset of exercise HR increases to a greater extent in animals prone to VF compared with dogs resistant to this malignant arrhythmia due to an enhanced cardiac sympathetic activation in the susceptible dogs.
Collapse
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210-1218, USA.
| |
Collapse
|
40
|
Koba S, Yoshida T, Hayashi N. Differential sympathetic outflow and vasoconstriction responses at kidney and skeletal muscles during fictive locomotion. Am J Physiol Heart Circ Physiol 2006; 290:H861-8. [PMID: 16143651 DOI: 10.1152/ajpheart.00640.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared sympathetic and circulatory responses between kidney and skeletal muscles during fictive locomotion evoked by electrical stimulation of the mesencephalic locomotor region (MLR) in decerebrate and paralyzed rats ( n = 8). Stimulation of the MLR for 30 s at 40-μA current intensity significantly increased arterial pressure (+38 ± 6 mmHg), triceps surae muscle blood flow (+17 ± 3%), and both renal and lumbar sympathetic nerve activities (RSNA +113 ± 16%, LSNA +31 ± 7%). The stimulation also significantly decreased renal cortical blood flow (−18 ± 6%) and both renal cortical and triceps surae muscle vascular conductances (RCVC −38 ± 5%, TSMVC −17 ± 3%). The sympathetic and vascular conductance changes were significantly dependent on current intensity for stimulation at 20, 30, and 40 μA. The changes in LSNA and TSMVC were significantly less than those in RSNA and RCVC, respectively, at all current intensities. At the early stage of stimulation (0–10 s), decreases in RCVC and TSMVC were significantly correlated with increases in RSNA and LSNA, respectively. These data demonstrate that fictive locomotion induces less vasoconstriction in skeletal muscles than in kidney because of less sympathetic activation. This suggests that a neural mechanism mediated by central command contributes to blood flow distribution by evoking differential sympathetic outflow during exercise.
Collapse
Affiliation(s)
- Satoshi Koba
- Graduate School of Engineering Science, Osaka Univesity, Toyonaka, Japan
| | | | | |
Collapse
|
41
|
Matsukawa K, Komine H, Nakamoto T, Murata J. Central command blunts sensitivity of arterial baroreceptor-heart rate reflex at onset of voluntary static exercise. Am J Physiol Heart Circ Physiol 2006; 290:H200-8. [PMID: 16113070 DOI: 10.1152/ajpheart.00013.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have reported that baroreflex bradycardia by stimulation of the aortic depressor nerve is blunted at the onset of voluntary static exercise in conscious cats. Central command may contribute to the blunted bradycardia, because the most blunted bradycardia occurs immediately before exercise or when a forelimb is extended before force development. However, it remained unknown whether the blunted bradycardia is due to either reduced sensitivity of the baroreflex stimulus-response curve or resetting of the curve toward a higher blood pressure. To determine this, we examined the stimulus-response relationship between systolic (SAP) or mean arterial pressure (MAP) and heart rate (HR) at the onset of and during the later period of static exercise in seven cats ( n = 348 trials) by changing arterial pressure with infusion of nitroprusside and phenylephrine or norepinephrine. The slope of the MAP-HR curve decreased at the onset of exercise to 48% of the preexercise value (2.9 ± 0.4 beats·min−1·mmHg−1); the slope of the SAP-HR curve decreased to 59%. The threshold blood pressures of the stimulus-response curves, at which HR started to fall due to arterial baroreflex, were not affected. In contrast, the slopes of the stimulus-response curves during the later period of exercise returned near the preexercise levels, whereas the threshold blood pressures elevated 6–8 mmHg. The maximal plateau level of HR was not different before and during static exercise, denying an upward shift of the baroreflex stimulus-response curves. Thus central command is likely to attenuate sensitivity of the cardiac component of arterial baroreflex at the onset of voluntary static exercise without shifting the stimulus-response curve.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Dept. of Physiology, Graduate School of Health Sciences, Hiroshima Univ., Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | |
Collapse
|
42
|
Nakamoto T, Matsukawa K, Murata J, Komine H. Beat-to-Beat Modulation of Atrioventricular Conduction during Dynamic Exercise in Humans. ACTA ACUST UNITED AC 2005; 55:37-51. [PMID: 15796788 DOI: 10.2170/jjphysiol.r2089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A complex balance between extrinsic neural and intrinsic mechanisms is responsible for regulating atrioventricular (AV) conduction. We hypothesized that atrial excitation interval is shortened during dynamic exercise by extrinsic cardiac autonomic activity and that if AV conduction time responds inversely to fluctuation in atrial rhythm, ventricular excitation interval will be maintained at the predetermined cardiac cycle length. To examine such inverse relationship between PP interval and the subsequent change in PR interval (DeltaPR), we analyzed the beat-to-beat changes in PP, PR, and RR intervals during stair-stepping exercise for 10 min in 11 sedentary and 9 trained subjects. In the sedentary group, the average PR interval significantly shortened during exercise, in parallel with the reduction in the average PP and RR intervals. The variance of PP and RR intervals was also significantly decreased during exercise. The reduction in the variance of RR interval was, however, much greater than that of PP interval, implying that AV conduction time changes inversely to fluctuation in atrial excitation rhythm. Indeed, the variance of PR interval was augmented during exercise and there was a clear inverse relationship between PP and DeltaPR intervals. Although trained subjects were characterized by their lower heart rate response during dynamic exercise, the responses in the variability of PP, PR, and RR intervals were fundamentally identical with those in sedentary subjects. We conclude that the AV nodal mechanism that operates at a higher level of heart rate during dynamic exercise may cancel fluctuation in atrial excitation interval and keep ventricular excitation rhythm at the predetermined cardiac cycle length.
Collapse
Affiliation(s)
- Tomoko Nakamoto
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Minami-ku, Hiroshima, 734-8551 Japan
| | | | | | | |
Collapse
|
43
|
Murata J, Matsukawa K, Komine H, Tsuchimochi H, Nakamoto T. Central inhibition of the aortic baroreceptors-heart rate reflex at the onset of spontaneous muscle contraction. J Appl Physiol (1985) 2004; 97:1371-8. [PMID: 15180975 DOI: 10.1152/japplphysiol.00307.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals decerebrated at the precollicular-premammillary body level exhibit spontaneous locomotion without any artificial stimulation. Our laboratory reported that the cardiovascular and autonomic responses at the onset of spontaneous locomotor events are evoked by central command, generated from the caudal diencephalon and the brain stem (Matsukawa K, Murata J, and Wada T. Am J Physiol Heart Circ Physiol 275: H1115–H1121, 1998). In this study, we examined whether central command and/or a reflex resulting from muscle afferents modulates arterial baroreflex function using a decerebrate cat model. The baroreflex was evoked by stimulating the aortic depressor nerve (ADN) at the onset of spontaneous muscle contraction (to test the possible influence of central command) and during electrically evoked contraction or passive stretch (to test the possible influence of the muscle reflex). When the ADN was stimulated at rest, heart rate and arterial blood pressure decreased by 40 ± 2 beats/min and 11 ± 1 mmHg, respectively. The baroreflex bradycardia was attenuated to 55 ± 4% at the onset of spontaneous contraction. The attenuating effect on the baroreflex bradycardia was not observed at the onset and middle of electrically evoked contraction or passive stretch. The depressor response to ADN stimulation was identical among resting and any muscle interventions. The inhibition of the baroreflex bradycardia during spontaneous contraction was seen after β-adrenergic blockade but abolished by muscarinic blockade, suggesting that the bradycardia is mainly evoked through cardiac vagal outflow. We conclude that central command, produced within the caudal diencephalon and the brain stem, selectively inhibits the cardiac component, but not the vasomotor component, of the aortic baroreflex at the onset of spontaneous exercise.
Collapse
Affiliation(s)
- Jun Murata
- Dept. of Physiology, Graduate School of Health Sciences, Hiroshima Univ., Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 Japan
| | | | | | | | | |
Collapse
|
44
|
Takahashi M, Sakaguchi A, Matsukawa K, Komine H, Kawaguchi K, Onari K. Cardiovascular control during voluntary static exercise in humans with tetraplegia. J Appl Physiol (1985) 2004; 97:2077-82. [PMID: 15310746 DOI: 10.1152/japplphysiol.00546.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was 1) to investigate whether an increase in heart rate (HR) at the onset of voluntary static arm exercise in tetraplegic subjects was similar to that of normal subjects and 2) to identify how the cardiovascular adaptation during static exercise was disturbed by sympathetic decentralization. Mean arterial blood pressure (MAP) and HR were noninvasively recorded during static arm exercise at 35% of maximal voluntary contraction in six tetraplegic subjects who had complete cervical spinal cord injury (C(6)-C(7)). Stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) were estimated by using a Modelflow method simulating aortic input impedance from arterial blood pressure waveform. In tetraplegic subjects, the increase in HR at the onset of static exercise was blunted compared with age-matched control subjects, whereas the peak increase in HR at the end of exercise was similar between the two groups. CO increased during exercise with no or slight decrease in SV. MAP increased approximately one-third above the control pressor response but TPR did not rise at all throughout static exercise, indicating that the slight pressor response is determined by the increase in CO. We conclude that the cardiovascular adaptation during voluntary static arm exercise in tetraplegic subjects is mainly accomplished by increasing cardiac pump output according to the tachycardia, which is controlled by cardiac vagal outflow, and that sympathetic decentralization causes both absent peripheral vasoconstriction and a decreased capacity to increase HR, especially at the onset of exercise.
Collapse
Affiliation(s)
- Makoto Takahashi
- Department of Sports Medicine, Graduate School of Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Komine H, Matsukawa K, Tsuchimochi H, Murata J. Central command blunts the baroreflex bradycardia to aortic nerve stimulation at the onset of voluntary static exercise in cats. Am J Physiol Heart Circ Physiol 2003; 285:H516-26. [PMID: 12860562 DOI: 10.1152/ajpheart.00013.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine whether the central characteristics of the aortic baroreflex alter from moment to moment during static exercise, we identified the dynamic changes in the sizes of the bradycardia and depressor response evoked by stimulation of the aortic depressor nerve (ADN). Three conscious cats were trained to voluntarily extend the right forelimb and press a bar for 31 +/- 1 s with a peak force of 337 +/- 22 g while maintaining a sitting posture. The ADN stimulation-induced bradycardia was attenuated at the initial period of exercise (up to 8 s from the exercise onset) to 62 +/- 5% of the preexercise bradycardia and remained blunted until the end of exercise. The most blunted bradycardia was observed immediately before or when the forelimb was extended before force development. The baroreflex-induced bradycardia was suppressed again at cessation of exercise when the forelimb was retracted and recovered within a few seconds. In contrast, static exercise did not affect the ADN stimulation-induced depressor response. The ADN stimulation-induced bradycardia was also blunted at the beginning of naturally occurring body movement such as spontaneous postural change or grooming behavior. Thus it is likely that the central characteristics of the aortic baroreflex dynamically change from moment to moment during voluntary static exercise and during natural body movement and that particularly a central inhibition of the cardiac component of the aortic baroreflex is induced by central command at the onset of static exercise, whereas the central property of the vasomotor component of the baroreflex is preserved.
Collapse
Affiliation(s)
- Hidehiko Komine
- Dept. of Physiology, Institute of Health Sciences, Hiroshima University Faculty of Medicine, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
46
|
Matsukawa K, Komine H, Tsuchimochi H, Murata J, Yonezawa Y, Kondo K, Seki Y. Implantable microelectrodes with new electro-conductive materials for recording sympathetic neural discharge. THE JAPANESE JOURNAL OF PHYSIOLOGY 2003; 53:61-4. [PMID: 12689359 DOI: 10.2170/jjphysiol.53.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
We have developed two new types of bipolar cuff microelectrodes (volume size, 2-3 mm(3)) using electro-conductive rubber or water-absorbent polymer, either of which can be applied to measure sympathetic nerve activity in small animals. A renal nerve bundle of an anesthetized rat was inserted into the center hole of the electrode (diameter, 0.15 mm) through a slit and had good contact with the electrodes. Renal sympathetic nerve activity, which was verified by sympathetic ganglionic blockade, could be recorded using either type of implantable cuff electrode.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Physiology, Institute of Health Sciences, Hiroshima University Faculty of Medicine, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551 Japan.
| | | | | | | | | | | | | |
Collapse
|