1
|
Degrush E, Shazeeb MS, Drachman D, Vardar Z, Lindsay C, Gounis MJ, Henninger N. Cumulative effect of simvastatin, L-arginine, and tetrahydrobiopterin on cerebral blood flow and cognitive function in Alzheimer's disease. Alzheimers Res Ther 2022; 14:134. [PMID: 36115980 PMCID: PMC9482313 DOI: 10.1186/s13195-022-01076-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Vascular disease is a known risk factor for Alzheimer's disease (AD). Endothelial dysfunction has been linked to reduced cerebral blood flow. Endothelial nitric oxide synthase pathway (eNOS) upregulation is known to support endothelial health. This single-center, proof-of-concept study tested whether the use of three medications known to augment the eNOS pathway activity improves cognition and cerebral blood flow (CBF). METHODS Subjects with mild AD or mild cognitive impairment (MCI) were sequentially treated with the HMG-CoA reductase synthesis inhibitor simvastatin (weeks 0-16), L-arginine (weeks 4-16), and tetrahydrobiopterin (weeks 8-16). The primary outcome of interest was the change in CBF as measured by MRI from baseline to week 16. Secondary outcomes included standard assessments of cognition. RESULTS A total of 11 subjects were deemed eligible and enrolled. One subject withdrew from the study after enrollment, leaving 10 subjects for data analysis. There was a significant increase in CBF from baseline to week 8 by ~13% in the limbic and ~15% in the cerebral cortex. Secondary outcomes indicated a modest but significant increase in the MMSE from baseline (24.2±3.2) to week 16 (26.0±2.7). Exploratory analysis indicated that subjects with cognitive improvement (reduction of the ADAS-cog 13) had a significant increase in their respective limbic and cortical CBF. CONCLUSIONS Treatment of mild AD/MCI subjects with medications shown to augment the eNOS pathway was well tolerated and associated with modestly increased cerebral blood flow and cognitive improvement. TRIAL REGISTRATION This study is registered in https://www. CLINICALTRIALS gov ; registration identifier: NCT01439555; date of registration submitted to registry: 09/23/2011; date of first subject enrollment: 11/2011.
Collapse
Affiliation(s)
- Elizabeth Degrush
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
| | - Mohammed Salman Shazeeb
- Image Processing and Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David Drachman
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Zeynep Vardar
- Image Processing and Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Clifford Lindsay
- Image Processing and Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Matthew J Gounis
- Image Processing and Analysis Core (iPAC), Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| |
Collapse
|
2
|
Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 2022; 12:5015-5033. [PMID: 35836800 PMCID: PMC9274744 DOI: 10.7150/thno.74785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral artery disease (PAD) poses a great challenge to society, with a growing prevalence in the upcoming years. Patients in the severe stages of PAD are prone to amputation and death, leading to poor quality of life and a great socioeconomic burden. Furthermore, PAD is one of the major complications of diabetic patients, who have higher risk to develop critical limb ischemia, the most severe manifestation of PAD, and thus have a poor prognosis. Hence, there is an urgent need to develop an effective therapeutic strategy to treat this disease. Therapeutic angiogenesis has raised concerns for more than two decades as a potential strategy for treating PAD, especially in patients without option for surgery-based therapies. Since the discovery of gene-based therapy for therapeutic angiogenesis, several approaches have been developed, including cell-, protein-, and small molecule drug-based therapeutic strategies, some of which have progressed into the clinical trial phase. Despite its promising potential, efforts are still needed to improve the efficacy of this strategy, reduce its cost, and promote its worldwide application. In this review, we highlight the current progress of therapeutic angiogenesis and the issues that need to be overcome prior to its clinical application.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| |
Collapse
|
3
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|
4
|
Mercier C, Rousseau M, Geraldes P. Growth Factor Deregulation and Emerging Role of Phosphatases in Diabetic Peripheral Artery Disease. Front Cardiovasc Med 2021; 7:619612. [PMID: 33490120 PMCID: PMC7817696 DOI: 10.3389/fcvm.2020.619612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 01/25/2023] Open
Abstract
Peripheral artery disease is caused by atherosclerosis of lower extremity arteries leading to the loss of blood perfusion and subsequent critical ischemia. The presence of diabetes mellitus is an important risk factor that greatly increases the incidence, the progression and the severity of the disease. In addition to accelerated disease progression, diabetic patients are also more susceptible to develop serious impairment of their walking abilities through an increased risk of lower limb amputation. Hyperglycemia is known to alter the physiological development of collateral arteries in response to ischemia. Deregulation in the production of several critical pro-angiogenic factors has been reported in diabetes along with vascular cell unresponsiveness in initiating angiogenic processes. Among the multiple molecular mechanisms involved in the angiogenic response, protein tyrosine phosphatases are potent regulators by dephosphorylating pro-angiogenic tyrosine kinase receptors. However, evidence has indicated that diabetes-induced deregulation of phosphatases contributes to the progression of several micro and macrovascular complications. This review provides an overview of growth factor alterations in the context of diabetes and peripheral artery disease, as well as a description of the role of phosphatases in the regulation of angiogenic pathways followed by an analysis of the effects of hyperglycemia on the modulation of protein tyrosine phosphatase expression and activity. Knowledge of the role of phosphatases in diabetic peripheral artery disease will help the development of future therapeutics to locally regulate phosphatases and improve angiogenesis.
Collapse
Affiliation(s)
- Clément Mercier
- Department of Medicine, Division of Endocrinology, Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marina Rousseau
- Department of Medicine, Division of Endocrinology, Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Geraldes
- Department of Medicine, Division of Endocrinology, Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Bahrambeigi S, Rahimi M, Yousefi B, Shafiei-Irannejad V. New potentials for 3-hydroxy-3-methyl-glutaryl-coenzymeA reductase inhibitors: Possible applications in retarding diabetic complications. J Cell Physiol 2019; 234:19393-19405. [PMID: 31004363 DOI: 10.1002/jcp.28682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of diabetes mellitus is increasing all over the world and it is apparent that treatment of diabetic complications has the same importance as primary diabetes treatment and glycemic control. Diabetic complications occur as a result of prolonged hyperglycemia and its consequences, such as advanced glycation end products and reactive oxygen species. Impairment of lipid profile is also contributed to worsening diabetic complications. Therefore, it seems that the application of lipid-lowering agents may have positive effects on reversing diabetic complications besides glycemic control. Statins, a group of lipid-lowering compounds, have been shown to exert antioxidant, immunomodulatory, anti-inflammatory, and antiproliferative properties beyond their lipid-lowering effects. Furthermore, they have been reported to improve diabetic complications with different pathways. In this review, we will discuss the clinical importance, molecular biology of the most important microvascular/macrovascular diabetic complications, possible application of statins and their mechanism of action in retarding these complications.
Collapse
Affiliation(s)
- Saman Bahrambeigi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Rahimi
- Ageing Research Institute, Physical Medicine and Rehabilitation Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Ageing Research Institute, Physical Medicine and Rehabilitation Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Sadati SM, Radfar M, Hamidi AK, Abdollahi M, Qorbani M, Esfahani EN, Amoli MM. Association Between the Polymorphism of Glu298Asp in Exon 7 of the eNOS Gene With Foot Ulcer and Oxidative Stress in Adult Patients With Type 2 Diabetes. Can J Diabetes 2017; 42:18-22. [PMID: 28499789 DOI: 10.1016/j.jcjd.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/15/2017] [Accepted: 03/01/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Diabetic foot ulcer (DFU) is a common and major manifestation in patients with diabetes. Oxidative stress (OS) plays an important role in diabetic complications, such as DFU. Nitric oxide deficiency contributes to the impairment of diabetic wound healing. The aim of this study was to examine the association between the eNOS Glu298Asp polymorphism and DFU and oxidative stress in patients with type 2 diabetes mellitus in an Iranian population. METHODS In this case-control study, 123 patients with type 2 diabetes and DFU and 134 patients without DFU were recruited. The genotypes of eNOS Glu298Asp polymorphism in exon 7 were determined by the polymerase chain reaction-restriction fragment length polymorphism analysis. We measured the levels of thiobarbituric reactive substances and ferric-reducing ability of plasma as the potential markers of OS. RESULTS There were significant differences in genotype frequencies of eNOS Glu298Asp polymorphism between case and control groups (GG+TG vs. TT; p=0.002; OR=0.22, 95% CI 0.83 to 0.62). Also, the frequency of the T allele in cases was less common than in controls (p=0.004). There was no significant difference in levels of OS parameters and various genotypes (p>0.05). CONCLUSIONS These results imply that the T allele might be protective against DFU.
Collapse
Affiliation(s)
- Seyedeh Maryam Sadati
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mania Radfar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Endocriology and Metabolism Research Center, Edocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Armita Kakavand Hamidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sommese L, Zullo A, Mancini FP, Fabbricini R, Soricelli A, Napoli C. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics 2017; 12:401-415. [PMID: 28059593 DOI: 10.1080/15592294.2016.1278097] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetics is involved in the altered expression of gene networks that underlie insulin resistance and insufficiency. Major genes controlling β-cell differentiation and function, such as PAX4, PDX1, and GLP1 receptor, are epigenetically controlled. Epigenetics can cause insulin resistance through immunomediated pro-inflammatory actions related to several factors, such as NF-kB, osteopontin, and Toll-like receptors. Hereafter, we provide a critical and comprehensive summary on this topic with a particular emphasis on translational and clinical aspects. We discuss the effect of epigenetics on β-cell regeneration for cell replacement therapy, the emerging bioinformatics approaches for analyzing the epigenetic contribution to type 2 diabetes mellitus (T2DM), the epigenetic core of the transgenerational inheritance hypothesis in T2DM, and the epigenetic clinical trials on T2DM. Therefore, prevention or reversion of the epigenetic changes occurring during T2DM development may reduce the individual and societal burden of the disease.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,b Department of Experimental Medicine , Second University of Naples , Italy
| | - Alberto Zullo
- c Department of Sciences and Technologies , University of Sannio , Benevento , Italy.,d CEINGE-Advanced Biotechnologies , Naples , Italy
| | | | - Rossella Fabbricini
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy
| | - Andrea Soricelli
- e IRCCS Research Institute SDN , Naples , Italy.,f Department of Studies of Institutions and Territorial Systems , University of Naples Parthenope , Naples , Italy
| | - Claudio Napoli
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,e IRCCS Research Institute SDN , Naples , Italy.,g Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , Second University of Naples , Italy
| |
Collapse
|
8
|
Puca AA, Spinetti G, Vono R, Vecchione C, Madeddu P. The genetics of exceptional longevity identifies new druggable targets for vascular protection and repair. Pharmacol Res 2016; 114:169-174. [PMID: 27818232 DOI: 10.1016/j.phrs.2016.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/15/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022]
Abstract
Therapeutic angiogenesis is a relatively new medical strategy in the field of cardiovascular diseases. The underpinning concept is that angiogenic growth factors or proangiogenic cells could be exploited therapeutically in cardiovascular patients to enhance native revascularization responses to an ischemic insult, thereby accelerating tissue healing. The initial enthusiasm generated by preclinical studies has been tempered by the modest success of clinical trials assessing therapeutic angiogenesis. Similarly, proangiogenic cell therapy has so far not maintained the original promises. Intriguingly, the current trend is to consider regeneration as a prerogative of the youngest organism. Consequentially, the embryonic and foetal models are attracting much attention for clinical translation into corrective modalities in the adulthood. Scientists seem to undervalue the lesson from Mother Nature, e.g. all humans are born young but very few achieve the goal of an exceptional healthy longevity. Either natural experimentation is driven by a supreme intelligence or stochastic phenomena, one has to accept the evidence that healthy longevity is the fruit of an evolutionary process lasting million years. It is therefore extremely likely that results of this natural experimentation are more reliable and translatable than the intensive, but very short human investigation on mechanisms governing repair and regeneration. With this preamble in mind, here we propose to shift the focus from the very beginning to the very end of human life and thus capture the secret of prolonged health span to improve well-being in the adulthood.
Collapse
Affiliation(s)
- Annibale A Puca
- IRCCS MultiMedica, Milan, Italy; University of Salerno, Salerno, Italy
| | | | | | - Carmine Vecchione
- University of Salerno, Salerno, Italy; IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
9
|
In situ eNOS/NO up-regulation-a simple and effective therapeutic strategy for diabetic skin ulcer. Sci Rep 2016; 6:30326. [PMID: 27453476 PMCID: PMC4958962 DOI: 10.1038/srep30326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/04/2016] [Indexed: 01/04/2023] Open
Abstract
Decreased nitric oxide (NO) synthesis and increased NO consumption in diabetes induces the inadequate blood flow to tissues that is primarily responsible for the pathogenesis and refractoriness of diabetic skin ulcers. The present study proposed a simple and effective therapeutic strategy for diabetic skin ulcers—in situ up-regulation of endothelial nitric oxide synthase (eNOS) expression and NO synthesis by statin-loaded tissue engineering scaffold (TES). In vitro experiments on human umbilical vein endothelial cells indicated that the statin-loaded TES relieved the high-glucose induced decrease in cell viability and promoted NO synthesis under high-glucose conditions. In a rat model of diabetes, the statin-loaded TES promoted eNOS expression and NO synthesis in/around the regenerated tissues. Subsequently, accelerated vascularization and elevated blood supply were observed, followed by rapid wound healing. These findings suggest that the in situ up-regulation of eNOS/NO by a statin-loaded TES may be a useful therapeutic method for intractable diabetic skin wounds.
Collapse
|
10
|
Raposio E, Libondi G, Bertozzi N, Grignaffini E, Grieco MP. Effects of Topic Simvastatin for the Treatment of Chronic Vascular Cutaneous Ulcers: A Pilot Study. J Am Coll Clin Wound Spec 2016; 7:13-18. [PMID: 28053863 DOI: 10.1016/j.jccw.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Recent research suggests that statins might be useful in the process of wound healing, playing a positive immune-modulatory role, improving microvascular function and reducing oxidative stress. The aim of this pilot study was to evaluate the efficacy of topic application of Simvastatin-based cream in the treatment of chronic vascular cutaneous ulcers, comparing this type of treatment to a collagen-based dressing, proven to be effective for ulcer treatment. A total of 20 ulcers were studied in 2 Groups of randomly-chosen patients for a period of one month. In the first Group a 0.5% Simvastatin-based cream was topically administered, while the second Group (control) was treated with an absorbable type I bovine collagen-based medication. Each week, wound healing progress was observed in both Groups, and the ulcers photographed. Wound healing rate was calculated by considering the absolute change in area and by the formula "healing ratio (%) = [(Area0 - Areat4)/Area0] × 100," both sets of data being related to the days comprised in the study in order to calculate healing rate per day. Statistical analysis was performed by Student t test. Study endpoint equaling the time-course changes of ulcer areas. At the end of the study, when considering absolute change in area, the experimental Group appeared to heal better and faster than the control Group although differences between the Groups were not statistically significant. Conversely, rates of wound healing in the experimental and control Groups were 46.88% and 64% respectively, revealing statistically significant differences. (P < 0.05). In conclusion, topic application of a simvastatin-based cream proved to be well- tolerated but not effective in the management of vascular leg ulcers in a 4 week-period.
Collapse
Affiliation(s)
- Edoardo Raposio
- Department of Surgical Sciences, Plastic Surgeon Division, University of Parma, Parma, Italy; Cutaneous, Mini-invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Guido Libondi
- Department of Surgical Sciences, Plastic Surgeon Division, University of Parma, Parma, Italy; Cutaneous, Mini-invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Nicolò Bertozzi
- Department of Surgical Sciences, Plastic Surgeon Division, University of Parma, Parma, Italy; Cutaneous, Mini-invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Eugenio Grignaffini
- Department of Surgical Sciences, Plastic Surgeon Division, University of Parma, Parma, Italy; Cutaneous, Mini-invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Michele P Grieco
- Department of Surgical Sciences, Plastic Surgeon Division, University of Parma, Parma, Italy; Cutaneous, Mini-invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| |
Collapse
|
11
|
Filippatos TD, Elisaf MS. Pitavastatin and carbohydrate metabolism: what is the evidence? Expert Rev Clin Pharmacol 2016; 9:955-60. [DOI: 10.1586/17512433.2016.1165607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- T. D. Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
12
|
Goodman CA, Pol D, Zacharewicz E, Lee-Young RS, Snow RJ, Russell AP, McConell GK. Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content. PLoS One 2015; 10:e0128398. [PMID: 26020641 PMCID: PMC4447258 DOI: 10.1371/journal.pone.0128398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg-1·day-1) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles.
Collapse
Affiliation(s)
- Craig A. Goodman
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Sport, Exercise and Active Living and the College of Health and Biomedicine, Victoria University, Victoria, Australia
- * E-mail:
| | - Derk Pol
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Evelyn Zacharewicz
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Robert S. Lee-Young
- Cellular and Molecular Metabolism Laboratory, Division of Metabolism and Obesity, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rod J. Snow
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Aaron P. Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Glenn K. McConell
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Sport, Exercise and Active Living and the College of Health and Biomedicine, Victoria University, Victoria, Australia
| |
Collapse
|
13
|
Moore SM, Zhang H, Maeda N, Doerschuk CM, Faber JE. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury. Angiogenesis 2015; 18:265-81. [PMID: 25862671 DOI: 10.1007/s10456-015-9465-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
RATIONALE Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. OBJECTIVE We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. METHODS AND RESULTS Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. CONCLUSION Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.
Collapse
Affiliation(s)
- Scott M Moore
- Department of Cell Biology and Physiology, 6309 MBRB, University of North Carolina, Chapel Hill, NC, 27599-7545, USA
| | | | | | | | | |
Collapse
|
14
|
Kim SS, Patel M, Yum K, Keyzner A. Hematopoietic stem cell transplant-associated thrombotic microangiopathy: review of pharmacologic treatment options. Transfusion 2014; 55:452-8. [PMID: 25209960 DOI: 10.1111/trf.12859] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/18/2014] [Accepted: 07/24/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Sara S. Kim
- Department of Pharmacy; The Mount Sinai Hospital; New York New York
| | - Monank Patel
- Department of Pharmacy; West Penn Hospital; Allegheny Health Network; Pittsburgh Pennsylvania
| | - Kendra Yum
- Department of Pharmacy; The Mount Sinai Hospital; New York New York
| | - Alla Keyzner
- Blood and Marrow Transplantation Program; Division of Hematology/Oncology; The Mount Sinai Hospital; New York New York
| |
Collapse
|
15
|
Stojadinovic O, Lebrun E, Pastar I, Kirsner R, Davis SC, Tomic-Canic M. Statins as potential therapeutic agents for healing disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.10.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Hernández-Ojeda J, Román-Pintos LM, Rodríguez-Carrízalez AD, Troyo-Sanromán R, Cardona-Muñoz EG, Alatorre-Carranza MDP, Miranda-Díaz AG. Effect of rosuvastatin on diabetic polyneuropathy: a randomized, double-blind, placebo-controlled Phase IIa study. Diabetes Metab Syndr Obes 2014; 7:401-7. [PMID: 25214797 PMCID: PMC4159311 DOI: 10.2147/dmso.s65500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diabetic neuropathy affects 50%-66% of patients with diabetes mellitus. Oxidative stress generates nerve dysfunction by causing segmental demyelinization and axonal degeneration. Antioxidants are considered to be the only etiologic management for diabetic polyneuropathy, and statins such as rosuvastatin increase nitric oxide bioavailability and reduce lipid peroxidation. The aim of this study was to evaluate the antioxidant effect of rosuvastatin in diabetic polyneuropathy. METHODS We conducted a randomized, double-blind, placebo-controlled Phase IIa clinical trial in patients with type 2 diabetes and diabetic polyneuropathy (DPN) stage ≥1b. We allocated subjects to two parallel groups (1:1) that received rosuvastatin 20 mg or placebo for 12 weeks. Primary outcomes were neuropathic symptom score, disability score, and nerve conduction studies, and secondary outcomes were glycemic control, lipid and hepatic profile, lipid peroxidation, and nerve growth factor beta (NGF-β) levels. RESULTS Both groups were of similar age and duration since diagnosis of diabetes and DPN. We observed improvement of DPN in the rosuvastatin group from stage 2a (88.2%) to stage 1b (41.2%), improvement of neuropathic symptom score from 4.5±2 to 2.4±1.8, and significant (P=0.001) reductions of peroneal nerve conduction velocity (from 40.8±2.2 to 42.1±1.6 seconds) and lipid peroxidation (from 25.4±2 to 12.2±4.0 nmol/mL), with no significant change in glycemic control or β-NGF. CONCLUSION The severity, symptoms, and nerve conduction parameters of DPN improved after 12 weeks of treatment with rosuvastatin. These beneficial effects appear to be attributable to reductions in lipid peroxidation and oxidative stress.
Collapse
Affiliation(s)
- Jaime Hernández-Ojeda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Luis Miguel Román-Pintos
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Rogelio Troyo-Sanromán
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Ernesto Germán Cardona-Muñoz
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Alejandra Guillermina Miranda-Díaz
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
- Correspondence: Alejandra Guillermina Miranda-Díaz, Instituto de Terapéutica Experimental y Clínica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Av La Paz No 2758, Col Arcos Sur, CP 44150, Guadalajara, Jalisco, México, Tel +52 33 1058 5200 ext 33658, Fax +52 33 3617 3499, Email
| |
Collapse
|
17
|
Uesawa M, Muroi K, Ozawa K. Plasmapheresis-Refractory Transplantation-Associated Thrombotic Microangiopathy Successfully Treated With Pravastatin and Limaprost Alfadex. Ther Apher Dial 2013; 17:462-3. [DOI: 10.1111/1744-9987.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mitsuyo Uesawa
- Division of Cell Therapy; Jichi Medical University Hospital; Tochigi; Japan
| | - Kazuo Muroi
- Division of Cell Therapy; Jichi Medical University Hospital; Tochigi; Japan
| | - Keiya Ozawa
- Division of Cell Therapy; Jichi Medical University Hospital; Tochigi; Japan
| |
Collapse
|
18
|
Ishibashi Y, Yamagishi SI, Matsui T, Ohta K, Tanoue R, Takeuchi M, Ueda S, Nakamura KI, Okuda S. Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level. Metabolism 2012; 61:1067-72. [PMID: 22386936 DOI: 10.1016/j.metabol.2012.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 01/28/2023]
Abstract
Advanced glycation end products (AGEs) and their receptor (RAGE) axis play a role in diabetic nephropathy. Statins have been shown to ameliorate renal function and reduce proteinuria in patients with chronic kidney disease. However, the effects of statin on AGEs-induced tubular cell damage remain unknown. We examined here whether and how pravastatin could block the AGEs-RAGE-elicited tubular cell injury in vitro. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. Reactive oxygen species (ROS) generation was measured with dihydroethidium staining. Apoptosis was analyzed in an enzyme-linked immunosorbent assay. Asymmetric dimethylarginine (ADMA) expression was evaluated by immunostaining. Pravastatin dose-dependently inhibited the AGEs-induced up-regulation of RAGE mRNA level, ROS generation and apoptosis in human renal proximal tubular cells. Further, AGEs decreased mRNA level of dimethylarginine dimethylaminohydrolase-2, an enzyme that mainly degrades asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase and subsequently increased ADMA generation in tubular cells, both of which were also prevented by pravastatin. Geranylgeranyl pyrophosphate (GGPP) treatment blocked all of the effects of pravastatin on tubular cells. We found that rosuvastatin also significantly blocked the AGEs-induced increase in RAGE mRNA level and ROS generation, both of which were prevented by GGPP. Our present study suggests that pravastatin could inhibit the AGEs-induced apoptosis and ADMA generation in tubular cells by suppressing RAGE expression probably via inhibition of GGPP synthesis. Pravastatin may exert beneficial effects on tubular damage in diabetic nephropathy by blocking the AGEs-RAGE axis.
Collapse
MESH Headings
- Amidohydrolases/metabolism
- Apoptosis/drug effects
- Arginine/analogs & derivatives
- Arginine/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Fluorobenzenes/pharmacology
- Glycation End Products, Advanced/antagonists & inhibitors
- Glycation End Products, Advanced/metabolism
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Pravastatin/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rosuvastatin Calcium
- Sulfonamides/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Yuji Ishibashi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mangialardi G, Monopoli A, Ongini E, Spinetti G, Fortunato O, Emanueli C, Madeddu P. Nitric oxide-donating statin improves multiple functions of circulating angiogenic cells. Br J Pharmacol 2012; 164:570-83. [PMID: 21486281 DOI: 10.1111/j.1476-5381.2011.01423.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Statins, a major component of the prevention of cardiovascular disease, aid progenitor cell functions in vivo and in vitro. Statins bearing a NO-releasing moiety were developed for their enhanced anti-inflammatory/anti-thrombotic properties. Here, we investigated if the NO-donating atorvastatin (NCX 547) improved the functions of circulating angiogenic cells (CACs). EXPERIMENTAL APPROACH Circulating angiogenic cells (CACs) were prepared from peripheral blood monocytes of healthy volunteers and type-2 diabetic patients and were cultured in low (LG) or high glucose (HG) conditions, in presence of atorvastatin or NCX 547 (both at 0.1 µM) or vehicle. Functional assays (outgrowth, proliferation, viability, senescence and apoptosis) were performed in presence of the endothelial NOS inhibitor L-NIO, the NO scavenger c-PTIO or vehicle. KEY RESULTS Culturing in HG conditions lowered NO in CACs, inhibited outgrowth, proliferation, viability and migration, and induced cell senescence and apoptosis. NCX 547 fully restored NO levels and functions of HG-cultured CACs, while atorvastatin prevented only apoptosis in CACs. The activity of Akt, a pro-survival kinase, was increased by atorvastatin in LG-cultured but not in HG-cultured CACs, whereas NCX 547 increased Akt activity in both conditions. L-NIO partially blunted and c-PTIO prevented NCX 547-induced improvements in CAC functions. Finally, NCX 547 improved outgrowth and migration of CACs prepared from patients with type 2 diabetes. CONCLUSIONS AND IMPLICATIONS NCX 547 was more effective than atorvastatin in preserving functions of CACs. This property adds to the spectrum of favourable actions that would make NO-releasing statins more effective agents for treating cardiovascular disease.
Collapse
Affiliation(s)
- G Mangialardi
- Chair Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Ohsawa M, Aasato M, Hayashi SS, Kamei J. RhoA/Rho kinase pathway contributes to the pathogenesis of thermal hyperalgesia in diabetic mice. Pain 2010; 152:114-122. [PMID: 20980102 DOI: 10.1016/j.pain.2010.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 09/17/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022]
Abstract
Diabetic neuropathy is one of the most common complications of diabetes and causes various problems in daily life. Several investigations have noted that many factors in the spinal cord are involved in the symptoms of painful diabetic neuropathy, and there are very few effective therapeutic regimens. In the present study, we sought to elucidate the role of the RhoA/Rho kinase (ROCK) pathway in thermal hyperalgesia in diabetic mice. The intracellular localization of RhoA and the expression of eNOS were measured by western blotting. Thermal hyperalgesia was assessed by the tail-flick test and mechanical allodynia was assessed by automated von Frey filament test in streptozotocin(STZ)-induced diabetic mice. The spinal cord of STZ-treated diabetic mice showed increased membrane-bound RhoA compared to non-diabetic control. Treatment with the RhoA inhibitor exoenzyme C3, Clostridium botulinum, and the ROCK inhibitor Y27632 attenuated thermal hyperalgesia and mechanical allodynia in diabetic mice. Moreover, daily treatment with simvastatin attenuated all of those changes in diabetic mice. The expression of eNOS and NO metabolite contents in the spinal cord was decreased in diabetic mice, and these changes were normalized by treatment with simvastatin. The present results show that HMG-CoA reductase inhibitors have an inhibitory effect on thermal hyperalgesia in diabetic mice, which is mediated by an increase in NO production through the inhibition of RhoA/ROCK pathways. These results suggest that ROCK inhibitors and HMG-CoA inhibitors may be attractive compounds to relieve the symptoms of painful diabetic neuropathies.
Collapse
Affiliation(s)
- Masahiro Ohsawa
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-Chome, Shinagawa-Ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
21
|
Agrawal A, Mabalirajan U, Ahmad T, Ghosh B. Emerging interface between metabolic syndrome and asthma. Am J Respir Cell Mol Biol 2010; 44:270-5. [PMID: 20656947 DOI: 10.1165/rcmb.2010-0141tr] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is growing epidemiological evidence that obesity increases the risk of developing asthma. In some studies, insulin resistance or metabolic syndrome is a stronger risk factor than body mass. The obese-asthma subphenotype is marked by a paucity of inflammation but also by marked symptoms, poor response to glucocorticoids, and peripheral airway dysfunction. Although obesity may predispose to increased Th2 inflammation or atopic tendencies, other mechanisms that are independent of inflammatory cells need to be considered. There is growing evidence of the influence of hyperglycemia, hyperinsulinemia, and insulin-like growth factors on airway structure and function. Also, studies from mouse models of asthma have highlighted the importance of nitric oxide-arginine metabolism abnormalities and oxonitrosative stress in lungs. Such changes are well established features of the metabolic syndrome and may represent an interface between these diseases that can be therapeutically targeted. Such therapies, including administration of l-arginine or statins, increasing endothelial nitric oxide synthase, or the use of arginase inhibitors, have been successful in experimental models but have not yet translated to the clinical arena. We review the current understanding of the potential mechanistic links between obesity and asthma, emphasizing the potential influence of metabolic abnormalities on asthmatic processes, therapeutic implications, and expected challenges.
Collapse
Affiliation(s)
- Anurag Agrawal
- Centre for Translational Research in Asthma & Lung disease, Institute of Genomics & Integrative Biology, Delhi, India.
| | | | | | | |
Collapse
|
22
|
McGown CC, Brown NJ, Hellewell PG, Reilly CS, Brookes ZLS. Beneficial microvascular and anti-inflammatory effects of pravastatin during sepsis involve nitric oxide synthase III. Br J Anaesth 2010; 104:183-90. [PMID: 20086063 DOI: 10.1093/bja/aep361] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sepsis induces microvascular inflammation and production of the vasodilator nitric oxide (NO) via endothelial and inducible nitric oxide synthase (eNOS or NOS III and iNOS or NOS II). Statins are cholesterol-lowering drugs; however, they also attenuate inflammation. This study aimed to determine whether pravastatin protected against sepsis-induced hypotension, loss of vascular tone, and microvascular inflammation via NOS pathways. METHODS Male Wistar rats (n=18) were anaesthetized and the mesentery prepared for fluorescent intravital microscopy. Animals received either lipopolysaccharide (LPS; n=6); LPS+pravastatin (18 and 3 h before LPS; n=6), or saline as a control, for 4 h. RESULTS Mean arterial pressure decreased in LPS-treated animals (P<0.05), but not in those also receiving pravastatin. Acetylcholine-induced relaxation of venules was abolished by LPS but improved by pravastatin. Pravastatin also reduced the increase in nitrite concentration and macromolecular leak from venules induced by LPS (P<0.05). The increased leucocyte adhesion seen in LPS-treated rats was also reduced in those also treated with pravastatin. Immunohistochemical analysis showed that pravastatin increased endothelial cell expression of NOS III during sepsis, but had no effect on LPS-induced up-regulation of NOS II. CONCLUSIONS Pravastatin improved NOS III-mediated vessel relaxation and exerted anti-inflammatory effects within the microcirculation after LPS administration in rats. Pravastatin therefore appears to have beneficial effects during sepsis, as a result of increased microvascular expression and function of NOS III.
Collapse
Affiliation(s)
- C C McGown
- Microcirculation Research Group, Department of Cardiovascular Sciences, University of Sheffield, Faculty of Medicine, Dentistry and Health, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | | | | | |
Collapse
|
23
|
Abstract
The beneficial effects of statins, the most widely prescribed class of drugs in the world, are now recognized to extend well beyond their lipid-lowering properties. Through a combination of both distinct and interdependent effects on endothelial cell (EC) Rho GTPase regulation, NAPDH oxidase activity, NO bioavailability, and differential gene expression, statins confer significant protection of the vasculature. Abundant in vitro data, in addition to myriad reports relying on a range of animal models, now firmly support the idea that these drugs may serve as novel and effective therapeutic agents in a variety of disease states characterized by vascular dysfunction.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Section of Pulmonary and Critical Care Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|