1
|
Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A 2024; 121:e2405020121. [PMID: 39503885 PMCID: PMC11572969 DOI: 10.1073/pnas.2405020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/17/2024] [Indexed: 11/13/2024] Open
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
2
|
Solaro RJ, Goldspink PH, Wolska BM. Emerging Concepts of Mechanisms Controlling Cardiac Tension: Focus on Familial Dilated Cardiomyopathy (DCM) and Sarcomere-Directed Therapies. Biomedicines 2024; 12:999. [PMID: 38790961 PMCID: PMC11117855 DOI: 10.3390/biomedicines12050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Novel therapies for the treatment of familial dilated cardiomyopathy (DCM) are lacking. Shaping research directions to clinical needs is critical. Triggers for the progression of the disorder commonly occur due to specific gene variants that affect the production of sarcomeric/cytoskeletal proteins. Generally, these variants cause a decrease in tension by the myofilaments, resulting in signaling abnormalities within the micro-environment, which over time result in structural and functional maladaptations, leading to heart failure (HF). Current concepts support the hypothesis that the mutant sarcomere proteins induce a causal depression in the tension-time integral (TTI) of linear preparations of cardiac muscle. However, molecular mechanisms underlying tension generation particularly concerning mutant proteins and their impact on sarcomere molecular signaling are currently controversial. Thus, there is a need for clarification as to how mutant proteins affect sarcomere molecular signaling in the etiology and progression of DCM. A main topic in this controversy is the control of the number of tension-generating myosin heads reacting with the thin filament. One line of investigation proposes that this number is determined by changes in the ratio of myosin heads in a sequestered super-relaxed state (SRX) or in a disordered relaxed state (DRX) poised for force generation upon the Ca2+ activation of the thin filament. Contrasting evidence from nanometer-micrometer-scale X-ray diffraction in intact trabeculae indicates that the SRX/DRX states may have a lesser role. Instead, the proposal is that myosin heads are in a basal OFF state in relaxation then transfer to an ON state through a mechano-sensing mechanism induced during early thin filament activation and increasing thick filament strain. Recent evidence about the modulation of these mechanisms by protein phosphorylation has also introduced a need for reconsidering the control of tension. We discuss these mechanisms that lead to different ideas related to how tension is disturbed by levels of mutant sarcomere proteins linked to the expression of gene variants in the complex landscape of DCM. Resolving the various mechanisms and incorporating them into a unified concept is crucial for gaining a comprehensive understanding of DCM. This deeper understanding is not only important for diagnosis and treatment strategies with small molecules, but also for understanding the reciprocal signaling processes that occur between cardiac myocytes and their micro-environment. By unraveling these complexities, we can pave the way for improved therapeutic interventions for managing DCM.
Collapse
Affiliation(s)
- R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Beata M. Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Garg A, Jansen S, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.583979. [PMID: 38559046 PMCID: PMC10979883 DOI: 10.1101/2024.03.10.583979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine Johns Hopkins University Baltimore MD USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Solís C, Warren CM, Dittloff K, DiNello E, Solaro RJ, Russell B. Cardiomyocyte external mechanical unloading activates modifications of α-actinin differently from sarcomere-originated unloading. FEBS J 2023; 290:5322-5339. [PMID: 37551968 PMCID: PMC11285078 DOI: 10.1111/febs.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Loss of myocardial mass in a neonatal rat cardiomyocyte culture is studied to determine whether there is a distinguishable cellular response based on the origin of mechano-signals. The approach herein compares the sarcomeric assembly and disassembly processes in heart cells by imposing mechano-signals at the interface with the extracellular matrix (extrinsic) and at the level of the myofilaments (intrinsic). Experiments compared the effects of imposed internal (inside/out) and external (outside/in) loading and unloading on modifications in neonatal rat cardiomyocytes. Unloading of the cellular substrate by myosin inhibition (1 μm mavacamten), or cessation of cyclic strain (1 Hz, 10% strain) after preconditioning, led to significant disassembly of sarcomeric α-actinin by 6 h. In myosin inhibition, this was accompanied by redistribution of intracellular poly-ubiquitin K48 to the cellular periphery relative to the poly-ubiquitin K48 reservoir at the I-band. Moreover, loading and unloading of the cellular substrate led to a three-fold increase in post-translational modifications (PTMs) when compared to the myosin-specific activation or inhibition. Specifically, phosphorylation increased with loading while ubiquitination increased with unloading, which may involve extracellular signal-regulated kinase 1/2 and focal adhesion kinase activation. The identified PTMs, including ubiquitination, acetylation, and phosphorylation, are proposed to modify internal domains in α-actinin to increase its propensity to bind F-actin. These results demonstrate a link between mechanical feedback and sarcomere protein homeostasis via PTMs of α-actinin that exemplify how cardiomyocytes exhibit differential responses to the origin of force. The implications of sarcomere regulation governed by PTMs of α-actinin are discussed with respect to cardiac atrophy and heart failure.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Kyle Dittloff
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Elisabeth DiNello
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| |
Collapse
|
5
|
Halas M, Langa P, Warren CM, Goldspink PH, Wolska BM, Solaro RJ. Effects of Sarcomere Activators and Inhibitors Targeting Myosin Cross-Bridges on Ca2+-Activation of Mature and Immature Mouse Cardiac Myofilaments. Mol Pharmacol 2022; 101:286-299. [PMID: 35236770 PMCID: PMC9092471 DOI: 10.1124/molpharm.121.000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hyper-contractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM) linked commonly to mutations in sarcomeric proteins. To address the effect of these agents in developing sarcomeres we isolated heart fiber bundles, extracted membranes with Triton X-100, and measured tension developed over a range of Ca2+ concentrations with and without OM or Mava treatment. We made measurements in fiber bundles from hearts of adult non-transgenic controls (NTG) expressing cardiac troponin I (cTnI), and from hearts of transgenic mice (TG-ssTnI) expressing the fetal/neonatal form, slow skeletal troponin I (ssTnI). We also compared fibers from 7+14-day-old NTG mice expressing ssTnI and cTnI. These studies were repeated with 7+14-day old transgenic mice (TG-cTnT-R92Q) expressing a mutant form of cardiac TnT (cTnT) linked to HCM. OM increased Ca2+-sensitivity and decreased cooperative activation in both ssTnI- and cTnI- regulated myofilaments with a similar effect reducing sub-maximal tension in immature and mature myofilaments. Although Mava decreased tension similarly in cTnI- and ssTnI-regulated myofilaments controlled either by cTnT or cTnT-R92Q, its effect involved a depressed Ca2+-sensitivity in the mature cTnT-R92-myofilaments. Our data demonstrate an influence of myosin and thin filament-associated proteins on the actions of myosin-directed agents such as OM and Mava. Significance Statement The effects of myosin-targeted activators and inhibitors on Ca2+-activated tension in developing cardiac sarcomeres presented here provide novel, ex-vivo evidence as to their actions in early-stage cardiac disorders. These studies advance understanding of the molecular mechanisms of these agents that is important in pre-clinical studies employing sarcomere Ca2+-response as a screening approach. The data also inform the use of commonly immature cardiac myocytes generated from human inducible pluripotent stem cells in screening for sarcomere activators and inhibitors.
Collapse
Affiliation(s)
- Monika Halas
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Paulina Langa
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Chad M Warren
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Paul H Goldspink
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Beata M Wolska
- Department of Medicine, University of Illinois at Chicago, United States
| | - R John Solaro
- Physiology and Biophysics, University of Illinois at Chicago, United States
| |
Collapse
|
6
|
Dittloff KT, Spanghero E, Solís C, Banach K, Russell B. Transthyretin deposition alters cardiomyocyte sarcomeric architecture, calcium transients, and contractile force. Physiol Rep 2022; 10:e15207. [PMID: 35262277 PMCID: PMC8906053 DOI: 10.14814/phy2.15207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023] Open
Abstract
Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to age-related heart failure with preserved ejection fraction (HFpEF). The hypothesis tested is that TTR deposited in vitro disrupts cardiac myocyte cell-to-cell and cell-to-matrix adhesion complexes, resulting in altered calcium handling, force generation, and sarcomeric disorganization. Human iPSC-derived cardiomyocytes and neonatal rat ventricular myocytes (NRVMs), when grown on TTR-coated polymeric substrata mimicking the stiffness of the healthy human myocardium (10 kPa), had decreased contraction and relaxation velocities as well as decreased force production measured using traction force microscopy. Both NRVMs and adult mouse atrial cardiomyocytes had altered calcium kinetics with prolonged transients when cultured on TTR fibril-coated substrates. Furthermore, NRVMs grown on stiff (~GPa), flat or microgrooved substrates coated with TTR fibrils exhibited significantly decreased intercellular electrical coupling as shown by FRAP dynamics of cells loaded with the gap junction-permeable dye calcein-AM, along with decreased gap junction content as determined by quantitative connexin 43 staining. Significant sarcomeric disorganization and loss of sarcomere content, with increased ubiquitin localization to the sarcomere, were seen in NRVMs on various TTR fibril-coated substrata. TTR presence decreased intercellular mechanical junctions as evidenced by quantitative immunofluorescence staining of N-cadherin and vinculin. Current therapies for wtATTR are cost-prohibitive and only slow the disease progression; therefore, better understanding of cardiomyocyte maladaptation induced by TTR amyloid may identify novel therapeutic targets.
Collapse
Affiliation(s)
- Kyle T. Dittloff
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Emanuele Spanghero
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Christopher Solís
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Kathrin Banach
- Department of Internal Medicine/CardiologyRush University Medical CenterChicagoIllinoisUSA
| | - Brenda Russell
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
7
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
8
|
Parker LE, Landstrom AP. The clinical utility of pediatric cardiomyopathy genetic testing: From diagnosis to a precision medicine-based approach to care. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 62. [PMID: 34776723 DOI: 10.1016/j.ppedcard.2021.101413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pediatric-onset cardiomyopathies are rare yet cause significant morbidity and mortality in affected children. Genetic testing has a major role in the clinical evaluation of pediatric-onset cardiomyopathies, and identification of a variant in an associated gene can be used to confirm the clinical diagnosis and exclude syndromic causes that may warrant different treatment strategies. Further, risk-predictive testing of first-degree relatives can assess who is at-risk of disease and requires continued clinical follow-up. Aim of Review In this review, we seek to describe the current role of genetic testing in the clinical diagnosis and management of patients and families with the five major cardiomyopathies. Further, we highlight the ongoing development of precision-based approaches to diagnosis, prognosis, and treatment. Key Scientific Concepts of Review Emerging application of genotype-phenotype correlations opens the door for genetics to guide a precision medicine-based approach to prognosis and potentially for therapies. Despite advances in our understanding of the genetic etiology of cardiomyopathy and increased accessibility of clinical genetic testing, not all pediatric cardiomyopathy patients have a clear genetic explanation for their disease. Expanded genomic studies are needed to understand the cause of disease in these patients, improve variant classification and genotype-driven prognostic predictions, and ultimately develop truly disease preventing treatment.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
9
|
Sewanan LR, Park J, Rynkiewicz MJ, Racca AW, Papoutsidakis N, Schwan J, Jacoby DL, Moore JR, Lehman W, Qyang Y, Campbell SG. Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. J Gen Physiol 2021; 153:212516. [PMID: 34319370 PMCID: PMC8321830 DOI: 10.1085/jgp.202012640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Jinkyu Park
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Alice W Racca
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - Nikolaos Papoutsidakis
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Daniel L Jacoby
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Yibing Qyang
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT.,Department of Pathology, Yale University, New Haven, CT
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
10
|
Genetic Cardiomyopathies: The Lesson Learned from hiPSCs. J Clin Med 2021; 10:jcm10051149. [PMID: 33803477 PMCID: PMC7967174 DOI: 10.3390/jcm10051149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested.
Collapse
|
11
|
Russell B, Solís C. Mechanosignaling pathways alter muscle structure and function by post-translational modification of existing sarcomeric proteins to optimize energy usage. J Muscle Res Cell Motil 2021; 42:367-380. [PMID: 33595762 DOI: 10.1007/s10974-021-09596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
A transduced mechanical signal arriving at its destination in muscle alters sarcomeric structure and function. A major question addressed is how muscle mass and tension generation are optimized to match actual performance demands so that little energy is wasted. Three cases for improved energy efficiency are examined: the troponin complex for tuning force production, control of the myosin heads in a resting state, and the Z-disc proteins for sarcomere assembly. On arrival, the regulation of protein complexes is often controlled by post-translational modification (PTM), of which the most common are phosphorylation by kinases, deacetylation by histone deacetylases and ubiquitination by E3 ligases. Another branch of signals acts not through peptide covalent bonding but via ligand interactions (e.g. Ca2+ and phosphoinositide binding). The myosin head and the regulation of its binding to actin by the troponin complex is the best and earliest example of signal destinations that modify myofibrillar contractility. PTMs in the troponin complex regulate both the efficiency of the contractile function to match physiologic demand for work, and muscle mass via protein degradation. The regulation of sarcomere assembly by integration of incoming signaling pathways causing the same PTMs or ligand binding are discussed in response to mechanical loading and unloading by the Z-disc proteins CapZ, α-actinin, telethonin, titin N-termini, and others. Many human mutations that lead to cardiomyopathy and heart disease occur in the proteins discussed above, which often occur at their PTM or ligand binding sites.
Collapse
Affiliation(s)
- Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
12
|
Ito M, Nomura S, Morita H, Komuro I. Trends and Limitations in the Assessment of the Contractile Properties of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes From Patients With Dilated Cardiomyopathy. Front Cardiovasc Med 2020; 7:154. [PMID: 33102534 PMCID: PMC7494730 DOI: 10.3389/fcvm.2020.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
The application of human induced pluripotent stem cell-derived cardiomyocytes (hiPSCMs) from patients is expected in disease modeling and drug screening in vitro. Dilated cardiomyopathy (DCM) is an intractable disease characterized by the impairment of systolic function and leads to severe heart failure. A number of researchers have focused on disease modeling of DCM and reproduced its pathologic phenotypes in hiPSCMs, but a robust method to evaluate the contractile properties of cardiomyocytes in vitro has not been standardized. In addition, it is unknown whether the throughput of measurements and analyses could be increased sufficiently for compound screening. Here, we reviewed the articles in which the contractile abnormalities of DCM hiPSCMs were recapitulated and assessed the trends and problems in sample preparation and evaluation. We found that single-cell level analysis was ineffective in some cases, and a tissue engineering approach has become dominant recently because of its increased efficiency in reproducing impaired contractility. We also examined two commercially available automated measurement devices with moderate throughput for motion analysis using two-dimensional hiPSCM sheets composed of originally established DCM hiPSCMs. As a result, both of the tested devices, an impedance analyzer and a video image-based cell motion analyzer, were not effective in detecting the expected reduction of contractility in the DCM clone. These findings collectively suggest that a tissue engineering approach could expand the potential of disease modeling with hiPSCMs, and so far, appropriate methods for in vitro force measurement with sufficient throughput, but without sacrificing physiological fidelity, are awaited.
Collapse
Affiliation(s)
- Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020; 11:368. [PMID: 32477154 PMCID: PMC7235370 DOI: 10.3389/fphys.2020.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is mostly caused by mutations in genes encoding cytoskeletal and sarcomeric proteins. In the pediatric population, DCM is the predominant type of primitive myocardial disease. A severe form of DCM is associated with mutations in the DMD gene encoding dystrophin, which are the cause of Duchenne Muscular Dystrophy (DMD). DMD-associated cardiomyopathy is still poorly understood and orphan of a specific therapy. In the last 5 years, a rise of interest in disease models using human induced pluripotent stem cells (hiPSCs) has led to more than 50 original studies on DCM models. In this review paper, we provide a comprehensive overview on the advances in DMD cardiomyopathy disease modeling and highlight the most remarkable findings obtained from cardiomyocytes differentiated from hiPSCs of DMD patients. We will also describe how hiPSCs based studies have contributed to the identification of specific myocardial disease mechanisms that may be relevant in the pathogenesis of DCM, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | | | - Raffaele Coppini
- Department of NeuroFarBa, Università degli Studi di Firenze, Florence, Italy
| | - Nicole Ceschia
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Sacconi
- LENS, Università degli Studi di Firenze and National Institute of Optics (INO-CNR), Florence, Italy
| | | | - Silvia Favilli
- Pediatric Cardiology, Meyer Children's Hospital, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
14
|
Dai Y, Amenov A, Ignatyeva N, Koschinski A, Xu H, Soong PL, Tiburcy M, Linke WA, Zaccolo M, Hasenfuss G, Zimmermann WH, Ebert A. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci Rep 2020; 10:209. [PMID: 31937807 PMCID: PMC6959358 DOI: 10.1038/s41598-019-56597-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
The sarcomeric troponin-tropomyosin complex is a critical mediator of excitation-contraction coupling, sarcomeric stability and force generation. We previously reported that induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with a dilated cardiomyopathy (DCM) mutation, troponin T (TnT)-R173W, display sarcomere protein misalignment and impaired contractility. Yet it is not known how TnT mutation causes dysfunction of sarcomere microdomains and how these events contribute to misalignment of sarcomeric proteins in presence of DCM TnT-R173W. Using a human iPSC-CM model combined with CRISPR/Cas9-engineered isogenic controls, we uncovered that TnT-R173W destabilizes molecular interactions of troponin with tropomyosin, and limits binding of PKA to local sarcomere microdomains. This attenuates troponin phosphorylation and dysregulates local sarcomeric microdomains in DCM iPSC-CMs. Disrupted microdomain signaling impairs MYH7-mediated, AMPK-dependent sarcomere-cytoskeleton filament interactions and plasma membrane attachment. Small molecule-based activation of AMPK can restore TnT microdomain interactions, and partially recovers sarcomere protein misalignment as well as impaired contractility in DCM TnT-R173W iPSC-CMs. Our findings suggest a novel therapeutic direction targeting sarcomere- cytoskeleton interactions to induce sarcomere re-organization and contractile recovery in DCM.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Asset Amenov
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Nadezda Ignatyeva
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Hang Xu
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Poh Loong Soong
- Institute of Pharmacology, University of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology, University of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Wolfgang A Linke
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Gerd Hasenfuss
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology, University of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Antje Ebert
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany.
| |
Collapse
|
15
|
Poetsch MS, Guan K. iPSCs for modeling of sarcomeric cardiomyopathies. RECENT ADVANCES IN IPSC DISEASE MODELING, VOLUME 1 2020:237-273. [DOI: 10.1016/b978-0-12-822227-0.00012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
17
|
Clippinger SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A 2019; 116:17831-17840. [PMID: 31427533 PMCID: PMC6731759 DOI: 10.1073/pnas.1910962116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a major indicator for heart transplant. The disease is frequently caused by mutations of sarcomeric proteins; however, it is not well understood how these molecular mutations lead to alterations in cellular organization and contractility. To address this critical gap in our knowledge, we studied the molecular and cellular consequences of a DCM mutation in troponin-T, ΔK210. We determined the molecular mechanism of ΔK210 and used computational modeling to predict that the mutation should reduce the force per sarcomere. In mutant cardiomyocytes, we found that ΔK210 not only reduces contractility but also causes cellular hypertrophy and impairs cardiomyocytes' ability to adapt to changes in substrate stiffness (e.g., heart tissue fibrosis that occurs with aging and disease). These results help link the molecular and cellular phenotypes and implicate alterations in mechanosensing as an important factor in the development of DCM.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
18
|
Sewanan LR, Campbell SG. Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells. J Physiol 2019; 598:2909-2922. [PMID: 30624779 DOI: 10.1113/jp276753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) provide a unique opportunity to understand the pathophysiological effects of genetic cardiomyopathy mutations. In particular, these cells hold the potential to unmask the effects of mutations on contractile behaviour in vitro, providing new insights into genotype-phenotype relationships. With this goal in mind, several groups have established iPSC lines that contain sarcomeric gene mutations linked to cardiomyopathy in patient populations. Their studies have employed diverse systems and methods for performing mechanical measurements of contractility, ranging from single cell techniques to multicellular tissue-like constructs. Here, we review published results to date within the growing field of iPSC-based sarcomeric cardiomyopathy disease models. We devote special attention to the methods of mechanical characterization selected in each case, and how these relate to the paradigms of classical muscle mechanics. An appreciation of these somewhat subtle paradigms can inform efforts to compare the results of different studies and possibly reconcile discrepancies. Although more work remains to be done to improve and possibly standardize methods for producing, maturing, and mechanically interrogating iPSC-derived cardiomyocytes, the initial results indicate that this approach to modelling cardiomyopathies will continue to provide critical insights into these devastating diseases.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Wang X, Han Z, Yu Y, Xu Z, Cai B, Yuan Y. Potential Applications of Induced Pluripotent Stem Cells for Cardiovascular Diseases. Curr Drug Targets 2018; 20:763-774. [PMID: 30539693 DOI: 10.2174/1389450120666181211164147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Owning the high incidence and disability rate in the past decades, to be expected, cardiovascular diseases (CVDs) have become one of the leading death causes worldwide. Currently, induced pluripotent stem cells (iPSCs), with the potential to form fresh myocardium and improve the functions of damaged hearts, have been studied widely in experimental CVD therapy. Moreover, iPSC-derived cardiomyocytes (CMs), as novel disease models, play a significant role in drug screening, drug safety assessment, along with the exploration of pathological mechanisms of diseases. Furthermore, a lot of studies have been carried out to clarify the biological basis of iPSCs and its derived cells in the treatment of CVDs. Their molecular mechanisms were associated with release of paracrine factors, regulation of miRNAs, mechanical support of new tissues, activation of specific pathways and specific enzymes, etc. In addition, a few small chemical molecules and suitable biological scaffolds play positive roles in enhancing the efficiency of iPSC transplantation. This article reviews the development and limitations of iPSCs in CVD therapy, and summarizes the latest research achievements regarding the application of iPSCs in CVDs.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhenbo Han
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ying Yu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zihang Xu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Benzhi Cai
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ye Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
20
|
Dieseldorff Jones KM, Koh Y, Weller RS, Turna RS, Ahmad F, Huke S, Knollmann BC, Pinto JR, Hwang HS. Pathogenic troponin T mutants with opposing effects on myofilament Ca 2+ sensitivity attenuate cardiomyopathy phenotypes in mice. Arch Biochem Biophys 2018; 661:125-131. [PMID: 30445044 DOI: 10.1016/j.abb.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
Mutations in cardiac troponin T (TnT) associated with hypertrophic cardiomyopathy generally lead to an increase in the Ca2+ sensitivity of contraction and susceptibility to arrhythmias. In contrast, TnT mutations linked to dilated cardiomyopathy decrease the Ca2+ sensitivity of contraction. Here we tested the hypothesis that two TnT disease mutations with opposite effects on myofilament Ca2+ sensitivity can attenuate each other's phenotype. We crossed transgenic mice expressing the HCM TnT-I79N mutation (I79N) with a DCM knock-in mouse model carrying the heterozygous TnT-R141W mutation (HET). The results of the Ca2+ sensitivity in skinned cardiac muscle preparations ranked from highest to lowest were as follow: I79N > I79N/HET > NTg > HET. Echocardiographic measurements revealed an improvement in hemodynamic parameters in I79N/HET compared to I79N and normalization of left ventricular dimensions and volumes compared to both I79N and HET. Ex vivo testing showed that the I79N/HET mouse hearts had reduced arrhythmia susceptibility compared to I79N mice. These results suggest that two disease mutations in TnT that have opposite effects on the myofilament Ca2+ sensitivity can paradoxically ameliorate each other's disease phenotype. Normalizing myofilament Ca2+ sensitivity may be a promising new treatment approach for a variety of diseases.
Collapse
Affiliation(s)
| | - Yeojung Koh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Rebecca S Weller
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rajdeep S Turna
- Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Ferhaan Ahmad
- Department of Internal Medicine University of Iowa, Iowa City, IA, USA
| | - Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
21
|
Yang D, Xi J, Xing Y, Tang X, Dai X, Li K, Li H, Lv X, Lu D, Wang H. A new method for neonatal rat ventricular myocyte purification using superparamagnetic iron oxide particles. Int J Cardiol 2018; 270:293-301. [PMID: 29908831 DOI: 10.1016/j.ijcard.2018.05.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neonatal rat ventricular myocytes (NRVMs) have proven to be an ideal research model for cardiac disease. However, the current methods to purify NRVMs have a limitation to obtain high purity. The purpose of this study was to develop a NRVM purification method by using superparamagnetic iron oxide particles (SIOP). METHODS NRVMs were purified by using SIOP (SIOP group). The differential attachment with or without bromodeoxyuridine (BrdU) treatment served as control and BrdU groups, respectively. The Percoll gradient (Percoll) and magnetic-activated cell sorting (MACS) methods were performed to compare the purity and viability of NRVMs with SIOP method. RESULTS The SIOP group enriched NRVMs up to 93.9 ± 2.0% purity determined by flow cytometry (FCM) and 95.6 ± 1.3% by immunofluorescence count (IF). In contrast, the control group gave purities of 71.9 ± 2.9% (by FCM) and 66.8 ± 8.9% (by IF), and the BrdU group obtained 82.0 ± 1.3% (by FCM) and 83.1 ± 2.4% (by IF). The purity of SIOP-isolated NRVMs was not different from that of Percoll and MACS groups. However, the cardiomyocytes separated by these methods, except SIOP protocol, were mixed with intrinsic cardiac adrenergic cells. NRVMs purified by SIOP shaped the similar three-dimensional morphology, with no difference in cell yield, viability and cytosolic Ca2+ homeostasis at 24 h after isolation compared with NRVMs in other groups. Furthermore, SIOP-purified NRVMs retained the responses to phenylephrine and lipopolysaccharide challenge. CONCLUSION We first reported an efficient and novel method to purify NRVMs using SIOP, which may help accelerate innovative research in the field of cardiomyocyte biology.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junmin Xi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yun Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaomeng Dai
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Kaiying Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
22
|
Eschenhagen T, Carrier L. Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review. Pflugers Arch 2018; 471:755-768. [PMID: 30324321 PMCID: PMC6475632 DOI: 10.1007/s00424-018-2214-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSC) can be differentiated to cardiomyocytes at high efficiency and are increasingly used to study cardiac disease in a human context. This review evaluated 38 studies on hypertrophic (HCM) and dilated cardiomyopathy (DCM) of different genetic causes asking to which extent published data allow the definition of an in vitro HCM/DCM hiPSC-CM phenotype. The data are put in context with the prevailing hypotheses on HCM/DCM dysfunction and pathophysiology. Relatively consistent findings in HCM not reported in DCM were larger cell size (156 ± 85%, n = 15), more nuclear localization of nuclear factor of activated T cells (NFAT; 175 ± 65%, n = 3), and higher β-myosin heavy chain gene expression levels (500 ± 547%, n = 8) than respective controls. Conversely, DCM lines showed consistently less force development than controls (47 ± 23%, n = 9), while HCM forces scattered without clear trend. Both HCM and DCM lines often showed sarcomere disorganization, higher NPPA/NPPB expression levels, and arrhythmic beating behaviour. The data have to be taken with the caveat that reporting frequencies of the various parameters (e.g. cell size, NFAT expression) differ widely between HCM and DCM lines, in which data scatter is large and that only 9/38 studies used isogenic controls. Taken together, the current data provide interesting suggestions for disease-specific phenotypes in HCM/DCM hiPSC-CM but indicate that the field is still in its early days. Systematic, quantitative comparisons and robust, high content assays are warranted to advance the field.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany.
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research), Hamburg, Germany.
| |
Collapse
|
23
|
Hoes MF, Bomer N, van der Meer P. Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene Editing and Tissue Engineering. Stem Cells Transl Med 2018; 8:66-74. [PMID: 30302938 PMCID: PMC6312446 DOI: 10.1002/sctm.18-0052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
Until recently, in vivo and ex vivo experiments were the only means to determine factors and pathways involved in disease pathophysiology. After the generation of characterized human embryonic stem cell lines, human diseases could readily be studied in an extensively controllable setting. The introduction of human‐induced pluripotent stem cells, a decade ago, allowed the investigation of hereditary diseases in vitro. In the field of cardiology, diseases linked to known genes have successfully been studied, revealing novel disease mechanisms. The direct effects of various mutations leading to hypertrophic cardiomyopathy, dilated cardiomyopathy, arrythmogenic cardiomyopathy, or left ventricular noncompaction cardiomyopathy are discovered as a result of in vitro disease modeling. Researchers are currently applying more advanced techniques to unravel more complex phenotypes, resulting in state‐of‐the‐art models that better mimic in vivo physiology. The continued improvement of tissue engineering techniques and new insights into epigenetics resulted in more reliable and feasible platforms for disease modeling and the development of novel therapeutic strategies. The introduction of CRISPR‐Cas9 gene editing granted the ability to model diseases in vitro independent of induced pluripotent stem cells. In addition to highlighting recent developments in the field of human in vitro cardiomyopathy modeling, this review also aims to emphasize limitations that remain to be addressed; including residual somatic epigenetic signatures induced pluripotent stem cells, and modeling diseases with unknown genetic causes. Stem Cells Translational Medicine2019;8:66–74
Collapse
Affiliation(s)
- Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| |
Collapse
|
24
|
Greenberg MJ, Daily NJ, Wang A, Conway MK, Wakatsuki T. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Front Cardiovasc Med 2018; 5:120. [PMID: 30283789 PMCID: PMC6156537 DOI: 10.3389/fcvm.2018.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Heart failure is the leading cause of death in the western world and as such, there is a great need for new therapies. Heart failure has a variable presentation in patients and a complex etiology; however, it is fundamentally a condition that affects the mechanics of cardiac contraction, preventing the heart from generating sufficient cardiac output under normal operating pressures. One of the major issues hindering the development of new therapies has been difficulties in developing appropriate in vitro model systems of human heart failure that recapitulate the essential changes in cardiac mechanics seen in the disease. Recent advances in stem cell technologies, genetic engineering, and tissue engineering have the potential to revolutionize our ability to model and study heart failure in vitro. Here, we review how these technologies are being applied to develop personalized models of heart failure and discover novel therapeutics.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Ann Wang
- InvivoSciences Inc., Madison, WI, United States
| | | | | |
Collapse
|
25
|
Alves ML, Warren CM, Simon JN, Gaffin RD, Montminy EM, Wieczorek DF, Solaro RJ, Wolska BM. Early sensitization of myofilaments to Ca2+ prevents genetically linked dilated cardiomyopathy in mice. Cardiovasc Res 2018; 113:915-925. [PMID: 28379313 DOI: 10.1093/cvr/cvx068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Background Dilated cardiomoypathies (DCM) are a heterogeneous group of inherited and acquired diseases characterized by decreased contractility and enlargement of cardiac chambers and a major cause of morbidity and mortality. Mice with Glu54Lys mutation in α-tropomyosin (Tm54) demonstrate typical DCM phenotype with reduced myofilament Ca2+ sensitivity. We tested the hypothesis that early sensitization of the myofilaments to Ca2+ in DCM can prevent the DCM phenotype. Methods and results To sensitize Tm54 myofilaments, we used a genetic approach and crossbred Tm54 mice with mice expressing slow skeletal troponin I (ssTnI) that sensitizes myofilaments to Ca2+. Four groups of mice were used: non-transgenic (NTG), Tm54, ssTnI and Tm54/ssTnI (DTG). Systolic function was significantly reduced in the Tm54 mice compared to NTG, but restored in DTG mice. Tm54 mice also showed increased diastolic LV dimensions and HW/BW ratios, when compared to NTG, which were improved in the DTG group. β-myosin heavy chain expression was increased in the Tm54 animals compared to NTG and was partially restored in DTG group. Analysis by 2D-DIGE indicated a significant decrease in two phosphorylated spots of cardiac troponin I (cTnI) in the DTG animals compared to NTG and Tm54. Analysis by 2D-DIGE also indicated no significant changes in troponin T, regulatory light chain, myosin binding protein C and tropomyosin phosphorylation. Conclusion Our data indicate that decreased myofilament Ca2+ sensitivity is an essential element in the pathophysiology of thin filament linked DCM. Sensitization of myofilaments to Ca2+ in the early stage of DCM may be a useful therapeutic strategy in thin filament linked DCM.
Collapse
Affiliation(s)
- Marco L Alves
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Center for Research in Echocardiography and Cardiology, Heart Institute, University of Sao Paulo, Avenida Dr. Eneas de Carvalho Aguiar 44, 05403-900, Sao Paulo, Brazil
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Jillian N Simon
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Robert D Gaffin
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Eric M Montminy
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA
| | - Beata M Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, 835 S Wolcott Ave. (M/C 901), Chicago, IL 60612, USA.,Department of Medicine, Division of Cardiology, University of Illinois, 840 S Wood St. (M/C 715), Chicago, IL 60612, USA
| |
Collapse
|
26
|
Brandão KO, Tabel VA, Atsma DE, Mummery CL, Davis RP. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis Model Mech 2018; 10:1039-1059. [PMID: 28883014 PMCID: PMC5611968 DOI: 10.1242/dmm.030320] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is now a decade since human induced pluripotent stem cells (hiPSCs) were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.
Collapse
Affiliation(s)
- Karina O Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Viola A Tabel
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|