1
|
Mancini AE, Rizzo MA. A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK. SENSORS (BASEL, SWITZERLAND) 2024; 24:6869. [PMID: 39517770 PMCID: PMC11548655 DOI: 10.3390/s24216869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Ras homolog family member A (RhoA) acts as a signaling hub in many cellular processes, including cytoskeletal dynamics, division, migration, and adhesion. RhoA activity is tightly spatiotemporally controlled, but whether downstream effectors share these activation dynamics is unknown. We developed a novel single-color FRET biosensor to measure Rho-associated kinase (ROCK) activity with high spatiotemporal resolution in live cells. We report the validation of the Rho-Kinase Activity Reporter (RhoKAR) biosensor. RhoKAR activation was specific to ROCK activity and was insensitive to PKA activity. We then assessed the mechanisms of ROCK activation in mouse fibroblasts. Increasing intracellular calcium with ionomycin increased RhoKAR activity and depleting intracellular calcium with EGTA decreased RhoKAR activity. We also investigated the signaling intermediates in this process. Blocking calmodulin or CaMKII prevented calcium-dependent activation of ROCK. These results indicate that ROCK activity is increased by calcium in fibroblasts and that this activation occurs downstream of CaM/CaMKII.
Collapse
Affiliation(s)
| | - Megan A. Rizzo
- Department of Pharmacology, Physiology, and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
2
|
Deng Z, Sun K, Sha D, Zhang Y, Guo J, Yan G, Zhang W, Liu M, Deng X, Kang H, Sun A. The counterbalance of endothelial glycocalyx and high wall shear stress to low-density lipoprotein concentration polarization in mouse ear skin arterioles. Atherosclerosis 2023; 377:24-33. [PMID: 37379795 DOI: 10.1016/j.atherosclerosis.2023.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis preferentially occurs at regions in arterial branching, curvature, and stenosis, which may be explained by the geometric predilection of low-density lipoprotein (LDL) concentration polarization that has been investigated in major arteries in previous studies. Whether this also happens in arterioles remains unknown. METHODS Herein, a radially non-uniform distribution of LDL particles and a heterogeneous endothelial glycocalyx layer in the mouse ear arterioles, as shown by fluorescein isothiocyanate labeled wheat germ agglutinin (WGA-FITC), were successfully observed by a non-invasive two-photon laser-scanning microscopy (TPLSM) technique. The stagnant film theory was applied as the fitting function to evaluate LDL concentration polarization in arterioles. RESULTS The concentration polarization rate (CPR, the ratio of the number of polarized cases to that of total cases) in the inner walls of curved and branched arterioles was 22% and 31% higher than the outer counterparts, respectively. Results from the binary logistic regression and multiple linear regression analysis showed that endothelial glycocalyx thickness increases CPR and the thickness of the concentration polarization layer (CPL). Flow field computation indicates no obvious disturbances or vortex in modeled arterioles with different geometries and the mean wall shear stress is about 7.7-9.0 Pa. CONCLUSIONS These findings suggest a geometric predilection of LDL concentration polarization in arterioles for the first time, and the existence of an endothelial glycocalyx, acting together with a relatively high wall shear stress in arterioles, may explain to some extent why atherosclerosis rarely occurs in these regions.
Collapse
Affiliation(s)
- Zhilan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yinuo Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jiaxin Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Guiqin Yan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Weichen Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
3
|
MacEwen MJ, Rusnac DV, Ermias H, Locke TM, Gizinski HE, Dexter JP, Sancak Y. Mathematical modeling and biochemical analysis support partially ordered calmodulin-myosin light chain kinase binding. iScience 2023; 26:106146. [PMID: 36968084 PMCID: PMC10031086 DOI: 10.1016/j.isci.2023.106146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Activation of myosin light chain kinase (MLCK) by calcium ions (Ca2+) and calmodulin (CaM) plays an important role in numerous cellular functions including vascular smooth muscle contraction and cellular motility. Despite extensive biochemical analysis, aspects of the mechanism of activation remain controversial, and competing theoretical models have been proposed for the binding of Ca2+ and CaM to MLCK. The models are analytically solvable for an equilibrium steady state and give rise to distinct predictions that hold regardless of the numerical values assigned to parameters. These predictions form the basis of a recently proposed, multi-part experimental strategy for model discrimination. Here we implement this strategy by measuring CaM-MLCK binding using an in vitro FRET system. Interpretation of binding data in light of the mathematical models suggests a partially ordered mechanism for binding CaM to MLCK. Complementary data collected using orthogonal approaches that assess CaM-MLCK binding further support this conclusion.
Collapse
Affiliation(s)
| | | | - Henok Ermias
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Timothy M. Locke
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hayden E. Gizinski
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Joseph P. Dexter
- Data Science Initiative and Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Imanishi A, Ichise H, Fan C, Nakagawa Y, Kuwahara K, Sumiyama K, Matsuda M, Terai K. Visualization of Spatially-Controlled Vasospasm by Sympathetic Nerve-Mediated ROCK Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:194-203. [PMID: 33069718 DOI: 10.1016/j.ajpath.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023]
Abstract
Contraction of vascular smooth muscle is regulated primarily by calcium concentration and secondarily by ROCK activity within the cells. In contrast to the wealth of information regarding regulation of calcium concentration, little is known about the spatiotemporal regulation of ROCK activity in live blood vessels. Here, we report ROCK activation in subcutaneous arterioles in a transgenic mouse line that expresses a genetically encoded ROCK biosensor based on the principle of Fӧrster resonance energy transfer by two-photon excitation in vivo imaging. Rapid vasospasm was induced upon laser ablation of arterioles, concomitant with a transient increase in calcium concentration in arteriolar smooth muscles. Unlike the increase in calcium concentration, vasoconstriction and ROCK activation continued for several minutes after irradiation. Both the ROCK inhibitor, fasudil, and the ganglionic nicotinic acetylcholine receptor blocker, hexamethonium, inhibited laser-induced ROCK activation and reduced the duration of vasospasm at the segments distant from the irradiated point. These observations suggest that vasoconstriction is initially triggered by a rapid surge of cytoplasmic calcium and then maintained by sympathetic nerve-mediated ROCK activation.
Collapse
Affiliation(s)
- Ayako Imanishi
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Ichise
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Chuyun Fan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Cellular and Ionic Mechanisms of Arterial Vasomotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:297-312. [DOI: 10.1007/978-981-13-5895-1_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Snell NE, Rao VP, Seckinger KM, Liang J, Leser J, Mancini AE, Rizzo MA. Homotransfer of FRET Reporters for Live Cell Imaging. BIOSENSORS-BASEL 2018; 8:bios8040089. [PMID: 30314323 PMCID: PMC6316388 DOI: 10.3390/bios8040089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
Förster resonance energy transfer (FRET) between fluorophores of the same species was recognized in the early to mid-1900s, well before modern heterotransfer applications. Recently, homotransfer FRET principles have re-emerged in biosensors that incorporate genetically encoded fluorescent proteins. Homotransfer offers distinct advantages over the standard heterotransfer FRET method, some of which are related to the use of fluorescence polarization microscopy to quantify FRET between two fluorophores of identical color. These include enhanced signal-to-noise, greater compatibility with other optical sensors and modulators, and new design strategies based upon the clustering or dimerization of singly-labeled sensors. Here, we discuss the theoretical basis for measuring homotransfer using polarization microscopy, procedures for data collection and processing, and we review the existing genetically-encoded homotransfer biosensors.
Collapse
Affiliation(s)
- Nicole E Snell
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA.
| | - Vishnu P Rao
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA.
| | - Kendra M Seckinger
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA.
| | - Junyi Liang
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA.
| | - Jenna Leser
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA.
| | - Allison E Mancini
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA.
| | - M A Rizzo
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood St/HH525B, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Imaging sympathetic neurogenic Ca 2+ signaling in blood vessels. Auton Neurosci 2017; 207:59-66. [PMID: 28781164 DOI: 10.1016/j.autneu.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022]
Abstract
We review the information that has been provided by optical imaging experiments directed at understanding the role and effects of sympathetic nerve activity (SNA) in the functioning of blood vessels. Earlier studies utilized electric field stimulation of nerve terminals (EFS) in isolated arteries and vascular tissues (ex vivo) to elicit SNA, but more recently, imaging studies have been conducted in vivo, enabling the study of SNA in truly physiological conditions. Ex vivo: In vascular smooth muscle cells (VSMC) of isolated arteries, the three sympathetic neurotransmitters, norepinephrine (NE), ATP and neuropeptide Y (NPY), elicit or modulate distinct patterns of Ca2+ signaling, as revealed by confocal imaging of exogenous fluorescent Ca2+ indicators. Purinergic junctional Ca2+ transients (jCaTs) arise from Ca2+ influx during excitatory junction potentials (eJPs), and are associated with the initial neurogenic contraction. Adrenergic Ca2+ waves and oscillations cause contraction while SNA-induced endothelial Ca2+ 'pulsars' cause relaxation. In vivo: optical biosensor mice, which express genetically encoded Ca2+ indicators (GECI's) specifically in smooth muscle, combined with non-invasive imaging techniques has enabled imaging SNA-induced Ca2+ signaling and arterial diameter in vivo. SNA induces Ca2+ oscillations in intact arteries. [Ca2+] of arterial smooth muscle cells increased in hypertension, in association with increased SNA. High resolution imaging has revealed local sympathetic, neurogenic Ca2+ signaling within smooth muscle and endothelial cells of the vasculature. The ongoing development of in vivo imaging together with an expanding availability of different biosensor animals promises to enable the further assessment of SNA and its effects in the vasculature of living animals.
Collapse
|
8
|
Hartmann DA, Underly RG, Watson AN, Shih AY. A murine toolbox for imaging the neurovascular unit. Microcirculation 2015; 22:168-82. [PMID: 25352367 DOI: 10.1111/micc.12176] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022]
Abstract
The neurovascular unit (NVU) coordinates many essential functions in the brain including blood flow control, nutrient delivery, and maintenance of BBB integrity. These functions are the result of a cellular and molecular interplay that we are just beginning to understand. Cells of the NVU can now be investigated in the intact brain through the combined use of high-resolution in vivo imaging and non-invasive molecular tools to observe and manipulate cell function. Mouse lines that target transgene expression to cells of the NVU will be of great value in future work. However, a detailed evaluation of target cell specificity and expression pattern within the brain is required for many existing lines. The purpose of this review was to catalog mouse lines available to cerebrovascular biologists and to discuss their utility and limitations in future imaging studies.
Collapse
Affiliation(s)
- David A Hartmann
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
9
|
Mauban JRH, Zacharia J, Fairfax S, Wier WG. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries. Am J Physiol Heart Circ Physiol 2015; 308:H1517-24. [PMID: 25888510 DOI: 10.1152/ajpheart.00594.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/03/2015] [Indexed: 11/22/2022]
Abstract
Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.
Collapse
Affiliation(s)
- Joseph R H Mauban
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Joseph Zacharia
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Seth Fairfax
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Withrow Gil Wier
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
10
|
Zuidema MY, Korthuis RJ. Intravital microscopic methods to evaluate anti-inflammatory effects and signaling mechanisms evoked by hydrogen sulfide. Methods Enzymol 2015; 555:93-125. [PMID: 25747477 PMCID: PMC4722536 DOI: 10.1016/bs.mie.2014.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption, capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo.
Collapse
Affiliation(s)
- Mozow Y Zuidema
- Harry S. Truman Veterans Administration Hospital, Cardiology, Columbia, Missouri, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, One Hospital Drive, University of Missouri, Columbia, Missouri, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
11
|
Thunemann M, Schmidt K, de Wit C, Han X, Jain RK, Fukumura D, Feil R. Correlative intravital imaging of cGMP signals and vasodilation in mice. Front Physiol 2014; 5:394. [PMID: 25352809 PMCID: PMC4196583 DOI: 10.3389/fphys.2014.00394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism.
Collapse
Affiliation(s)
- Martin Thunemann
- Interfakultäres Institut für Biochemie, University of Tübingen Tübingen, Germany
| | | | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck Lübeck, Germany
| | - Xiaoxing Han
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen Tübingen, Germany
| |
Collapse
|
12
|
Fairfax ST, Mauban JRH, Hao S, Rizzo MA, Zhang J, Wier WG. Ca(2+) signaling in arterioles and small arteries of conscious, restrained, optical biosensor mice. Front Physiol 2014; 5:387. [PMID: 25339912 PMCID: PMC4188025 DOI: 10.3389/fphys.2014.00387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023] Open
Abstract
Two-photon fluorescence microscopy and conscious, restrained optical biosensor mice were used to study smooth muscle Ca2+ signaling in ear arterioles. Conscious mice were used in order to preserve normal mean arterial blood pressure (MAP) and sympathetic nerve activity (SNA). ExMLCK mice, which express a genetically-encoded smooth muscle-specific FRET-based Ca2+ indicator, were equipped with blood pressure telemetry and immobilized for imaging. MAP was 101 ± 4 mmHg in conscious restrained mice, similar to the freely mobile state (107 ± 3 mmHg). Oscillatory vasomotion or irregular contractions were observed in most arterioles (71%), with the greatest oscillatory frequency observed at 0.25 s−1. In a typical arteriole with an average diameter of ~35 μm, oscillatory vasomotion of a 5–6 μm magnitude was accompanied by nearly uniform [Ca2+] oscillations from ~0.1 to 0.5 μM, with maximum [Ca2+] occurring immediately before the rapid decrease in diameter. Very rapid, spatially uniform “Ca2+ flashes” were also observed but not asynchronous propagating Ca2+ waves. In contrast, vasomotion and dynamic Ca2+ signals were rarely observed in ear arterioles of anesthetized exMLCK biosensor mice. Hexamethonium (30 μg/g BW, i.p.) caused a fall in MAP to 74 ± 4 mmHg, arteriolar vasodilation, and abolition of vasomotion and synchronous Ca2+ transients. Summary: MAP and heart rate (HR) were normal during high-resolution Ca2+ imaging of conscious, restrained mice. SNA induced continuous vasomotion and irregular vasoconstrictions via spatially uniform Ca2+ signaling within the arterial wall. FRET-based biosensor mice and two-photon imaging provided the first measurements of [Ca2+] in vascular smooth muscle cells in arterioles of conscious animals.
Collapse
Affiliation(s)
- Seth T Fairfax
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Joseph R H Mauban
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Scarlett Hao
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Mark A Rizzo
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
13
|
Affiliation(s)
- W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|