1
|
Florova G, De Vera CJ, Emerine RL, Girard RA, Azghani AO, Sarva K, Jacob J, Morris DE, Chamiso M, Idell S, Komissarov AA. Targeting the PAI-1 Mechanism with a Small Peptide Increases the Efficacy of Alteplase in a Rabbit Model of Chronic Empyema. Pharmaceutics 2023; 15:1498. [PMID: 37242740 PMCID: PMC10220965 DOI: 10.3390/pharmaceutics15051498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence of empyema is increasing and associated with a mortality rate of 20% in patients older than 65 years. Since 30% of patients with advanced empyema have contraindications to surgical treatment, novel, low-dose, pharmacological treatments are needed. A Streptococcus pneumoniae-induced rabbit model of chronic empyema recapitulates the progression, loculation, fibrotic repair, and pleural thickening of human disease. Treatment with single chain (sc) urokinase (scuPA) or tissue type (sctPA) plasminogen activators in doses 1.0-4.0 mg/kg were only partially effective in this model. Docking Site Peptide (DSP; 8.0 mg/kg), which decreased the dose of sctPA for successful fibrinolytic therapy in acute empyema model did not improve efficacy in combination with 2.0 mg/kg scuPA or sctPA. However, a two-fold increase in either sctPA or DSP (4.0 and 8.0 mg/kg or 2.0 and 16.0 mg/kg sctPA and DSP, respectively) resulted in 100% effective outcome. Thus, DSP-based Plasminogen Activator Inhibitor 1-Targeted Fibrinolytic Therapy (PAI-1-TFT) of chronic infectious pleural injury in rabbits increases the efficacy of alteplase rendering ineffective doses of sctPA effective. PAI-1-TFT represents a novel, well-tolerated treatment of empyema that is amenable to clinical introduction. The chronic empyema model recapitulates increased resistance of advanced human empyema to fibrinolytic therapy, thus allowing for studies of muti-injection treatments.
Collapse
Affiliation(s)
- Galina Florova
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Christian J. De Vera
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Rebekah L. Emerine
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - René A. Girard
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Ali O. Azghani
- The Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Krishna Sarva
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Jincy Jacob
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Danna E. Morris
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Mignote Chamiso
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Steven Idell
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Andrey A. Komissarov
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| |
Collapse
|
2
|
Florova G, Girard RA, Azghani AO, Sarva K, Buchanan A, Karandashova S, DeVera CJ, Morris D, Chamiso M, Koenig K, Cines DB, Idell S, Komissarov AA. Precision targeting of the plasminogen activator inhibitor-1 mechanism increases efficacy of fibrinolytic therapy in empyema. Physiol Rep 2021; 9:e14861. [PMID: 33991465 PMCID: PMC8123555 DOI: 10.14814/phy2.14861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Plasminogen activator inhibitor‐1 (PAI‐1) is an endogenous irreversible inhibitor of tissue‐type (tPA) and urokinase (uPA) plasminogen activators. PAI‐1‐targeted fibrinolytic therapy (PAI‐1‐TFT) is designed to decrease the therapeutic dose of tPA and uPA, attenuating the risk of bleeding and other complications. Docking site peptide (DSP) mimics the part of the PAI‐1 reactive center loop that interacts with plasminogen activators, thereby affecting the PAI‐1 mechanism. We used DSP for PAI‐1‐TFT in two rabbit models: chemically induced pleural injury and Streptococcus pneumoniae induced empyema. These models feature different levels of inflammation and PAI‐1 expression. PAI‐1‐TFT with DSP (2.0 mg/kg) converted ineffective doses of single chain (sc) tPA (72.5 µg/kg) and scuPA (62.5 µg/kg) into effective ones in chemically induced pleural injury. DSP (2.0 mg/kg) was ineffective in S. pneumoniae empyema, where the level of PAI‐1 is an order of magnitude higher. DSP dose escalation to 8.0 mg/kg resulted in effective PAI‐1‐TFT with 0.25 mg/kg sctPA (1/8th of the effective dose of sctPA alone) in empyema. There was no increase in the efficacy of scuPA. PAI‐1‐TFT with DSP increases the efficacy of fibrinolytic therapy up to 8‐fold in chemically induced (sctPA and scuPA) and infectious (sctPA) pleural injury in rabbits. PAI‐1 is a valid molecular target in our model of S. pneumoniae empyema in rabbits, which closely recapitulates key characteristics of empyema in humans. Low‐dose PAI‐1‐TFT is a novel interventional strategy that offers the potential to improve fibrinolytic therapy for empyema in clinical practice.
Collapse
Affiliation(s)
- Galina Florova
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - René A Girard
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | | | - Krishna Sarva
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | | | - Sophia Karandashova
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Christian J DeVera
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Danna Morris
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Mignote Chamiso
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Kathleen Koenig
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Steven Idell
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Andrey A Komissarov
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| |
Collapse
|
3
|
Florova G, Azghani AO, Karandashova S, Schaefer C, Yarovoi SV, Declerck PJ, Cines DB, Idell S, Komissarov AA. Targeting plasminogen activator inhibitor-1 in tetracycline-induced pleural injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2017; 314:L54-L68. [PMID: 28860148 DOI: 10.1152/ajplung.00579.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elevated active plasminogen activator inhibitor-1 (PAI-1) has an adverse effect on the outcomes of intrapleural fibrinolytic therapy (IPFT) in tetracycline-induced pleural injury in rabbits. To enhance IPFT with prourokinase (scuPA), two mechanistically distinct approaches to targeting PAI-1 were tested: slowing its reaction with urokinase (uPA) and monoclonal antibody (mAb)-mediated PAI-1 inactivation. Removing positively charged residues at the "PAI-1 docking site" (179RHRGGS184→179AAAAAA184) of uPA results in a 60-fold decrease in the rate of inhibition by PAI-1. Mutant prourokinase (0.0625-0.5 mg/kg; n = 12) showed efficacy comparable to wild-type scuPA and did not change IPFT outcomes ( P > 0.05). Notably, the rate of PAI-1-independent intrapleural inactivation of mutant uPA was 2 times higher ( P < 0.05) than that of the wild-type enzyme. Trapping PAI-1 in a "molecular sandwich"-type complex with catalytically inactive two-chain urokinase with Ser195Ala substitution (S195A-tcuPA; 0.1 and 0.5 mg/kg) did not improve the efficacy of IPFT with scuPA (0.0625-0.5 mg/kg; n = 11). IPFT failed in the presence of MA-56A7C10 (0.5 mg/kg; n = 2), which forms a stable intrapleural molecular sandwich complex, allowing active PAI-1 to accumulate by blocking its transition to a latent form. In contrast, inactivation of PAI-1 by accelerating the active-to-latent transition mediated by mAb MA-33B8 (0.5 mg/kg; n = 2) improved the efficacy of IPFT with scuPA (0.25 mg/kg). Thus, under conditions of slow (4-8 h) fibrinolysis in tetracycline-induced pleural injury in rabbits, only the inactivation of PAI-1, but not a decrease in the rate of its reaction with uPA, enhances IPFT. Therefore the rate of fibrinolysis, which varies in different pathologic states, could affect the selection of PAI-1 inhibitors to enhance fibrinolytic therapy.
Collapse
Affiliation(s)
- Galina Florova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Ali O Azghani
- Department of Biology, The University of Texas at Tyler, Tyler, Texas
| | - Sophia Karandashova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Chris Schaefer
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Serge V Yarovoi
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Paul J Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven , Belgium
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Steven Idell
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Andrey A Komissarov
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
4
|
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. J Cell Biochem 2017; 119:17-27. [PMID: 28520219 DOI: 10.1002/jcb.26146] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Fibrosis is known as a frequent and irreversible pathological condition which is associated with organ failure. Tissue fibrosis is a central process in a variety of chronic progressive diseases such as diabetes, hypertension, and persistent inflammation. This state could contribute to chronic injury and the initiation of tissue repair. Fibrotic disorders represent abnormal wound healing with defective matrix turnover and clearance that lead to excessive accumulation of extracellular matrix components. A variety of identified growth factors, cytokines, and persistently activated myofibroblasts have critical roles in the pathogenesis of fibrosis. Irrespective of etiology, the transforming growth factor-β pathway is the major driver of fibrotic response. Plasminogen activator inhibitor-1 (PAI-1) is a crucial downstream target of this pathway. Transforming growth factor-β positively regulates PAI-1 gene expression via two main pathways including Smad-mediated canonical and non-canonical pathways. Overexpression of PAI-1 reduces extracellular matrix degradation via perturbing the plasminogen activation system. Indeed, elevated PAI-1 levels inhibit proteolytic activity of tissue plasminogen activator and urokinase plasminogen activator which could contribute to a variety of inflammatory elements in the injury site and to excessive matrix deposition. This review summarizes the current knowledge of critical pathways that regulate PAI-1 gene expression and suggests effective approaches for the treatment of fibrotic disease. J. Cell. Biochem. 119: 17-27, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reyhaneh Rabieian
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Zareei
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Sun H, Mi X, Gao N, Yan C, Yu FS. Hyperglycemia-suppressed expression of Serpine1 contributes to delayed epithelial wound healing in diabetic mouse corneas. Invest Ophthalmol Vis Sci 2015; 56:3383-92. [PMID: 26024123 DOI: 10.1167/iovs.15-16606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Patients with diabetes mellitus (DM) are at an increased risk for developing corneal complications, including delayed wound healing. The purpose of this study was to characterize the expression and the function of Serpine1 and other components of urokinase plasminogen activator (uPA)-proteolytic system in delayed epithelial wound healing in diabetic mouse corneas. METHODS Mice of the strain C57BL/6 were induced to develop diabetes by streptozotocin, and wound-healing assays were performed 10 weeks afterward. Gene expression and/or distribution were assessed by real-time PCR, Western blotting, and/or immunohistochemistry. The role of Serpine1 in mediating epithelial wound closure was determined by subconjunctival injections of neutralizing antibodies in either normal or recombinant protein in diabetic corneas. Enzyme assay for matrix metalloproteinase (MMP)-3 was also performed. RESULTS The expressions of Serpine1 (PAI-1), Plau (uPA), and Plaur (uPA receptor) were upregulated in response to wounding, and these upregulations were significantly suppressed by hyperglycemia. In healing epithelia, Plau and Serpine1 were abundantly expressed at the leading edge of the healing epithelia of normal and, to a lesser extent, diabetic corneas. Inhibition of Serpine1 delayed epithelial wound closure in normal corneas, whereas recombinant Serpine1 accelerated it in diabetic corneas. The Plau and MMP-3 mRNA levels and MMP-3 enzymatic activities were correlated to Serpine1 levels and/or the rates of epithelial wound closure. CONCLUSIONS Serpine1 plays a role in mediating epithelial wound healing and its impaired expression may contribute to delayed wound healing in DM corneas. Hence, modulating uPA proteolytic pathway may represent a new approach for treating diabetic keratopathy.
Collapse
|
6
|
Harima M, Arumugam S, Wen J, Pitchaimani V, Karuppagounder V, Afrin MR, Sreedhar R, Miyashita S, Nomoto M, Ueno K, Nakamura M, Watanabe K. Effect of carvedilol against myocardial injury due to ischemia–reperfusion of the brain in rats. Exp Mol Pathol 2015; 98:558-62. [DOI: 10.1016/j.yexmp.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 01/26/2023]
|
7
|
Armstead WM, Riley J, Cines DB, Higazi AAR. PAI-1-derived peptide EEIIMD prevents hypoxia/ischemia-induced aggravation of endothelin- and thromboxane-induced cerebrovasoconstriction. Neurocrit Care 2015; 20:111-8. [PMID: 24248736 DOI: 10.1007/s12028-013-9906-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Babies are frequently exposed to cerebral hypoxia and ischemia (H/I) during the perinatal period as a result of stroke, problems with delivery or post delivery respiratory management. The sole FDA approved treatment for acute stroke is tissue-type plasminogen activator (tPA). Endogenous tPA is upregulated and potentiates impairment of pial artery dilation in response to hypotension after H/I in pigs. Mitogen-activated protein kinase (MAPK), a family of at least 3 kinases, ERK, p38 and JNK, is also upregulated after H/I, with ERK contributing to impaired vasodilation. This study examined the hypothesis that H/I aggravates the vascular response to two important procontractile mediators released during CNS ischemia, endothelin-1 (ET-1) and thromboxane, which is further enhanced by tPA and ERK MAPK. METHODS Cerebral hypoxia (pO(2) 35 mmHg for 10 min via inhalation of N(2)) followed immediately by ischemia (global intracranial pressure elevation for 20 min) was produced in chloralose anesthetized piglets equipped with a closed cranial window. RESULTS H/I aggravated pial artery vasconstriction induced by ET-1 and the thromboxane mimetic U 46619. Potentiated vasoconstrictor responses were blocked by EEIIMD, an inhibitor of tPA's signaling and vascular activities, but unchanged by its inactive analogue EEIIMR. The cerebrospinal fluid concentration of ERK MAPK determined by ELISA was increased by H/I, potentiated by tPA, but blocked by EEIIMD. The ERK MAPK antagonist U 0126 blocked H/I augmented enhancement of ET-1 and U 46619 vasoconstriction. CONCLUSIONS These data indicate that H/I aggravates ET-1 and thromboxane mediated cerebral vasoconstriction by upregulating endogenous tPA and ERK MAPK.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA,
| | | | | | | |
Collapse
|
8
|
Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 2014; 5:442-453. [PMID: 24619488 DOI: 10.1007/s12975-014-0336-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is a leading cause of disability and is considered now the fourth leading cause of death. Many clinical trials have shown that stroke patients with acute elevation in blood glucose at onset of stroke suffer worse functional outcomes, longer in-hospital stay, and higher mortality rates. The only therapeutic hope for these patients is the rapid restoration of blood flow to the ischemic tissue through intravenous administration of the only currently proven effective therapy, tissue plasminogen activator (tPA). However, even this option is associated with the increased risk of intracerebral hemorrhage. Nonetheless, the underlying mechanisms through which hyperglycemia (HG) and tPA worsen the neurovascular injury after stroke are not fully understood. Accordingly, this review summarizes the latest updates and recommendations about the management of HG and coadministration of tPA in a clinical setting while focusing more on the various experimental models studying (1) the effect of HG on stroke outcomes, (2) the potential mechanisms involved in worsening the neurovascular injury, (3) the different therapeutic strategies employed to ameliorate the injury, and finally, (4) the interaction between HG and tPA. Developing therapeutic strategies to reduce the hemorrhage risk with tPA in hyperglycemic setting is of great clinical importance. This can best be achieved by conducting robust preclinical studies evaluating the interaction between tPA and other therapeutics in order to develop potential therapeutic strategies with high translational impact.
Collapse
|
9
|
Fortenberry YM. Plasminogen activator inhibitor-1 inhibitors: a patent review (2006-present). Expert Opin Ther Pat 2013; 23:801-15. [PMID: 23521527 DOI: 10.1517/13543776.2013.782393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Plasminogen activator inhibitor-1 (PAI-1), the serine protease inhibitor (serpin), binds to and inhibits the plasminogen activators-tissue-type plasminogen activator (tPA) and the urokinase-type plasminogen activator (uPA). This results in both a decrease in plasmin production and a decrease in the dissolution of fibrin clots. Elevated levels of PAI-1 are correlated with an increased risk for cardiovascular disease and have been linked to obesity and metabolic syndrome. Consequently, the pharmacological suppression of PAI-1 might prevent or treat vascular disease. AREAS COVERED This article provides an overview of the patenting activity on PAI-1 inhibitors. Patents filed by pharmaceutical companies or individual research groups are described, and the biological and biochemical evaluation of the inhibitors, including in vitro and in vivo studies, is discussed. An overview of patents pertaining to using these inhibitors for treating various diseases is also included. EXPERT OPINION Although there is still no PAI-1 inhibitor being evaluated in a clinical setting or approved for human therapy, research in this field has progressed, and promising new compounds have been designed. Most research has focused on improving the pharmacological profile of these compounds, which will hopefully allow them to proceed to clinical studies. Despite the need for further testing and research, the potential use of PAI-1 inhibitors for treating cardiovascular disease appears quite promising.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Johns Hopkins University School of Medicine, Division of Hematology/Department of Pediatrics, 720 Rutland Avenue Ross 1120, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Mao Z, Li M, Ma Y, Chen Y, Zhang H, Ling F. Common features in patients with intracerebral hemorrhage following superficial temporal artery-middle cerebral artery bypass in steno-occlusive cerebrovascular disease. Neural Regen Res 2012; 7:1585-90. [PMID: 25657697 PMCID: PMC4308755 DOI: 10.3969/j.issn.1673-5374.2012.20.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/15/2012] [Indexed: 12/05/2022] Open
Abstract
Five patients treated for intracranial cerebral hemorrhage after superficial temporal artery-middle cerebral artery bypass in Xuwu Hospital, Capital Medical University, Beijing, China, from 2005-2011 were included in this study. Prior to superficial temporal artery-middle cerebral artery bypass, all patients showed diminished cerebrovascular reactivity and an ipsilateral ischemic lesion. Intracranial cerebral hemorrhage developed within 1-4 days following superficial temporal artery-middle cerebral artery bypass. Transcranial Doppler showed increased middle cerebral artery velocity of 50-100% in the operated hemisphere. These findings suggested that focal hyperperfusion, an ipsilateral ischemic lesion and diminished cerebrovascular reactivity are the important characteristics of intracerebral hemorrhage following superficial temporal artery-middle cerebral artery bypass in patients with steno-occlusive cerebrovascular disease.
Collapse
Affiliation(s)
- Zhiqi Mao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Meng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanfei Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Feng Ling
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China,
Corresponding author: Feng Ling, Professor, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China . (N20120524001/H)
| |
Collapse
|
11
|
Armstead WM, Riley J, Cines DB, Higazi AAR. tPA contributes to impairment of ATP and Ca sensitive K channel mediated cerebrovasodilation after hypoxia/ischemia through upregulation of ERK MAPK. Brain Res 2010; 1376:88-93. [PMID: 21182829 DOI: 10.1016/j.brainres.2010.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
The sole FDA approved treatment for acute stroke is tissue type plasminogen activator (tPA). However, tPA potentiates impairment of pial artery dilation in response to hypotension after hypoxia/ischemia (H/I) in pigs. ATP and Ca sensitive K channels (Katp and Kca) are important regulators of cerebrovascular tone and mediate cerebrovasodilation in response to hypotension. Mitogen activated protein kinase (MAPK), a family of at least 3 kinases, ERK, p38 and JNK, is upregulated after H/I, with the ERK isoform contributing to vasodilator impairment. This study examined the effect of H/I on Katp and Kca induced pial artery dilation and the roles of tPA and ERK during/after injury in piglets equipped with a closed cranial window. H/I blunted vasodilation induced by the Katp agonists cromakalim, calcitonin gene related peptide (CGRP) and the Kca agonist NS 1619; the effect of each was exacerbated by tPA. Pre- or post-injury treatment with EEIIMD, a hexapeptide derived from plasminogen activator-1, and ERK antagonist U 0126 prevented Katp and Kca channel agonist induced vasodilator impairment while the inactive analogue EEIIMR had no effect. ERK was upregulated after H/I, which was potentiated by tPA. These data indicate that H/I impairs K channel mediated cerebrovasodilation. tPA augments loss of K channel function after injury by upregulating ERK. These data suggest that thrombolytic therapy for treatment of CNS ischemic disorders can dysregulate cerebrohemodynamics by impairing cation-mediated control of cerebrovascular tone.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA l9l04, USA.
| | | | | | | |
Collapse
|