1
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
2
|
Omizo H, Tamura Y, Morimoto C, Ueno M, Hayama Y, Kuribayashi-Okuma E, Uchida S, Shibata S. Cardio-renal protective effect of the xanthine oxidase inhibitor febuxostat in the 5/6 nephrectomy model with hyperuricemia. Sci Rep 2020; 10:9326. [PMID: 32518351 PMCID: PMC7283314 DOI: 10.1038/s41598-020-65706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Although hyperuricemia has been shown to be associated with the progression of cardiovascular disorder and chronic kidney disease (CKD), there is conflicting evidence as to whether xanthine oxidase (XO) inhibitors confer organ protection besides lowering serum urate levels. In this study, we addressed the cardio-renal effects of XO inhibition in rodent CKD model with hyperuricemia. Sprague-Dawley rats underwent 5/6 nephrectomy and received a uricase inhibitor oxonic acid for 8 weeks (RK + HUA rats). In some rats, a XO inhibitor febuxostat was administered orally. Compared with control group, RK + HUA group showed a significant increase in albuminuria and renal injury. Febuxostat reduced serum uric acid as well as urinary albumin levels. Histological and immunohistochemical analysis of the kidney revealed that febuxostat alleviated glomerular, tubulointerstitial, and arteriolar injury in RK + HUA rats. Moreover, in the heart, RK + HUA showed individual myofiber hypertrophy and cardiac fibrosis, which was significantly attenuated by febuxostat. We found that renal injury and the indices of cardiac changes were well correlated, confirming the cardio-renal interaction in this model. Finally, NF-E2-related factor 2 (Nrf2) and the downstream target heme oxygenase-1 (HO-1) protein levels were increased both in the heart and in the kidney in RK + HUA rats, and these changes were alleviated by febuxostat, suggesting that tissue oxidative stress burden was attenuated by the treatment. These data demonstrate that febuxostat protects against cardiac and renal injury in RK + HUA rats, and underscore the pathological importance of XO in the cardio-renal interaction.
Collapse
Affiliation(s)
- Hiroki Omizo
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yoshifuru Tamura
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Chikayuki Morimoto
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masaki Ueno
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yuto Hayama
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Emiko Kuribayashi-Okuma
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Health Care, Teikyo Heisei University, 2-51-4 Higashi-Ikebukuro, Toshima-ku, Tokyo, 170-8445, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
3
|
The Effects of Aqueous Extract from Nardostachys chinensis Batalin on Blood Pressure and Cardiac Hypertrophy in Two-Kidney One-Clip Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4031950. [PMID: 29234388 PMCID: PMC5660807 DOI: 10.1155/2017/4031950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/06/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Aims The aim of this study was to investigate the effects of the aqueous extract of Nardostachys chinensis Batalin (NCBAE) on blood pressure and cardiac hypertrophy using two-kidney one-clip (2K1C) hypertensive rats. Methods 2K1C rat models were set up by clipping the left renal artery. Sham-operated rats underwent the same surgical procedure except for renal arterial clipping. 2K1C hypertensive rats were orally given NCBAE at doses of 210, 420, and 630 mg·kg−1·d−1 for 6 weeks. Twelve weeks after surgery, rat SBP and echocardiographic parameters were measured, cardiac histopathology was assessed, serum NO and LDH were detected, and the expression of Bcl-2 and caspase-3 of left ventricular tissue was assessed by western blot. Results Treatment with NCBAE resulted in a decrease of SBP, LVPWd, LVPWs, IVSd, IVSs, LVW/BW ratio, and cardiomyocyte CSA, an increase of LVEF, and inhibition of 2K1C-induced reduction in serum NO and elevation of LDH compared with 2K1C group. NCBAE intervention also showed a significant increase of Bcl-2 expression and reduction of cleaved caspase-3 level dose-dependently in left ventricular tissue. Conclusion Our data demonstrate that NCBAE has an antihypertensive property and protective effect on 2K1C-induced cardiac hypertrophy especially at the dose of 630 mg·kg−1·d−1.
Collapse
|
4
|
Lee TM, Lin SZ, Chang NC. Both GPER and membrane oestrogen receptor-α activation protect ventricular remodelling in 17β oestradiol-treated ovariectomized infarcted rats. J Cell Mol Med 2014; 18:2454-65. [PMID: 25256868 PMCID: PMC4302651 DOI: 10.1111/jcmm.12430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022] Open
Abstract
Clinical and experimental studies have established that gender is a factor in the development of ventricular hypertrophy. We investigated whether the attenuated hypertrophic effect of oestradiol was via activation of phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) through non-genomic action. Twenty-four hours after coronary ligation, female Wistar rats were randomized into control, subcutaneous oestradiol treatment or a G-protein coupled oestrogen receptor (GPER) agonist, G-1 and treated for 4 weeks starting from 2 weeks after bilateral ovariectomy. Ventricular hypertrophy assessed by cardiomyocyte size after infarction was similarly attenuated by oestradiol or G-1 in infarcted rats. The phosphorylation of Akt and eNOS was significantly decreased in infarcted rats and restored by oestradiol and G-1, implying the GPER pathway in this process. Oestradiol-induced Akt phosphorylation was not abrogated by G-15 (a GPER blocker). Akt activation was not inhibited by actinomycin D. When a membrane-impermeable oestrogen-albumin construct was applied, similar responses in terms of eNOS activation to those of oestradiol were achieved. Furthermore, PPT, an ERα receptor agonist, activated the phosphorylation of Akt and eNOS. Thus, membrane ERα receptor played a role in mediating the phosphorylation of Akt and eNOS. The specific PI3K inhibitor, LY290042, completely abolished Akt activation and eNOS phosphorylation in infarcted hearts treated with either oestradiol or oestradiol + G-15. These data support the conclusions that oestradiol improves ventricular remodelling by both GPER- and membrane-bound ERα-dependent mechanisms that converge into the PI3K/Akt/eNOS pathway, unveiling a novel mechanism by which oestradiol regulates pathological cardiomyocyte growth after infarction.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | |
Collapse
|
5
|
DNA damage and augmented oxidative stress in bone marrow mononuclear cells from Angiotensin-dependent hypertensive mice. Int J Hypertens 2013; 2013:305202. [PMID: 23476745 PMCID: PMC3586517 DOI: 10.1155/2013/305202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/16/2013] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage.
Collapse
|
6
|
ATP-Sensitive Potassium Channel Currents in Eccentrically Hypertrophied Cardiac Myocytes of Volume-Overloaded Rats. Int J Cell Biol 2011; 2011:838951. [PMID: 21845191 PMCID: PMC3154573 DOI: 10.1155/2011/838951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/24/2011] [Accepted: 05/20/2011] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) protect the myocardium from hypertrophy induced by pressure-overloading. In this study, we determined the effects of these channels in volume-overloading. We compared the effects of a K(ATP) agonist and a K(ATP) antagonist on sarcolemmal transmembrane current density (pA/pF) clamped at 20 mV increments of membrane potential from -80 to +40 mV in ventricular cardiac myocytes. The basal outward potassium pA/pF in myocytes of volume-overloaded animals was significantly smaller than that in the myocytes of sham-operated controls. Treatment of the control myocytes with the K(ATP) agonist cromakalim increased pA/pF significantly. This increase was blocked by the K(ATP) antagonist glibenclamide. Treatment of the hypertrophied myocytes from volume-overloaded animals with cromakalim and in the presence and absence of glibenclamide did not change pA/pF significantly. These findings suggest that eccentrically hypertrophied cardiac myocytes from volume-overloading may be unresponsive to specific activation/inactivation of K(ATP) and that dysfunctional K(ATP) may fail to protect the myocardium from left ventricular hypertrophy associated with volume-overloading.
Collapse
|
7
|
Chen CC, Hsu YJ, Lee TM. Impact of elevated uric acid on ventricular remodeling in infarcted rats with experimental hyperuricemia. Am J Physiol Heart Circ Physiol 2011; 301:H1107-17. [PMID: 21622823 DOI: 10.1152/ajpheart.01071.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyperuricemia is associated with cardiovascular disease, but it is usually considered a marker rather than a risk factor. Previous studies using uric acid-lowering drugs in normouricemic animals are not suitable to answer the effect of hyperuricemia on ventricular remodeling after myocardial infarction. The purpose of this study was to determine whether hyperuricemia adversely affects ventricular remodeling in infarcted rats with elevated uric acid. Male Wistar rats aged 8 wk were randomly assigned into either vehicle, oxonic acid, oxonic acid + allopurinol, oxonic acid + benzbromarone, oxonic acid + ABT-627, or oxonic acid + tempol for 4 wk starting 24 h after ligation. Postinfarction was associated with increased oxidant production, as measured by myocardial superoxide, isoprostane, xanthine oxidase activity, and dihydroethidium staining. Compared with normouricemic infarcted rats, hyperuricemic infarcted rats had a significant increase of superoxide production (1.7×) and endothelin-1 protein (1.2×) and mRNA (1.4×) expression, which was associated with increased left ventricular dysfunction and enhanced myocardial hypertrophy and fibrosis. These changes were all prevented by treatment with allopurinol. For similar levels of urate lowering, the uricosuric agent benzbromarone had no effect on ventricular remodeling. In spite of equivalent hyperuricemia, the ability of both ABT-627 and tempol to attenuate ventricular remodeling suggested involvement of endothelin-1 and redox pathways. Hyperuricemia is associated with unfavorable ventricular remodeling probably through a superoxide and endothelin-1-dependent pathway. Uric acid lowering without inhibition of superoxide and endothelin-1 may not have an effect on remodeling. Chronic administration of allopurinol, ABT-627, and tempol is associated with attenuated ventricular remodeling.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Institute of Biomedical Engineering, National Cheng-Kung University, and Divison of Cardiovascular Surgery, Chia-yi Christian Hospital, Chia-yi City, Taiwan
| | | | | |
Collapse
|
8
|
Atorvastatin upregulates nitric oxide synthases with Rho-kinase inhibition and Akt activation in the kidney of spontaneously hypertensive rats. J Hypertens 2010; 28:2278-88. [DOI: 10.1097/hjh.0b013e32833e0924] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
No effect of rosuvastatin on left ventricular hypertrophy in patients with hypertension. Int J Cardiol 2010; 145:156-8. [DOI: 10.1016/j.ijcard.2009.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/25/2009] [Indexed: 11/22/2022]
|
10
|
Chen CC, Lien HY, Hsu YJ, Lin CC, Shih CM, Lee TM. Effect of pravastatin on ventricular arrhythmias in infarcted rats: role of connexin43. J Appl Physiol (1985) 2010; 109:541-52. [DOI: 10.1152/japplphysiol.01070.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiologic studies showed that men treated with statins appear to have a lower incidence of sudden death than men without statins. However, the specific factor for this remained disappointingly elusive. We assessed whether pravastatin enhanced connexin43 expression after myocardial infarction through attenuation of endothelin-1. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to vehicle, pravastatin, mevalonate, bosentan, or a combination of pravastatin and mevalonate or pravastatin and bosentan for 4 wk. Myocardial endothelin-1 levels were significantly elevated in vehicle-treated rats at the border zone compared with sham-operated rats. Myocardial connexin43 expression at the border zone was significantly decreased in vehicle-treated infarcted rats compared with sham-operated rats. Attenuated connexin43 expression was blunted after administration of pravastatin, as assessed by immunofluorescence analysis, Western blotting, and real-time quantitative RT-PCR of connexin43. Bosentan enhanced connexin43 amount in infarcted rats and did not have additional beneficial effects on pravastatin-treated rats. Arrhythmic scores during programmed stimulation in vehicle-treated rats were significantly higher than scores in those treated with pravastatin. In contrast, the beneficial effects of pravastatin-induced connexin43 were abolished by the addition of mevalonate and a protein kinase C inducer. In addition, the amount of connexin43 showed significant increase after addition of bisindolylmaleimide, implicating that protein kinase C is a relevant target in endothelin-1-mediated connexin43 expression. Thus chronic use of pravastatin after infarction, resulting in enhanced connexin43 amount by attenuation of mevalonate-dependent endothelin-1 through a protein kinase C-dependent pathway, may attenuate the arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy Science, Tainan County, and Department of Surgery, Cardiology Section, Chi-Mei Medical Center, Tainan
| | - Hsiao-Yin Lien
- Department of Pharmacy, Yongkang Veterans Hospital, Tainan
- Department of Cosmetic Application and Management, Tung Fang Institute of Technology, Kaohsiung
| | - Yu-Jung Hsu
- Department of Medical Research, Chi-Mei Medical Center, Tainan
| | - Chih-Chan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan
| | - Chun-Ming Shih
- Department of Medicine, Cardiology Section, Taipei Medical University Hospital, Taipei; and
| | - Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Taipei Medical University and Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
11
|
Chronic inhibition of farnesyl pyrophosphate synthase attenuates cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Biochem Pharmacol 2010; 79:399-406. [DOI: 10.1016/j.bcp.2009.08.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 01/19/2023]
|
12
|
Zhu S, Ma J, Yong Y, Niu J, Zhang J. Left ventricular function in physiologic and pathologic hypertrophy in Sprague–Dawley rats. Sci Sports 2008. [DOI: 10.1016/j.scispo.2008.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Junhong W, Jing Y, Jizheng M, Shushu Z, Xiangjian C, Hengfang W, Di Y, Jinan Z. Proteomic analysis of left ventricular diastolic dysfunction hearts in renovascular hypertensive rats. Int J Cardiol 2008; 127:198-207. [PMID: 17659790 DOI: 10.1016/j.ijcard.2007.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/01/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Abnormalities of diastolic function are common to virtually all forms of cardiac failure. However, the molecular events leading to diastolic dysfunction have not been fully elucidated. We performed a differential proteomic profiling study on diastolic dysfunction hearts induced by renovascular hypertension. Left ventricular diastolic dysfunction induced by renovascular hypertension (2K1C, two-kidneys, one clip) was performed in twelve Sprague-Dawley rats. 2D echocardiographic and cardiac protein patterns (2D-electrophoresis and mass spectroscopy) were compared with the sham operated rats. We described sixteen altered protein spots in 2K1C rats with left ventricular diastolic dysfunction. Calsarcin-1 (CS-1) was significantly down-regulated in 2K1C rats and it showed a negative correlation with calcineurin enzymatic activity (r(2)=0.72 p=0.03). We also showed changes in cellular energy metabolism in 2K1C rats, and these changes go in parallel with alterations of the thin filament proteome responsible for actin-myosin cross-bridge. In conclusion, this study provides a new insight into the left ventricular proteome profile associated with systemic hypertension induced diastolic dysfunction in a renovascular hypertension rat model. The decreased CS-1 protein with a concomitant increased enzymatic activity of calcineurin, suggests an important role of CS-1 in the calcineurin-mediated left ventricular hypertrophy.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcineurin/metabolism
- Echocardiography
- Heart Failure, Diastolic/etiology
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/physiopathology
- Hypertension, Renovascular/complications
- Male
- Mass Spectrometry
- Proteome/analysis
- Proteomics/methods
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics, Nonparametric
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Wang Junhong
- The Institute of Cardiovascular Disease, Division of Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kato N, Liang YQ, Ochiai Y, Jesmin S. Systemic evaluation of gene expression changes in major target organs induced by atorvastatin. Eur J Pharmacol 2008; 584:376-89. [PMID: 18295756 DOI: 10.1016/j.ejphar.2008.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 12/25/2007] [Accepted: 01/21/2008] [Indexed: 11/15/2022]
Abstract
Statins have been reported to protect against end-organ damage in essential hypertension; however, detailed mechanisms underlying organ-protective actions of statins remain unclear. Statins can exert pleiotropic effects aside from lowering cholesterol and blood pressure levels through several different pathways, which may lead to distinct patterns of changes in gene expression in vital end-organs. The aim of the present study was to systemically evaluate gene expression changes in three major end-organs (the brain, heart and kidney) induced by atorvastatin at a dose that altered neither blood pressure nor plasma total cholesterol levels. The stroke-prone spontaneously hypertensive (SHRSP) rats, an established model of hypertension and end-organ damage, was treated with atorvastatin (15 mg/kg/day) for 4 weeks from 12 to 16 weeks of age. DNA microarray technology was used to identify gene expression changes in three end-organs. In the current experimental setting, 4 weeks of atorvastatin treatment lowered plasma levels of non-esterified fatty acid significantly (P=0.0012) and triglyceride modestly (P=0.07) without altering blood pressure and plasma total cholesterol levels in male SHRSP rats. The level of expression of a number of genes was changed in an organ-specific manner after 4 weeks of drug administration to SHRSP rats. Among the end-organs studied, the most prominent alteration in gene expression was observed in the heart. The identical treatment protocol was applied to age-matched normotensive control rats, Wistar Kyoto rats, and this also caused a number of genes to be differentially expressed in an organ-specific manner. These results provide new insights into the mechanisms underlying the potential efficacy of statins in protecting against end-organ damage in essential hypertension and thus lay the foundation for future studies.
Collapse
Affiliation(s)
- Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, International Medical Center of Japan, Tokyo, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | |
Collapse
|
15
|
Lee TM, Lin MS, Chang NC. Effect of pravastatin on sympathetic reinnervation in postinfarcted rats. Am J Physiol Heart Circ Physiol 2007; 293:H3617-26. [PMID: 17890424 DOI: 10.1152/ajpheart.00875.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed whether pravastatin attenuates cardiac sympathetic reinnervation after myocardial infarction through the activation of ATP-sensitive K+(KATP) channels. Epidemiological studies have shown that men treated with statins appear to have a lower incidence of sudden death than men without statins. However, the specific factor for this has remained disappointingly elusive. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to groups treated with either vehicle, nicorandil (a specific mitochondrial KATPchannel agonist), pinacidil (a nonspecific KATPchannel agonist), pravastatin, glibenclamide (a KATPchannel blocker), or a combination of nicorandil and glibenclamide, pinacidil and glibenclamide, or pravastatin and glibenclamide for 4 wk. Myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats at the remote zone compared with sham-operated rats (2.54 ± 0.17 vs. 1.26 ± 0.36 μg/g protein, P < 0.0001), consistent with excessive sympathetic reinnervation after infarction. Immunohistochemical analysis for tyrosine hydroxylase, growth-associated factor 43, and neurofilament also confirmed the change of myocardial norepinephrine. This was paralleled by a significant upregulation of tyrosine hydroxylase protein expression and mRNA in vehicle-treated rats, which was reduced after the administration of either nicorandil, pinacidil, or pravastatin. Arrhythmic scores during programmed stimulation in vehicle-treated rats were significantly higher than those treated with pravastatin. In contrast, the beneficial effects of pravastatin were reversed by the addition of glibenclamide, implicating KATPchannels as the relevant target. The sympathetic reinnervation after infarction is modulated by the activation of KATPchannels. Chronic use of pravastatin after infarction, resulting in attenuated sympathetic reinnervation by the activation of KATPchannels, may modify the arrhythomogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Department of Medicine, Taipei Medical University, 252 Wu-Hsing Street, Taipei, Taiwan
| | | | | |
Collapse
|
16
|
Lee TM, Lin MS, Chang NC. Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 2007; 293:H968-77. [PMID: 17400721 DOI: 10.1152/ajpheart.00891.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone deacetylase (HDAC) determines the acetylation status of histones and, thereby, controls the regulation of gene expression. HDAC inhibitors have been shown to inhibit cardiomyocyte growth in vitro and in vivo. We assessed whether HDAC inhibitors exert a beneficial effect on the remodeling heart in infarcted rats. At 24 h after ligation of the left anterior descending artery, male Wistar rats were randomized to vehicle, HDAC inhibitors [valproic acid (VPA) and tributyrin], an agonist of HDAC (theophylline), VPA + theophylline, or tributyrin + theophylline for 4 wk. Significant ventricular hypertrophy was detected as increased myocyte size at the border zone isolated by enzymatic dissociation after infarction. Cardiomyocyte hypertrophy and collagen formation at the remote region and border zone were significantly attenuated by VPA and tributyrin with a similar potency compared with that induced by the vehicle. Left ventricular shortening fraction was significantly higher in the VPA- and tributyrin-treated groups than in the vehicle-treated group. Increased synthesis of atrial natriuretic peptide mRNA after infarction was confirmed by RT-PCR, consistent with the results of immunohistochemistry and Western blot for acetyl histone H4. The beneficial effects of VPA and tributyrin were abolished by theophylline, implicating HDAC as the relevant target. Inhibition of HDAC by VPA or tributyrin can attenuate ventricular remodeling after infarction. This might provide a worthwhile therapeutic target.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Department of Medicine, Taipei Medical University and Chi-Mei Medical Center, Taipei, Taiwan
| | | | | |
Collapse
|