1
|
Lopes PDD, de Assis N, de Araújo NF, Moreno OLM, Jorge KTDOS, E Castor MGM, Teixeira MM, Soriani FM, Capettini LDSA, Bonaventura D, Cau SBDA. COX/iNOS dependence for angiotensin-II-induced endothelial dysfunction. Peptides 2022; 157:170863. [PMID: 36028074 DOI: 10.1016/j.peptides.2022.170863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
Vascular dysfunction induced by angiotensin-II can result from direct effects on vascular and inflammatory cells and indirect hemodynamic effects. Using isolated and functional cultured aortas, we aimed to identify the effects of angiotensin-II on cyclooxygenase (COX) and inducible nitric oxide synthase (iNOS) and evaluate their impact on vascular reactivity. Aortic rings from mice were incubated overnight in culture medium containing angiotensin-II (100 nmol/L) or vehicle to induce vascular disfunction. Vascular reactivity of cultured arteries was evaluated in a bath chamber. Immunofluorescence staining for COX-1 and COX-2 was performed. Nitric oxide (NO) formation was approached by the levels of nitrite, a NO end product, and using a fluorescent probe (DAF). Oxidative and nitrosative stress were determined by DHE fluorescence and nitrotyrosine staining, respectively. Arteries cultured with angiotensin-II showed impairment of endothelium-dependent relaxation, which was reversed by the AT1 receptor antagonist. Inhibition of COX and iNOS restored vascular relaxation, suggesting a common pathway in which angiotensin-II triggers COX and iNOS, leading to vasoconstrictor receptors activation. Moreover, using selective antagonists, TP and EP were identified as the receptors involved in this response. Endothelium-dependent contractions of angiotensin-II-cultured aortas were blunted by ibuprofen, and increased COX-2 immunostaining was found in the arteries, indicating endothelium release of vasoconstrictor prostanoids. Angiotensin-II induced increased reactive oxygen species and NO production. An iNOS inhibitor prevented NO enhancement and nitrotyrosine accumulation in arteries stimulated with angiotensin-II. These results confirm that angiotensin-II causes vascular inflammation that culminates in endothelial dysfunction in an iNOS and COX codependent manner.
Collapse
Affiliation(s)
- Patrícia das Dores Lopes
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Naiara de Assis
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Natália Ferreira de Araújo
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Olga Lúcia Maquilon Moreno
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | | | - Mauro Martins Teixeira
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
2
|
Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond) 2022; 136:405-423. [PMID: 35319068 PMCID: PMC8968302 DOI: 10.1042/cs20210835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible diseases, that share a number of common causative factors including cigarette smoking. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, leading to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients with COPD are most likely to die as a result of a cardiovascular event, with 30% of all COPD-related deaths being attributed to cardiovascular disease (CVD). Both atherosclerosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation and oxidative stress, of which current pharmacological treatments have limited efficacy, hence the urgency for the development of novel life-saving therapeutics. Currently these diseases must be treated individually, with no therapies available that can effectively reduce the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review, the important mechanisms that drive atherosclerosis and CVD in people with COPD are explained and we propose that modulation of both the oxidative stress and the inflammatory burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic manifestations related to these diseases.
Collapse
|
3
|
Liu B, Zhou Y. Endothelium-dependent contraction: The non-classical action of endothelial prostacyclin, its underlying mechanisms, and implications. FASEB J 2021; 35:e21877. [PMID: 34449098 DOI: 10.1096/fj.202101077r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
Although commonly thought to produce prostacyclin (prostaglandin I2 ; PGI2 ) that evokes vasodilatation and protects vessels from the development of diseases, the endothelial cyclooxygenase (COX)-mediated metabolism has also been found to release substance(s) called endothelium-derived contracting factor(s) (EDCF) that causes endothelium-dependent contraction and implicates in endothelial dysfunction of disease conditions. Various mechanisms have been proposed for the process; however, the major endothelial COX metabolite PGI2 , which has been classically considered to activate the I prostanoid receptor (IP) that mediates vasodilatation and opposes the effects of thromboxane (Tx) A2 produced by COX in platelets, emerges as a major EDCF in health and disease conditions. Our recent studies from genetically altered mice further suggest that vasomotor reactions to PGI2 are collectively modulated by IP, the vasoconstrictor Tx-prostanoid receptor (TP; the prototype receptor of TxA2 ) and E prostanoid receptor-3 (EP3; a vasoconstrictor receptor of PGE2 ) although with differences in potency and efficacy; a contraction to PGI2 reflects activities of TP and/or EP3 outweighing that of the concurrently activated IP. Here, we discuss the history of endothelium-dependent contraction, evidences that support the above hypothesis, proposed mechanisms for the varied reactions to endothelial PGI2 synthesis as well as the relation of its dilator activity to the effect of another NO-independent vasodilator mechanism, the endothelium-derived hyperpolarizing factor. Also, we address the possible pathological and therapeutic implications as well as questions remaining to be resolved or limitations of our above findings obtained from genetically altered mouse models.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Mitchell JA, Shala F, Pires MEL, Loy RY, Ravendren A, Benson J, Urquhart P, Nicolaou A, Herschman HR, Kirkby NS. Endothelial cyclooxygenase-1 paradoxically drives local vasoconstriction and atherogenesis despite underpinning prostacyclin generation. SCIENCE ADVANCES 2021; 7:7/12/eabf6054. [PMID: 33741600 PMCID: PMC7978428 DOI: 10.1126/sciadv.abf6054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/02/2021] [Indexed: 05/03/2023]
Abstract
Endothelial cyclooxygenase-1-derived prostanoids, including prostacyclin, have clear cardioprotective roles associated with their anti-thrombotic potential but have also been suggested to have paradoxical pathological activities within arteries. To date it has not been possible to test the importance of this because no models have been available that separate vascular cyclooxygenase-1 products from those generated elsewhere. Here, we have used unique endothelial-specific cyclooxygenase-1 knockout mice to show that endothelial cyclooxygenase-1 produces both protective and pathological products. Functionally, however, the overall effect of these was to drive pathological responses in the context of both vasoconstriction in vitro and the development of atherosclerosis and vascular inflammation in vivo. These data provide the first demonstration of a pathological role for the vascular cyclooxygenase-1 pathway, highlighting its potential as a therapeutic target. They also emphasize that, across biology, the role of prostanoids is not always predictable due to unique balances of context, products, and receptors.
Collapse
Affiliation(s)
- Jane A Mitchell
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Fisnik Shala
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria Elisa Lopes Pires
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rachel Y Loy
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Ravendren
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Joshua Benson
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paula Urquhart
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas S Kirkby
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
5
|
Suo Z, Liu Y, Li Y, Xu C, Liu Y, Gao M, Dong J. Calcitriol inhibits COX-1 and COX-2 expressions of renal vasculature in hypertension: Reactive oxygen species involved? Clin Exp Hypertens 2021; 43:91-100. [PMID: 32909857 DOI: 10.1080/10641963.2020.1817473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vitamin D modulates about 3% human gene transcription besides the classical action on calcium/phosphorus homeostasis. The blood pressure-lowing and other protective action on cardiovascular disease have been reported. The present study aims to examine whether COX-1 and COX-2 were implicated in endothelial dysfunction in hypertension and calcitriol, an active form of vitamin D preserved endothelial function through regulating COX expression. Isometric study demonstrated the impaired endothelium-dependent relaxation (EDR) in renal arteries from spontaneously hypertensive rats were reversed by 12 h-calcitriol treatment and COX-1 and COX-2 inhibitors. Combined uses of COX-1 and COX-2 inhibitor induced more improved relaxations. Exaggerated expressions of COX-1 and COX-2 in renal artery from SHR were inhibited by 12 h-administration of calcitriol, NADPH oxidase inhibitor DPI, or reactive oxygen species (ROS) scavenger tempol. Furthermore, in normotensive WKY rats, calcitriol prevents against the blunted EDR in renal arteries by 12 h-Ang II exposure, with similar improvements by COX-1 and COX-2 inhibitors. Accordingly, increased COX-1 and COX-2 expressions by Ang II exposure were corrected by losartan, DPI, or tempol. Studies on human renal artery also revealed the beneficial action of calcitriol is mediated by suppressing COX-1 and COX-2 expressions, dependent on vitamin D receptor (VDR) activation. Taken together, our findings showed that COX-1 and COX-2 are positively involved in the renovascular dysfunction in hypertension and via VDR, calcitriol benefits renovasular function by suppressing COX-1 and COX-2 expressions. Furthermore, ROS is involved in the COX-1 and COX-2 up-regulations of renal arteries, maybe serving as a mediator in the inhibitory action of calcitriol on COX expression.
Collapse
Affiliation(s)
- Zizheng Suo
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yanzhi Liu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yueyi Li
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Cong Xu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yuhan Liu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University , Shijiazhuang, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University , Shijiazhuang, China
| |
Collapse
|
6
|
Asirvatham-Jeyaraj N, Jones AD, Burnett R, Fink GD. Brain Prostaglandin D2 Increases Neurogenic Pressor Activity and Mean Arterial Pressure in Angiotensin II-Salt Hypertensive Rats. Hypertension 2019; 74:1499-1506. [PMID: 31587572 DOI: 10.1161/hypertensionaha.119.13175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tested whether brain L-PGDS (lipocalin-type prostaglandin [PG] D synthase), through prostanoid signaling, might increase neurogenic pressor activity and thereby cause hypertension. Sprague Dawley rats on high-salt diet received either vehicle or Ang II (angiotensin II) infusion. On day 4, the developmental stage of hypertension, brains from different sets of control and Ang II-treated rats were collected for measuring L-PGDS expression, PGD2 levels, and DP1R (type 1 PGD2 receptor) expression. In a different set of 14-day Ang II-salt-treated rats, mini-osmotic pumps were used to infuse either a nonselective COX (cyclooxygenase) inhibitor ketorolac, L-PGDS inhibitor AT56, or DP1R inhibitor BWA868C to test the role of brain COX-PGD2-DP1R signaling in Ang II-salt hypertension. The acute depressor response to ganglion blockade with hexamethonium was used to quantify neurogenic pressor activity. During the developmental stage of Ang II-salt hypertension, L-PGDS expression was higher in cerebrospinal fluid, and PGD2 levels were increased in the choroid plexus, cerebrospinal fluid, and the cardioregulatory brain region rostral ventrolateral medulla. DP1R expression was decreased in rostral ventrolateral medulla. Both brain COX inhibition with ketorolac and L-PGDS inhibition with AT56 lowered mean arterial pressure by altering neurogenic pressor activity compared with vehicle controls. Blockade of DP1R with BWA868C, however, increased the magnitude of Ang II-salt hypertension and significantly increased neurogenic pressor activity. In summary, we establish that the development of Ang II-salt hypertension requires increased COX- and L-PGDS-derived PGD2 production in the brain, making L-PGDS a possible target for treating neurogenic hypertension.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru (N.A.-J.).,Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology (A.D.J.), Michigan State University, East Lansing.,Department of Chemistry (A.D.J.), Michigan State University, East Lansing
| | - Robert Burnett
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - Gregory D Fink
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| |
Collapse
|
7
|
Song CY, Khan NS, Liao FF, Wang B, Shin JS, Bonventre JV, Malik KU. Brain Cytosolic Phospholipase A2α Mediates Angiotensin II-Induced Hypertension and Reactive Oxygen Species Production in Male Mice. Am J Hypertens 2018; 31:622-629. [PMID: 29342227 PMCID: PMC5905655 DOI: 10.1093/ajh/hpy009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recently, we reported that angiotensin II (Ang II)-induced hypertension is mediated by group IV cytosolic phospholipase A2α (cPLA2α) via production of prohypertensive eicosanoids. Since Ang II increases blood pressure (BP) via its action in the subfornical organ (SFO), it led us to investigate the expression and possible contribution of cPLA2α to oxidative stress and development of hypertension in this brain area. METHODS Adenovirus (Ad)-green fluorescence protein (GFP) cPLA2α short hairpin (sh) RNA (Ad-cPLA2α shRNA) and its control Ad-scrambled shRNA (Ad-Scr shRNA) or Ad-enhanced cyan fluorescence protein cPLA2α DNA (Ad-cPLA2α DNA) and its control Ad-GFP DNA were transduced into SFO of cPLA2α+/+ and cPLA2α−/− male mice, respectively. Ang II (700 ng/kg/min) was infused for 14 days in these mice, and BP was measured by tail-cuff and radio telemetry. cPLA2 activity, reactive oxygen species production, and endoplasmic reticulum stress were measured in the SFO. RESULTS Transduction of SFO with Ad-cPLA2α shRNA, but not Ad-Scr shRNA in cPLA2α+/+ mice, minimized expression of cPLA2α, Ang II-induced cPLA2α activity and oxidative stress in the SFO, BP, and cardiac and renal fibrosis. In contrast, Ad-cPLA2α DNA, but not its control Ad-GFP DNA in cPLA2α−/− mice, restored the expression of cPLA2α, and Ang II-induced increase in cPLA2 activity and oxidative stress in the SFO, BP, cardiac, and renal fibrosis. CONCLUSIONS These data suggest that cPLA2α in the SFO is crucial in mediating Ang II-induced hypertension and associated pathogenesis. Therefore, development of selective cPLA2α inhibitors could be useful in treating hypertension and its pathogenesis.
Collapse
Affiliation(s)
- Chi Young Song
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Nayaab S Khan
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Bin Wang
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Ji Soo Shin
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| |
Collapse
|
8
|
El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacol Res 2018; 129:251-261. [DOI: 10.1016/j.phrs.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|
9
|
Liu B, Zhan M, Zhang Y, Li H, Wu X, Zhuang F, Luo W, Zhou Y. Increased role of E prostanoid receptor-3 in prostacyclin-evoked contractile activity of spontaneously hypertensive rat mesenteric resistance arteries. Sci Rep 2017; 7:8927. [PMID: 28827689 PMCID: PMC5566542 DOI: 10.1038/s41598-017-09288-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine whether E prostanoid receptor-3 (EP3) is involved in prostacyclin (PGI2)-evoked vasoconstrictor activity of resistance arteries and if so, how it changes under hypertensive conditions. Mesenteric resistance arteries from Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) were isolated for functional and biochemical studies. Here we show that in vessels from WKYs, PGI2 or the endothelial muscarinic agonist ACh (which stimulates in vitro PGI2 synthesis) evoked vasoconstrictor activity, which increased in SHRs. The thromboxane-prostanoid receptor (TP) antagonist SQ29548 partially removed the vasoconstrictor activity, and an increased contractile activity of PGI2 resistant to SQ29548 was observed in SHRs. Interestingly, L798106, an antagonist of EP3 (whose expression was higher in SHRs than in WKYs), not only added to the effect of SQ29548 but also caused relaxation to PGI2 more than that obtained with SQ29548. In accordance, EP3 deletion, which reduced PGI2-evoked contraction, together with SQ29548 resulted in relaxation evoked by the agonist in mouse aortas. These results thus demonstrate an explicit involvement of EP3 in PGI2-evoked vasoconstrictor activity in rat mesenteric resistance arteries and suggest that up-regulation of the receptor contributes significantly to the increased contractile activity evoked by PGI2 under hypertensive conditions.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Mengyi Zhan
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | | | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
10
|
Saraswathi V, Perriotte-Olson C, Ganesan M, Desouza CV, Alnouti Y, Duryee MJ, Thiele GM, Nordgren TM, Clemens DL. A combination of dietary N-3 fatty acids and a cyclooxygenase-1 inhibitor attenuates nonalcoholic fatty liver disease in mice. J Nutr Biochem 2017; 42:149-159. [PMID: 28187366 DOI: 10.1016/j.jnutbio.2017.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/13/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
We sought to determine whether a combination of purified n-3 fatty acids (n-3) and SC-560 (SC), a cyclooxygenase-1-specific inhibitor, is effective in ameliorating nonalcoholic fatty liver disease in obesity. Female wild-type mice were fed a high-fat and high-cholesterol diet (HF) supplemented with n-3 in the presence or absence of SC. Mice treated with SC alone exhibited no change in liver lipids, whereas n-3-fed mice tended to have lower hepatic lipids. Mice given n-3+SC had significantly lower liver lipids compared with HF controls indicating enhanced lipid clearance. Total and sulfated bile acids were significantly higher only in n-3+SC-treated mice compared with chow diet (CD) controls. Regarding mechanisms, the level of pregnane X receptor (PXR), a nuclear receptor regulating drug/bile detoxification, was significantly higher in mice given n-3 or n-3+SC. Studies in precision-cut liver slices and in cultured hepatoma cells showed that n-3+SC enhanced not only the expression/activation of PXR and its target genes but also the expression of farnesoid X receptor (FXR), another regulator of bile synthesis/clearance, indicating that n-3+SC can induce both PXR and FXR. The mRNA level of FGFR4 which inhibits bile formation showed a significant reduction in Huh 7 cells upon n-3 and n-3+SC treatment. PXR overexpression in hepatoma cells confirmed that n-3 or SC each induced the expression of PXR target genes and in combination had an enhanced effect. Our findings suggest that combining SC with n-3 potentiates its lipid-lowering effect, in part, by enhanced PXR and/or altered FXR/FGFR4 signaling.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Curtis Perriotte-Olson
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cyrus V Desouza
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Duryee
- Department of Internal Medicine, Division of Rheumatology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pharmaceutical Science, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Tara M Nordgren
- Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dahn L Clemens
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
11
|
Luo W, Liu B, Zhou Y. The endothelial cyclooxygenase pathway: Insights from mouse arteries. Eur J Pharmacol 2016; 780:148-58. [PMID: 27020548 DOI: 10.1016/j.ejphar.2016.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 02/05/2023]
Abstract
To date, cyclooxygenase-2 (COX-2) is commonly believed to be the major mediator of endothelial prostacyclin (prostaglandin I2; PGI2) synthesis that balances the effect of thromboxane (Tx) A2 synthesis mediated by the other COX isoform, COX-1 in platelets. Accordingly, selective inhibition of COX-2 is considered to cause vasoconstriction, platelet aggregation, and hence increase the incidence of cardiovascular events. This idea has been claimed to be substantiated by experiments on mouse models, some of which are deficient in one of the two COX isoforms. However, results from our studies and those of others using similar mouse models suggest that COX-1 is the major functional isoform in vascular endothelium. Also, although PGI2 is recognized as a potent vasodilator, in some arteries endothelial COX activation causes vasoconstrictor response. This has again been recognized by studies, especially those performed on mouse arteries, to result largely from endothelial PGI2 synthesis. Therefore, evidence that supports a role for COX-1 as the major mediator of PGI2 synthesis in mouse vascular endothelium, reasons for the inconsistency, and results that elucidate underlying mechanisms for divergent vasomotor reactions to endothelial COX activation will be discussed in this review. In addition, we address the possible pathological implications and limitations of findings obtained from studies performed on mouse arteries.
Collapse
Affiliation(s)
- Wenhong Luo
- Central Lab, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
12
|
Asirvatham-Jeyaraj N, Fink GD. Possible role for brain prostanoid pathways in the development of angiotensin II-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R232-42. [PMID: 27225954 DOI: 10.1152/ajpregu.00535.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
Prostanoids generated by the cyclooxygenase (COX) pathway appear to contribute to the neurogenic hypertension (HTN) in rats. The first goal of this study was to establish the time frame during which prostanoids participate in ANG II-salt HTN. We induced HTN using ANG II (150 ng·kg(-1)·min(-1) sc) infusion for 14 days in rats on a high-salt (2% NaCl) diet. When ketoprofen pretreatment was combined with treatment during the first 7 days of ANG II infusion, development of HTN and increased neurogenic pressor activity (indexed by the depressor response to ganglion blockade) were significantly attenuated for the entire ANG II infusion period. This suggests that prostanoid generation caused by administration of ANG II and salt leads to an increase in neurogenic pressor activity and blood pressure (BP) via a mechanism that persists without the need for continuing prostanoid input. The second goal of this study was to determine whether prostanoid products specifically in the brain contribute to HTN development. Expression of prostanoid pathway genes was measured in brain regions known to affect neurogenic BP regulation. ANG II-treated rats exhibited changes in gene expression of phospholipase A2 (upregulated in organum vasculosum of the lamina terminalis, paraventricular nucleus, nucleus of the solitary tract, and middle cerebral artery) and lipocalin-type prostaglandin D synthase (upregulated in the organum vasculosum of the lamina terminalis). On the basis of our results, we propose that activation of the brain prostanoid synthesis pathway both upstream and downstream from COX at early stages plays an important role in the development of the neurogenic component of ANG II-salt HTN.
Collapse
Affiliation(s)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
13
|
Liu D, Liu B, Luo W, Li H, Zhang Y, Zhou Y. A vasoconstrictor response to COX-1-mediated prostacyclin synthesis in young rat renal arteries that increases in prehypertensive conditions. Am J Physiol Heart Circ Physiol 2015; 309:H804-H811. [PMID: 26209052 DOI: 10.1152/ajpheart.00150.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023]
Abstract
This study aimed to determine whether prostacyclin (PGI2) functions as an endothelium-derived contracting factor (EDCF) in young rat renal arteries, and, if so, we wanted to examine the underlying mechanism(s) and how it changes in prehypertensive conditions. Vessels from Wistar-Kyoto (WKY) and prehypertensive spontaneously hypertensive rats (SHRs) of 25-28 days of age were isolated for functional and biochemical analyses. Result showed that following NO synthase (NOS) inhibition PGI2 and the thromboxane-prostanoid (TP) receptor agonist U-46619 evoked contractions in young WKY renal arteries that were similar to those in prehypertensive SHRs. Meanwhile, the endothelial muscarinic receptor agonist ACh evoked an endothelium-dependent contraction under NOS-inhibited conditions and a production of the PGI2 metabolite 6-keto-PGF1α; both were sensitive to cyclooxygenase (COX) and/or COX-1 inhibition but higher in prehypertensive SHRs than in young WKYs. Interestingly, in WKY renal arteries PGI2 did not evoke relaxation even after TP receptor antagonism that diminished the contraction evoked by the agonist. Indeed, PGI2 (IP) receptors were not detected in the vessel with Western blot. Moreover, we noted that treatment with the nonselective COX inhibitor indomethacin, which was started at the prehypertensive stage, blunted the elevation of systolic blood pressure and reduced the heart-to-body ratio in SHR within 2 mo of treatment. These results demonstrate that due to scarcity of IP receptors, PGI2, which is derived mainly from COX-1-mediated metabolism, acts as an EDCF in young WKY renal arteries, and it increases in prehypertensive conditions. Also, our data revealed that COX inhibition starting from the prehypertensive stage has an antihypertensive effect in young SHRs.
Collapse
Affiliation(s)
- Dongling Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| |
Collapse
|
14
|
Young CN, Davisson RL. Angiotensin-II, the Brain, and Hypertension: An Update. Hypertension 2015; 66:920-6. [PMID: 26324508 DOI: 10.1161/hypertensionaha.115.03624] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Colin N Young
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.).
| | - Robin L Davisson
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| |
Collapse
|
15
|
Khan NS, Song CY, Jennings BL, Estes AM, Fang XR, Bonventre JV, Malik KU. Cytosolic phospholipase A2α is critical for angiotensin II-induced hypertension and associated cardiovascular pathophysiology. Hypertension 2015; 65:784-92. [PMID: 25667212 DOI: 10.1161/hypertensionaha.114.04803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II activates cytosolic phospholipase A(2)α (cPLA2α) and releases arachidonic acid from tissue phospholipids, which mediate or modulate ≥1 cardiovascular effects of angiotensin II and has been implicated in hypertension. Because arachidonic acid release is the rate limiting step in eicosanoid production, cPLA2α might play a central role in the development of angiotensin II-induced hypertension. To test this hypothesis, we investigated the effect of angiotensin II infusion for 13 days by micro-osmotic pumps on systolic blood pressure and associated pathogenesis in wild type (cPLA2α(+/+)) and cPLA2α(-/-) mice. Angiotensin II-induced increase in systolic blood pressure in cPLA2α(+/+) mice was abolished in cPLA2α(-/-) mice; increased systolic blood pressure was also abolished by the arachidonic acid metabolism inhibitor, 5,8,11,14-eicosatetraynoic acid in cPLA2α(+/+) mice. Angiotensin II in cPLA2α(+/+) mice increased cardiac cPLA2 activity and urinary eicosanoid excretion, decreased cardiac output, caused cardiovascular remodeling with endothelial dysfunction, and increased vascular reactivity in cPLA2α(+/+) mice; these changes were diminished in cPLA2α(-/-) mice. Angiotensin II also increased cardiac infiltration of F4/80(+) macrophages and CD3(+) T lymphocytes, cardiovascular oxidative stress, expression of endoplasmic reticulum stress markers p58(IPK), and CHOP in cPLA2α(+/+) but not cPLA2α(-/-) mice. Angiotensin II increased cardiac activity of ERK1/2 and cSrc in cPLA2α(+/+) but not cPLA2α(-/-) mice. These data suggest that angiotensin II-induced hypertension and associated cardiovascular pathophysiological changes are mediated by cPLA2α activation, most likely through the release of arachidonic acid and generation of eicosanoids with predominant prohypertensive effects and activation of ≥1 signaling molecules, including ERK1/2 and cSrc.
Collapse
Affiliation(s)
- Nayaab S Khan
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Chi Young Song
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Brett L Jennings
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Anne M Estes
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Xiao R Fang
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Joseph V Bonventre
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Kafait U Malik
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.).
| |
Collapse
|
16
|
Liu B, Li Z, Zhang Y, Luo W, Zhang J, Li H, Zhou Y. Vasomotor Reaction to Cyclooxygenase-1-Mediated Prostacyclin Synthesis in Carotid Arteries from Two-Kidney-One-Clip Hypertensive Mice. PLoS One 2015; 10:e0136738. [PMID: 26308616 PMCID: PMC4550394 DOI: 10.1371/journal.pone.0136738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/05/2015] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that in hypertensive arteries cyclooxygenase-1 (COX-1) remains as a major form, mediating prostacyclin (prostaglandin I2; PGI2) synthesis that may evoke a vasoconstrictor response in the presence of functional vasodilator PGI2 (IP) receptors. Two-kidney-one-clip (2K1C) hypertension was induced in wild-type (WT) mice and/or those with COX-1 deficiency (COX-1-/-). Carotid arteries were isolated for analyses 4 weeks after. Results showed that as in normotensive mice, the muscarinic receptor agonist ACh evoked a production of the PGI2 metabolite 6-keto-PGF1α and an endothelium-dependent vasoconstrictor response; both of them were abolished by COX-1 inhibition. At the same time, PGI2, which evokes contraction of hypertensive vessels, caused relaxation after thromboxane-prostanoid (TP) receptor antagonism that abolished the contraction evoked by ACh. Antagonizing IP receptors enhanced the contraction to the COX substrate arachidonic acid (AA). Also, COX-1-/- mice was noted to develop hypertension; however, their increase of blood pressure and/or heart mass was not to a level achieved with WT mice. In addition, we found that either the contraction in response to ACh or that evoked by AA was abolished in COX-1-/- hypertensive mice. These results demonstrate that as in normotensive conditions, COX-1 is a major contributor of PGI2 synthesis in 2K1C hypertensive carotid arteries, which leads to a vasoconstrictor response resulting from opposing dilator and vasoconstrictor activities of IP and TP receptors, respectively. Also, our data suggest that COX-1-/- attenuates the development of 2K1C hypertension in mice, reflecting a net adverse role yielded from all COX-1-mediated activities under the pathological condition.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenhua Li
- Department of Pathology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenhong Luo
- The Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiling Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Li
- The Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
17
|
Sriramula S, Xia H, Xu P, Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension 2014; 65:577-86. [PMID: 25489058 DOI: 10.1161/hypertensionaha.114.04691] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension.
Collapse
Affiliation(s)
- Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Ping Xu
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans.
| |
Collapse
|