1
|
Mannozzi J, Massoud L, Stavres J, Al-Hassan MH, O’Leary DS. Altered Autonomic Function in Metabolic Syndrome: Interactive Effects of Multiple Components. J Clin Med 2024; 13:895. [PMID: 38337589 PMCID: PMC10856260 DOI: 10.3390/jcm13030895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic syndrome (MetS) describes a set of disorders that collectively influence cardiovascular health, and includes hypertension, obesity, insulin resistance, diabetes, and dyslipidemia. All these components (hypertension, obesity, dyslipidemia, and prediabetes/diabetes) have been shown to modify autonomic function. The major autonomic dysfunction that has been documented with each of these components is in the control of sympathetic outflow to the heart and periphery at rest and during exercise through modulation of the arterial baroreflex and the muscle metaboreflex. Many studies have described MetS components in singularity or in combination with the other major components of metabolic syndrome. However, many studies lack the capability to study all the factors of metabolic syndrome in one model or have not focused on studying the effects of how each component as it arises influences overall autonomic function. The goal of this review is to describe the current understanding of major aspects of metabolic syndrome that most likely contribute to the consequent/associated autonomic alterations during exercise and discuss their effects, as well as bring light to alternative mechanisms of study.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48001, USA
| | - Louis Massoud
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48001, USA
| | - Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48001, USA
| |
Collapse
|
2
|
Stavres J, Aultman RA, Brandner CF, Newsome TA, Vallecillo-Bustos A, Wise HL, Henderson A, Stanfield D, Mannozzi J, Graybeal AJ. Hemodynamic responses to handgrip and metaboreflex activation are exaggerated in individuals with metabolic syndrome independent of resting blood pressure, waist circumference, and fasting blood glucose. Front Physiol 2023; 14:1212775. [PMID: 37608839 PMCID: PMC10441127 DOI: 10.3389/fphys.2023.1212775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Prior studies report conflicting evidence regarding exercise pressor and metaboreflex responses in individuals with metabolic syndrome (MetS). Purpose: To test the hypotheses that 1) exercise pressor and metaboreflex responses are exaggerated in MetS and 2) these differences may be explained by elevated resting blood pressure. Methods: Blood pressure and heart rate (HR) were evaluated in 26 participants (13 MetS) during 2 min of handgrip exercise followed by 3 min of post-exercise circulatory occlusion (PECO). Systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP), along with HR and a cumulative blood pressure index (BPI), were compared between groups using independent samples t-tests, and analyses of covariance were used to adjust for differences in resting blood pressure, fasting blood glucose (FBG), and waist circumference (WC). Results: ΔSBP (∼78% and ∼54%), ΔMAP (∼67% and ∼55%), and BPI (∼16% and ∼20%) responses were significantly exaggerated in individuals with MetS during handgrip and PECO, respectively (all p ≤ 0.04). ΔDBP, ΔMAP, and BPI responses during handgrip remained significantly different between groups after independently covarying for resting blood pressure (p < 0.01), and after simultaneously covarying for resting blood pressure, FBG, and WC (p ≤ 0.03). Likewise, peak SBP, DBP, MAP, and BPI responses during PECO remained significantly different between groups after adjusting for resting blood pressure (p ≤ 0.03), with peak SBP, MAP, and BPI response remaining different between groups after adjusting for all three covariates simultaneously (p ≤ 0.04). Conclusion: These data suggest that exercise pressor and metaboreflex responses are significantly exaggerated in MetS independent of differences in resting blood pressure, FBG, or WC.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ryan A. Aultman
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Caleb F. Brandner
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ta’Quoris A. Newsome
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | | | - Havens L. Wise
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Alex Henderson
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Diavion Stanfield
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Austin J. Graybeal
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
3
|
Hammer SM, Bruhn EJ, Bissen TG, Muer JD, Villarraga N, Borlaug BA, Olson TP, Smith JR. Inspiratory and leg muscle blood flows during inspiratory muscle metaboreflex activation in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 133:1202-1211. [PMID: 36227167 PMCID: PMC9639766 DOI: 10.1152/japplphysiol.00141.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the cardiovascular consequences elicited by activation of the inspiratory muscle metaboreflex in patients with heart failure with preserved ejection fraction (HFpEF) and controls. Patients with HFpEF (n = 15; 69 ± 10 yr; 33 ± 4 kg/m2) and controls (n = 14; 70 ± 8 yr; 28 ± 4 kg/m2) performed an inspiratory loading trial at 60% maximal inspiratory pressure (PIMAX) until task failure. Mean arterial pressure (MAP) was measured continuously. Near-infrared spectroscopy and bolus injections of indocyanine green dye were used to determine the percent change in blood flow index (%ΔBFI) from baseline to the final minute of inspiratory loading in the vastus lateralis and sternocleidomastoid muscles. Vascular resistance index (VRI) was calculated. Time to task failure was shorter in HFpEF than in controls (339 ± 197 s vs. 626 ± 403 s; P = 0.02). Compared with controls, patients with HFpEF had a greater increase from baseline in MAP (16 ± 7 vs. 10 ± 6 mmHg) and vastus lateralis VRI (76 ± 45 vs. 32 ± 19%) as well as a greater decrease in vastus lateralis %ΔBFI (-32 ± 14 vs. -17 ± 9%) (all, P < 0.05). Sternocleidomastoid %ΔBFI normalized to absolute inspiratory pressure was higher in HFpEF compared with controls (8.0 ± 5.0 vs. 4.0 ± 1.9% per cmH2O·s; P = 0.03). These data indicate that patients with HFpEF exhibit exaggerated cardiovascular responses with inspiratory muscle metaboreflex activation compared with controls.NEW & NOTEWORTHY Respiratory muscle dysfunction is thought to contribute to exercise intolerance in heart failure with preserved ejection fraction (HFpEF); however, the underlying mechanisms are unknown. In the present study, patients with HFpEF had greater increases in leg muscle vascular resistance index and greater decreases in leg muscle blood flow index compared with controls during inspiratory resistive breathing (to activate the metaboreflex). Furthermore, respiratory muscle blood flow index responses normalized to pressure generation during inspiratory resistive breathing were exaggerated in HFpEF compared with controls.
Collapse
Affiliation(s)
- Shane M Hammer
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma
| | - Eric J Bruhn
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Thomas G Bissen
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Jessica D Muer
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Nicolas Villarraga
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Thomas P Olson
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Joshua R Smith
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
5
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
6
|
Augmented Hemodynamic Responses in Obese Young Men during Dynamic Exercise: Role of the Muscle Metaboreflex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197321. [PMID: 33036416 PMCID: PMC7579031 DOI: 10.3390/ijerph17197321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/03/2023]
Abstract
Studies found that cardiovascular responses to exercise are enhanced in individuals with obesity and are associated with a greater cardiac output (CO) response compared to normal weight controls. However, the mechanisms underlying these altered responses during dynamic exercise are not clear. We investigated whether the cardiovascular responses mediated by the muscle metaboreflex (MMR) activation are augmented in obese men during both static and dynamic exercise. Twenty males (10 obese (OG) and 10 non-obese (NOG)) were studied. Changes in CO, mean arterial pressure (MAP), and total vascular conductance (TVC) were compared between the two groups during dynamic handgrip exercise (DHE), post-exercise muscular ischemia (PEMI), and dynamic exercise corresponding to 40%, 60% and 80% workloads. Subjects completed 2 min of DHE at 30% of MVC, followed by 2 min of PEMI. MAP, CO, and TVC responses to DHE and dynamic exercise were significantly higher in OG, whereas there were no differences during PEMI. Increases in CO and MAP during mild to heavy dynamic exercise were seen in both groups, but the changes in these variables were greater in the OG. There were no significant differences in TVC between the two groups. Compared to NOG, the augmented blood pressure response to DHE and dynamic exercise in OG was associated with a greater increase in CO. Thus, the augmented CO and MAP responses were not associated with the activation of the MMR. Consequently, additional factors specific to obesity, such as the mechanoreflex, may have been involved.
Collapse
|
7
|
Doneddu A, Roberto S, Pinna V, Magnani S, Ghiani G, Sainas G, Mulliri G, Serra S, Kakhak SAH, Milia R, Lecis R, Guicciardi M, Crisafulli A. Effect of Combined Mental Task and Metaboreflex Activation on Hemodynamics and Cerebral Oxygenation in Patients With Metabolic Syndrome. Front Physiol 2020; 11:397. [PMID: 32477157 PMCID: PMC7241117 DOI: 10.3389/fphys.2020.00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 01/26/2023] Open
Abstract
Objective: The hemodynamic response to muscle metaboreflex has been reported to be significantly altered by metabolic syndrome (MS), with exaggerated systemic vascular resistance (SVR) increments and reduced cardiac output (CO) in comparison to healthy controls (CTLs). Moreover, patients with metabolic disorders, such as type 2 diabetes, have proven to have impaired cerebral blood flow in response to exercise. Thus, we hypothesized that contemporary mental task (MT) and metaboreflex would result in reduced cerebral oxygenation (COX) in these patients. Methods: Thirteen MS patients (five women) and 14 normal age-matched CTLs (six women) were enrolled in this study. All the participants underwent five different tests, each lasting 12 min: post-exercise muscle ischemia (PEMI) to activate the metaboreflex, control exercise recovery (CER), PEMI + MT, CER + MT, and MT alone. Cerebral oxygenation was evaluated using near-infrared spectroscopy with sensors applied to the forehead. Hemodynamics were measured using impedance cardiography. Results: The main results show that MS patients had higher SVR and lower CO levels compared to the CTL group during metaboreflex activation. Stroke volume and ventricular filling and emptying rates were also significantly reduced. Moreover, when MT was added to PEMI, COX was significantly increased in the CTL group with respect to the baseline (103.46 ± 3.14%), whereas this capacity was reduced in MS patients (102.37 ± 2.46%). Conclusion: It was concluded that (1) patients with MS showed hemodynamic dysregulation during the metaboreflex, with exaggerated vasoconstriction and that (2) as compared to CTL, MS patients had reduced capacity to enhance COX when an MT superimposed the metaboreflex.
Collapse
Affiliation(s)
- Azzurrra Doneddu
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Silvana Roberto
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Virginia Pinna
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Sara Magnani
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Giovanna Ghiani
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Gianmarco Sainas
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Gabriele Mulliri
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Stefano Serra
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | | | - Raffaele Milia
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Romina Lecis
- Department of Pedagogy, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Marco Guicciardi
- Department of Pedagogy, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Antonio Crisafulli
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Diabetic Cardiomyopathy and Ischemic Heart Disease: Prevention and Therapy by Exercise and Conditioning. Int J Mol Sci 2020; 21:ijms21082896. [PMID: 32326182 PMCID: PMC7215312 DOI: 10.3390/ijms21082896] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome, diabetes, and ischemic heart disease are among the leading causes of death and disability in Western countries. Diabetic cardiomyopathy is responsible for the most severe signs and symptoms. An important strategy for reducing the incidence of cardiovascular disease is regular exercise. Remote ischemic conditioning has some similarity with exercise and can be induced by short periods of ischemia and reperfusion of a limb, and it can be performed in people who cannot exercise. There is abundant evidence that exercise is beneficial in diabetes and ischemic heart disease, but there is a need to elucidate the specific cardiovascular effects of emerging and unconventional forms of exercise in people with diabetes. In addition, remote ischemic conditioning may be considered among the options to induce beneficial effects in these patients. The characteristics and interactions of diabetes and ischemic heart disease, and the known effects of exercise and remote ischemic conditioning in the presence of metabolic syndrome and diabetes, are analyzed in this brief review.
Collapse
|
9
|
Smith JR, Hart CR, Ramos PA, Akinsanya JG, Lanza IR, Joyner MJ, Curry TB, Olson TP. Metabo- and mechanoreceptor expression in human heart failure: Relationships with the locomotor muscle afferent influence on exercise responses. Exp Physiol 2020; 105:809-818. [PMID: 32105387 DOI: 10.1113/ep088353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? How do locomotor muscle metabo- and mechanoreceptor expression compare in heart failure patients and controls? Do relationships exist between the protein expression and cardiopulmonary responses during exercise with locomotor muscle neural afferent feedback inhibition? What is the main finding and its importance? Heart failure patients exhibited greater protein expression of transient receptor potential vanilloid type 1 and cyclooxygenase-2 than controls. These findings are important as they identify receptors that may underlie the augmented locomotor muscle neural afferent feedback in heart failure. ABSTRACT Heart failure patients with reduced ejection fraction (HFrEF) exhibit abnormal locomotor group III/IV afferent feedback during exercise; however, the underlying mechanisms are unclear. Therefore, the purpose of this study was to determine (1) metabo- and mechanoreceptor expression in HFrEF and controls and (2) relationships between receptor expression and changes in cardiopulmonary responses with afferent inhibition. Ten controls and six HFrEF performed 5 min of cycling exercise at 65% peak workload with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Arterial blood pressure and catecholamines were measured via radial artery catheter. A vastus lateralis muscle biopsy was performed to quantify cyclooxygenase-2 (COX-2), purinergic 2X3 (P2X3 ), transient receptor potential vanilloid type 1 (TRPV 1), acid-sensing ion channel 3 (ASIC3 ), Piezo 1 and Piezo 2 protein expression. TRPV 1 and COX-2 protein expression was greater in HFrEF than controls (both P < 0.04), while P2X3 , ASIC3 , and Piezo 1 and 2 were not different between groups (all P > 0.16). In all participants, COX-2 protein expression was related to the percentage change in ventilation (r = -0.66) and mean arterial pressure (MAP) (r = -0.82) (both P < 0.01) with FENT (relative to PLA) during exercise. In controls, TRPV 1 protein expression was related to the percentage change in systolic blood pressure (r = -0.77, P = 0.02) and MAP (r = -0.72, P = 0.03) with FENT (relative to PLA) during exercise. TRPV 1 and COX-2 protein levels are elevated in HFrEF compared to controls. These findings suggest that the elevated TRPV 1 and COX-2 expression may contribute to the exaggerated locomotor muscle afferent feedback during cycling exercise in HFrEF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey R Hart
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Paola A Ramos
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Ian R Lanza
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
|
11
|
Guicciardi M, Crisafulli A, Doneddu A, Fadda D, Lecis R. Effects of Metabolic Syndrome on Cognitive Performance of Adults During Exercise. Front Psychol 2019; 10:1845. [PMID: 31440195 PMCID: PMC6694762 DOI: 10.3389/fpsyg.2019.01845] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
The metabolic syndrome (MS) has been associated with poor performances in multiple cognitive domains, as processing speed, visuo-spatial abilities, and executive functioning. Exercise is a critical factor for MS people's vulnerability to cognitive dysfunction, because this may be beneficial to reduce cognitive impairment, but limited physical activity and impaired cerebral blood flow in response to exercise have been reported by individuals suffering from MS. Using an attentional interference test, the Bivalent Shape Task (BST), and metaboreflex, we analyzed cognitive performance and cerebral oxygenation (COX) in 13 MS people (five women), and 14 normal age-matched control (CTL, six women). Five different sessions were administered to all participants, each lasting 12 min: control exercise recovery (CER), post-exercise muscle ischemia (PEMI) to activate the metaboreflex, CER + BST, PEMI + BST, and BST alone. During each session, cognitive performance was assessed by means of response times and response accuracy with which participants make the decision and COX was evaluated by near infrared spectroscopy with sensors applied in the forehead. Compared to CTL, MS group performed significantly worse in all sessions (F = 4.18; p = 0.05; ES = 0.13): their poorest performance was observed in the BST alone session. Moreover, when BST was added to PEMI, individuals of the CTL group significantly increased their COX compared to baseline (103.46 ± 3.14%), whereas this capacity was impaired in MS people (102.37 ± 2.46%). It was concluded that: (1) MS affects cognitive performance; (2) people with MS were able to enhance COX during exercise, but they impair their COX when an attentional interference task was added.
Collapse
Affiliation(s)
- Marco Guicciardi
- Department of Pedagogy, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | | | - Azzurra Doneddu
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Daniela Fadda
- Department of Pedagogy, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Romina Lecis
- Department of Pedagogy, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Hoffmeister AD, Lima KSD, Cavalli NP, Callegaro CC. Metaborreflexo inspiratório eleva a pressão arterial em indivíduos obesos e eutróficos. FISIOTERAPIA EM MOVIMENTO 2019. [DOI: 10.1590/1980-5918.0032.ao42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Introdução: O metaborreflexo, ativado pelo acúmulo de metabólitos durante o exercício, ocasiona vasoconstrição periférica, resultando em elevação da pressão arterial. Indivíduos obesos apresentam redução da endurance muscular inspiratória, sugerindo um acúmulo precoce de metabólitos e, consequentemente, alterações no metaborreflexo inspiratório. Objetivo: Comparar as respostas hemodinâmicas mediadas pelo metaborreflexo inspiratório em indivíduos obesos e em eutróficos. Método: Participaram do estudo vinte indivíduos obesos (31 ± 6 anos, dez homens, 37,5 ± 4,7 kg/m 2 ) e vinte eutróficos (29 ± 8 anos, dez homens, 23,2 ± 1,5 kg/m 2 ) submetidos a avaliação da força muscular respiratória através de manovacuometria. O metaborreflexo inspiratório foi induzido através de exercício resistido a 60% da pressão inspiratória máxima mantido até a exaustão. O protocolo controle consistiu na respiração sem resistência inspiratória (zero cmH 2 O) mantida durante 30 minutos. A pressão arterial e a frequência cardíaca foram mensuradas ao longo dos protocolos, realizados em dias distintos e em ordem randomizada. Resultados: O protocolo de indução do metaborreflexo inspiratório induziu aumento das pressões arteriais sistólica, diastólica e média, bem como da frequência cardíaca semelhante em indivíduos obesos e eutróficos. Conforme esperado, no protocolo controle as variáveis hemodinâmicas permaneceram inalteradas. Conclusão: A força muscular inspiratória não variou (p = 0,814) entre indivíduos obesos e eutróficos. Este estudo sugere que indivíduos obesos apresentam respostas hemodinâmicas, induzidas pelo metaborreflexo inspiratório, semelhantes aos indivíduos eutróficos.
Collapse
|
13
|
Packer M. The conundrum of patients with obesity, exercise intolerance, elevated ventricular filling pressures and a measured ejection fraction in the normal range. Eur J Heart Fail 2018; 21:156-162. [PMID: 30561120 DOI: 10.1002/ejhf.1377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 11/03/2018] [Indexed: 01/15/2023] Open
Abstract
Patients with obesity, a reduced exercise capacity, increased cardiac filling pressures and a measured left ventricular ejection fraction in the normal range do not have a homogeneous disorder, but instead, exhibit one of three phenotypes. First, many obese people exhibit sodium retention, plasma volume expansion and cardiac enlargement, and some are likely to have heart failure that is related to hypervolaemia, even though cardiac index and circulating levels of natriuretic peptides are not meaningfully increased. Second, in some middle-aged men and women (particularly those with minimal co-morbidities), levels of natriuretic peptides increase markedly and can lower systemic vascular resistance, thus leading to high-output heart failure (HOHF) and glomerular hyperfiltration. Third, older obese people, particularly women with multiple co-morbidities, exhibit the syndrome of heart failure with a preserved ejection fraction (HFpEF). Despite degrees of plasma volume expansion similar to HOHF, these patients exhibit only modestly increased ventricular dimensions and circulating levels of natriuretic peptides (despite a high prevalence of atrial fibrillation), and glomerular function is characteristically impaired. A conceptual framework is proposed to distinguish among the three phenotypes seen in obese patients with exercise intolerance, increased ventricular filling pressures and a measured left ventricular ejection fraction in the normal range, since they may respond differently to therapeutic interventions. Efforts are needed to enhance the recognition of heart failure in obese people and to ensure that clinical trials that are designed to study patients with HFpEF actually enrol those who have the disease.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Roberto S, Milia R, Doneddu A, Pinna V, Palazzolo G, Serra S, Orrù A, Hosseini Kakhak SA, Ghiani G, Mulliri G, Pagliaro P, Crisafulli A. Hemodynamic abnormalities during muscle metaboreflex activation in patients with type 2 diabetes mellitus. J Appl Physiol (1985) 2018; 126:444-453. [PMID: 30543497 DOI: 10.1152/japplphysiol.00794.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metaboreflex is a reflex triggered during exercise or postexercise muscle ischemia (PEMI) by metaboreceptor stimulation. Typical features of metaboreflex are increased cardiac output (CO) and blood pressure. Patients suffering from metabolic syndrome display hemodynamic abnormalities, with an exaggerated systemic vascular resistance (SVR) and reduced CO response during PEMI-induced metaboreflex. Whether patients with type 2 diabetes mellitus (DM2) have similar hemodynamic abnormalities is unknown. Here we contrast the hemodynamic response to PEMI in 14 patients suffering from DM2 (age 62.7 ± 8.3 yr) and in 15 age-matched controls (CTLs). All participants underwent a control exercise recovery reference test and a PEMI test to obtain the metaboreflex response. Central hemodynamics were evaluated by unbiased operator-independent impedance cardiography. Although the blood pressure response to PEMI was not significantly different between the groups, we found that the SVR and CO responses were reversed in patients with DM2 as compared with the CTLs (SVR: 392.5 ± 549.6 and -14.8 ± 258.9 dyn·s-1·cm-5; CO: -0.25 ± 0.63 and 0.46 ± 0.50 l/m, respectively, in DM2 and in CTL groups, respectively; P < 0.05 for both). Of note, stroke volume (SV) increased during PEMI in the CTL group only. Failure to increase SV and CO was the consequence of reduced venous return, impaired cardiac performance, and augmented afterload in patients with DM2. We conclude that patients with DM2 have an exaggerated vasoconstriction in response to metaboreflex activation not accompanied by a concomitant increase in heart performance. Therefore, in these patients, blood pressure response to the metaboreflex relies more on SVR increases rather than on increases in SV and CO. NEW & NOTEWORTHY The main new finding of the present investigation is that subjects with type 2 diabetes mellitus have an exaggerated vasoconstriction in response to metaboreflex activation. In these patients, blood pressure response to the metaboreflex relies more on systemic vascular resistance than on cardiac output increments.
Collapse
Affiliation(s)
- Silvana Roberto
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Raffaele Milia
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Azzurra Doneddu
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Virginia Pinna
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Girolamo Palazzolo
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Stefano Serra
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Andrea Orrù
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | | | - Giovanna Ghiani
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Gabriele Mulliri
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Pasquale Pagliaro
- Cardiovascular Physiology Laboratory, Department of Clinical and Biological Science, University of Torino , Turin , Italy
| | - Antonio Crisafulli
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| |
Collapse
|
15
|
Crisafulli A. The Impact of Cardiovascular Diseases on Cardiovascular Regulation During Exercise in Humans: Studies on Metaboreflex Activation Elicited by the Post-exercise Muscle Ischemia Method. Curr Cardiol Rev 2018; 13:293-300. [PMID: 28782491 PMCID: PMC5730962 DOI: 10.2174/1573403x13666170804165928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hemodynamics during dynamic exercise is finely regulated by some neural mechanisms. One of these mechanisms is the metabolic part of the exercise pressor reflex, i.e. the muscle metaboreflex. Hemodynamic response during the metaboreflex is characterised by the recruitment of the reserves in cardiac inotropism, pre-load, after-load and chronotropism. If one of these reserves is exhausted, then the cardiovascular response is achieved by recruiting one of the other reserves, thereby indicating a remarkable plasticity of the control of circulation. CONCLUSION In this review, the effects of a number of cardiovascular diseases - such as heart failure, heart failure with preserved ejection fraction, hypertension, type 1 and type 2 diabetes mellitus, obesity and metabolic syndrome - on hemodynamics during the metaboreflex are reviewed.
Collapse
Affiliation(s)
- Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Via Porcell 4, 09124 Cagliari. Italy
| |
Collapse
|
16
|
Magnani S, Roberto S, Sainas G, Milia R, Palazzolo G, Cugusi L, Pinna V, Doneddu A, Kakhak SAH, Tocco F, Mercuro G, Crisafulli A. Metaboreflex-mediated hemodynamic abnormalities in individuals with coronary artery disease without overt signs or symptoms of heart failure. Am J Physiol Heart Circ Physiol 2017; 314:H452-H463. [PMID: 29127237 DOI: 10.1152/ajpheart.00436.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was devised to investigate the effect of coronary artery disease (CAD) without overt signs of heart failure on the cardiovascular responses to muscle metaboreflex activation. We hypothesized that any CAD-induced preclinical systolic and/or diastolic dysfunction could impair hemodynamic response to the metaboreflex test. Twelve men diagnosed with CAD without any sign or symptoms of heart failure and 11 age-matched healthy control (CTL) subjects participated in the study. Subjects performed a postexercise muscle ischemia (PEMI) test to activate the metaboreflex. They also performed a control exercise recovery test to compare data from the PEMI test. The main results were that the CAD group reached a similar mean arterial blood pressure response as the CTL group during PEMI. However, the mechanism by which this response was achieved was different between groups. In particular, CAD achieved the target mean arterial blood pressure by increasing systemic vascular resistance (+383.8 ± 256.6 vs. +91.2 ± 293.5 dyn·s-1·cm-5 for the CAD and CTL groups, respectively), the CTL group by increasing cardiac preload (-0.92 ± 8.53 vs. 5.34 ± 4.29 ml in end-diastolic volume for the CAD and CTL groups, respectively), which led to an enhanced stroke volume and cardiac output. Furthermore, the ventricular filling rate response was higher in the CTL group than in the CAD group during PEMI ( P < 0.05 for all comparisons). This study confirms that diastolic function is pivotal for normal hemodynamics during the metaboreflex. Moreover, it provides evidence that early signs of diastolic impairment attributable to CAD can be detected by the metaboreflex test. NEW & NOTEWORTHY Individuals suffering from coronary artery disease without overt signs of heart failure may show early signs of diastolic dysfunction, which can be detected by the metaboreflex test. During the metaboreflex, these subjects show impaired preload and stroke volume responses and exaggerated vasoconstriction compared with controls.
Collapse
Affiliation(s)
- Sara Magnani
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Silvana Roberto
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Gianmarco Sainas
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Raffaele Milia
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Girolamo Palazzolo
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Virginia Pinna
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Azzurra Doneddu
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | | | - Filippo Tocco
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| |
Collapse
|
17
|
Roberto S, Crisafulli A. Consequences of Type 1 and 2 Diabetes Mellitus on the Cardiovascular Regulation During Exercise: A Brief Review. Curr Diabetes Rev 2017; 13:560-565. [PMID: 27306960 PMCID: PMC5684785 DOI: 10.2174/1573399812666160614123226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/26/2023]
Abstract
INTRODUCTION One challenging problem in patients suffering from Diabetes Mellitus (DM) is the elevate incidence of cardiovascular events. Exercise has been proved useful in reducing cardiovascular risks in these patients. However, both type 1 and 2 DM significantly affect the cardiovascular response during exercise. Therefore, on one side exercise is considered to be a valid therapeutic tool for DM, whereas on the other side during exercise these patients may experience troubles in the cardiovascular regulation. BACKGROUND Several impairments at central and at peripheral level have been reported during exercise in both types of DM. For example, sympathetic dysfunctions have been demonstrated in type 1 and 2 DM. Furthermore, impairments in hemodynamics have been often reported. The purpose of the present paper is to briefly review the latest data on the role played by type 1 and 2 DM in the cardiovascular regulation during dynamic exercise. CONCLUSION Hemodynamic dysfunctions may develop in both type 1 and 2 DM during exercise. However, these cardiovascular dys-regulations are different between the two kinds of diabetes.
Collapse
Affiliation(s)
| | - Antonio Crisafulli
- Address correspondence to this author at the Department of Medical
Sciences, Sports Physiology Lab., University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy; Tel: +390706758937; Fax: +390706758917;
E-mail:
| |
Collapse
|
18
|
Dubey P, Tiwari S, Bajpai M, Singh K, Jha P. Effect of Metaboreflex on Cardiovascular System in Subjects of Metabolic Syndrome. J Clin Diagn Res 2017; 11:CC01-CC04. [PMID: 28892884 DOI: 10.7860/jcdr/2017/27583.10178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Metaboreflex is a reflex in which muscle receptors send signals regarding metabolic (metabolites accumulation like lactic acid, potassium, adenosine) conditions of the muscles to nucleus tractus solitarius via afferent III and IV fibres to cause haemodynamic adjustments in order to regulate blood flow on the basis of the status of contracting muscle. Dysregulation in its mechanism in metabolic syndrome is demonstrated. AIM To study the effect of metaboreflex by both isometric and rhythmic handgrip exercise on CVS parameters {Blood Pressure (BP), Cardiac Output (CO) and Systemic Vascular Resistance (SVR)} in subjects of metabolic syndrome. MATERIALS AND METHODS In this study, 27 subjects aged 25 to 45 years were enrolled after ethical clearance and proper consent. They were divided into: a) subjects without metabolic syndrome; and b) subjects with metabolic syndrome. Impedance cardiovasography was done to assess cardiac parameters (systolic and diastolic blood pressure, cardiac output, systemic vascular resistance). Pre-exercise parameters were assessed followed by isometric exercise and post-isometric exercise parameter measurement. Again after rest, rhythmic exercise was followed. Finally post exercise parameters were assessed. Student paired t-test for comparison between pre and post exercise parameters were done. RESULTS Changes in diastolic BP following exercise were statistically significant in subjects without metabolic syndrome (p-value 0.01 and 0.001 following isometric and rhythmic exercise respectively). In subjects with metabolic syndrome also these changes were significant, but to a lesser extent (p-value 0.1 and 0.01 respectively for isometric and rhythmic exercise). Changes in systolic BP following exercise were statistically significant in subjects without metabolic syndrome (p-value 0.001 and 0.001 following isometric and rhythmic exercise respectively). In subjects with metabolic syndrome also these changes were significant (p-value 0.01 and 0.001 respectively for isometric and rhythmic exercise). CONCLUSION Diminished pressor response is found after exercise in subjects with metabolic syndrome.
Collapse
Affiliation(s)
- Pramita Dubey
- Junior Resident, Department of Physiology, KGMU, Lucknow, Uttar Pradesh, India
| | - Sunita Tiwari
- Professor and Head, Department of Physiology, KGMU, Lucknow, Uttar Pradesh, India
| | - Manish Bajpai
- Professor, Department of Physiology, KGMU, Lucknow, Uttar Pradesh, India
| | - Kalpana Singh
- Assistant Professor, Department of Biochemistry, KGMU, Lucknow, Uttar Pradesh, India
| | - Praveen Jha
- Senior Resident, Department of Gastroenterology, RMLIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017; 183:57-70. [PMID: 28130064 PMCID: PMC5393930 DOI: 10.1016/j.trsl.2017.01.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind.
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Kieren J Mather
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind; Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
20
|
Feriani DJ, Coelho HJ, Scapini KB, de Moraes OA, Mostarda C, Ruberti OM, Uchida MC, Caperuto ÉC, Irigoyen MC, Rodrigues B. Effects of inspiratory muscle exercise in the pulmonary function, autonomic modulation, and hemodynamic variables in older women with metabolic syndrome. J Exerc Rehabil 2017; 13:218-226. [PMID: 28503537 PMCID: PMC5412498 DOI: 10.12965/jer.1734896.448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the effects of inspiratory muscle exercise (IME) on metabolic and hemodynamic parameters, cardiac autonomic modulation and respiratory function of older women with metabolic syndrome (MS). For this, sixteen older women with MS and 12 aged-matched controls participated of the present study. Two days before and 2 days after the main experiment, fasting blood samples (i.e., total cholesterol, triglycerides and blood glucose), cardiac autonomic modulation (i.e., heart rate variability), and respiratory muscle function were obtained and evaluated. The sessions of physical exercise was based on a IME, which was performed during 7 days. Each session of IME was performed during 20 min, at 30% of maximal static inspiratory pressure. In the results, MS group presented higher levels of triglycerides, blood glucose, and systolic blood pressure when compared to control group. IME was not able to change these variables. However, although MS group showed impaired respiratory muscle strength and function, as well as cardiac autonomic modulation, IME was able to improve these parameters. Thus, the data showed that seven days of IME are capable to improve respiratory function and cardiac autonomic modulation of older women with MS. These results indicate that IME can be a profitable therapy to counteracting the clinical markers of MS, once repeated sessions of acute IME can cause chronical alterations on respiratory function and cardiac autonomic modulation.
Collapse
Affiliation(s)
- Daniele Jardim Feriani
- Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil.,Human Movement Laboratory, Sao Judas Tadeu University (USJT), São Paulo, Brazil
| | - Hélio José Coelho
- Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - Kátia Bilhar Scapini
- Hypertension Unit, Heart Institute (InCor), Medical School of University of Sao Paulo, São Paulo, Brazil
| | | | | | | | - Marco Carlos Uchida
- Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Maria Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), Medical School of University of Sao Paulo, São Paulo, Brazil
| | - Bruno Rodrigues
- Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
21
|
Roberto S, Mulliri G, Milia R, Solinas R, Pinna V, Sainas G, Piepoli MF, Crisafulli A. Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction. J Appl Physiol (1985) 2016; 122:376-385. [PMID: 27979984 DOI: 10.1152/japplphysiol.00645.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of the present investigation was to assess the role of cardiac diastole on the hemodynamic response to metaboreflex activation. We wanted to determine whether patients with diastolic function impairment showed a different hemodynamic response compared with normal subjects during this reflex. Hemodynamics during activation of the metaboreflex obtained by postexercise muscle ischemia (PEMI) was assessed in 10 patients with diagnosed heart failure with preserved ejection fraction (HFpEF) and in 12 age-matched healthy controls (CTL). Subjects also performed a control exercise-recovery test to compare data from the PEMI test. The main results were that patients with HFpEF achieved a similar mean arterial blood pressure (MAP) response as the CTL group during the PEMI test. However, the mechanism by which this response was achieved was markedly different between the two groups. Patients with HFpEF achieved the target MAP via an increase in systemic vascular resistance (+389.5 ± 402.9 vs. +80 ± 201.9 dynes·s-1·cm-5 for HFpEF and CTL groups respectively), whereas MAP response in the CTL group was the result of an increase in cardiac preload (-1.3 ± 5.2 vs. 6.1 ± 10 ml in end-diastolic volume for HFpEF and CTL groups, respectively), which led to a rise in stroke volume and cardiac output. Moreover, early filling peak velocities showed a higher response in the CTL group than in the HFpEF group. This study demonstrates that diastolic function is important for normal hemodynamic adjustment to the metaboreflex. Moreover, it provides evidence that HFpEF causes hemodynamic impairment similar to that observed in systolic heart failure.NEW & NOTEWORTHY This study provides evidence that diastolic function is important for normal hemodynamic responses during the activation of the muscle metaboreflex in humans. Moreover, it demonstrates that diastolic impairment leads to hemodynamic consequences similar to those provoked by systolic heart failure. In both cases the target blood pressure is obtained mainly by means of exaggerated vasoconstriction than by a flow-mediated mechanism.
Collapse
Affiliation(s)
- Silvana Roberto
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Gabriele Mulliri
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Raffaele Milia
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Roberto Solinas
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Virginia Pinna
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Gianmarco Sainas
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | | | - Antonio Crisafulli
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| |
Collapse
|
22
|
Figueroa A, Alvarez-Alvarado S, Jaime SJ, Johnson SA, Campbell JC, Feresin RG, Elam ML, Navaei N, Pourafshar S, Arjmandi BH. Influence of low and normal appendicular lean mass on central blood pressure and wave reflection responses to muscle metaboreflex activation in postmenopausal women. Clin Exp Pharmacol Physiol 2016; 43:1243-1246. [DOI: 10.1111/1440-1681.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Arturo Figueroa
- Department of Nutrition, Food and Exercise Sciences; Florida State University; Tallahassee FL USA
| | - Stacey Alvarez-Alvarado
- Department of Nutrition, Food and Exercise Sciences; Florida State University; Tallahassee FL USA
| | - Salvador J Jaime
- Department of Nutrition, Food and Exercise Sciences; Florida State University; Tallahassee FL USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition; Colorado State University; Fort Collins CO USA
| | - Jeremiah C Campbell
- Department of Nutrition, Food and Exercise Sciences; Florida State University; Tallahassee FL USA
| | - Rafaela G Feresin
- Department of Dietetics and Nutrition; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Marcus L Elam
- Department of Human Nutrition and Food Science; Cal Poly Pomona; Pomona CA USA
| | - Negin Navaei
- Department of Nutrition, Food and Exercise Sciences; Florida State University; Tallahassee FL USA
| | - Shirin Pourafshar
- Department of Nutrition, Food and Exercise Sciences; Florida State University; Tallahassee FL USA
| | - Bahram H Arjmandi
- Department of Nutrition, Food and Exercise Sciences; Florida State University; Tallahassee FL USA
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA); Florida State University; Tallahassee FL USA
| |
Collapse
|
23
|
Magnani S, Olla S, Pau M, Palazzolo G, Tocco F, Doneddu A, Marcelli M, Loi A, Corona F, Corona F, Coghe G, Marrosu MG, Concu A, Cocco E, Marongiu E, Crisafulli A. Effects of Six Months Training on Physical Capacity and Metaboreflex Activity in Patients with Multiple Sclerosis. Front Physiol 2016; 7:531. [PMID: 27895592 PMCID: PMC5108173 DOI: 10.3389/fphys.2016.00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with multiple sclerosis (MS) have an increased systemic vascular resistance (SVR) response during the metaboreflex. It has been hypothesized that this is the consequence of a sedentary lifestyle secondary to MS. The purpose of this study was to discover whether a 6-month training program could reverse this hemodynamic dysregulation. Patients were randomly assigned to one of the following two groups: the intervention group (MSIT, n = 11), who followed an adapted training program; and the control group (MSCTL, n = 10), who continued with their sedentary lifestyle. Cardiovascular response during the metaboreflex was evaluated using the post-exercise muscle ischemia (PEMI) method and during a control exercise recovery (CER) test. The difference in hemodynamic variables such as stroke volume (SV), cardiac output (CO), and SVR between the PEMI and the CER tests was calculated to assess the metaboreflex response. Moreover, physical capacity was measured during a cardiopulmonary test till exhaustion. All tests were repeated after 3 and 6 months (T3 and T6, respectively) from the beginning of the study. The main result was that the MSIT group substantially improved parameters related to physical capacity (+5.31 ± 5.12 ml·min−1/kg in maximal oxygen uptake at T6) in comparison with the MSCTL group (−0.97 ± 4.89 ml·min−1/kg at T6; group effect: p = 0.0004). However, none of the hemodynamic variables changed in response to the metaboreflex activation. It was concluded that a 6-month period of adapted physical training was unable to reverse the hemodynamic dys-regulation in response to metaboreflex activation in these patients.
Collapse
Affiliation(s)
- Sara Magnani
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Sergio Olla
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari Cagliari, Italy
| | - Girolamo Palazzolo
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Filippo Tocco
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Azzurra Doneddu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Maura Marcelli
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Andrea Loi
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Federica Corona
- Department of Mechanical, Chemical and Materials Engineering, University of CagliariCagliari, Italy; Department of Public Health, Clinical and Molecular Medicine, University of CagliariCagliari, Italy
| | - Francesco Corona
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Giancarlo Coghe
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari Cagliari, Italy
| | - Maria G Marrosu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Alberto Concu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Eleonora Cocco
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari Cagliari, Italy
| | - Elisabetta Marongiu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Antonio Crisafulli
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| |
Collapse
|
24
|
Long Term Home-Based Exercise is Effective to Reduce Blood Pressure in Low Income Brazilian Hypertensive Patients: A Controlled Trial. High Blood Press Cardiovasc Prev 2016; 23:395-404. [PMID: 27658925 DOI: 10.1007/s40292-016-0169-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/08/2016] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Home-based exercise programs may increase adherence to physical activity among groups with poor access to exercise facilities. However, their effectiveness to lower blood pressure of hypertensive patients remains undefined. AIMS This controlled clinical trial investigated the influence of a home-based exercise program upon blood pressure, blood metabolic profile, and physical fitness in a Brazilian cohort of low income patients diagnosed with hypertension. METHODS Twenty-nine patients (22 women, age: 53 ± 11 years) underwent 16 months of home-based exercise, including 30 min of moderate intensity walking and stretching exercises. Fourteen patients (9 women, age: 48 ± 5 years) composed a non-exercise control group. Primary outcomes were assessed each two months. RESULTS Body mass (3.6 ± 0.2 kg; P = 0.03) and sum of skinfolds (3.0 ± 1.2 cm; P = 0.04) increased in controls vs. baseline. Mean compliance to home-based exercise was 83 ± 7 %, which induced significant improvements from baseline vs. controls in body mass (-5.4 ± 2.0 kg; P = 0.04), body fat (-4.7 ± 0.3 %; P = 0.03), waist circumference (-6.1 ± 1.2 cm; P = 0.03), sum of skinfolds (-14.8 ± 3.7; P = 0.02); aerobic efficiency reflected by slopes of relationships between heart rate and workload (-0.05 ± 0.01; P = 0.05), trunk flexibility (7.8 ± 1.7 cm; P = 0.02), HDL (1.8 ± 0.9 mg/dL; P = 0.04), triglycerides (-12.3 ± 1.0 mg/dL; P = 0.03), and glucose (-6.9 ± 2.9 mg/dL; P = 0.05). Systolic and diastolic BP decreased until the sixth month of intervention vs. baseline and controls, remaining stable at lower levels thereafter (systolic blood pressure: -4.5 ± 0.3 mmHg; P = 0.03; diastolic blood pressure: -2.5 ± 0.6 mmHg; P = 0.05). CONCLUSIONS Low income hypertensive patients complied with a long-term home-based exercise program, which was effective for improving their functional capacity, blood metabolic profile, and blood pressure.
Collapse
|
25
|
Metaboreflex activity in multiple sclerosis patients. Eur J Appl Physiol 2015; 115:2481-90. [PMID: 26429722 DOI: 10.1007/s00421-015-3271-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The muscle metaboreflex activation has been shown essential to reach normal hemodynamic response during exercise. It has been demonstrated that patients with multiple sclerosis (MS) have impaired autonomic functions and cardiovascular regulation during exercise. However, to the best of our knowledge, no previous research to date has studied the metaboreflex in MS patients. The purpose of this study was to investigate the hemodynamic response to metaboreflex activation in patients with MS (n = 43) compared to an age-matched, control group (CTL, n = 21). METHODS Cardiovascular response during the metaboreflex was evaluated using the post-exercise muscle ischemia (PEMI) method and during a control exercise recovery (CER) test. The difference in hemodynamics between the PEMI and the CER test was calculated and this procedure allowed for the assessment of the metaboreflex response. Hemodynamics was estimated by impedance cardiography. RESULTS The MS group showed a normal mean blood pressure (MBP) response as compared to the CTL group (+6.5 ± 6.9 vs. +8 ± 6.8 mmHg, respectively), but this response was achieved with an increase in systemic vascular resistance, that was higher in the MS with respect to the CTL group (+137.6 ± 300.5 vs. -14.3 ± 240 dyne · s(-1) cm(-5), respectively). This was the main consequence of the MS group's incapacity to raise the stroke volume (-0.65 ± 10.6 vs. +6.2 ± 12.8 ml, respectively). CONCLUSION It was concluded that MS patients have an impaired capacity to increase stroke volume (SV) in response to low level metaboreflex, even if they could sustain the MBP response by vasoconstriction. This was probably a consequence of their chronic physical de-conditioning.
Collapse
|