1
|
Fujita Y, Kamijo YI, Kinoshita T, Hashizaki T, Murai K, Yoshikawa T, Umemoto Y, Kaminaka C, Shibasaki M, Tajima F, Nishimura Y. Observations of cold-induced vasodilation in persons with spinal cord injuries. Spinal Cord 2024; 62:170-177. [PMID: 38388759 PMCID: PMC11003866 DOI: 10.1038/s41393-024-00960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
STUDY DESIGN Acute experimental study. OBJECTIVES Cold-induced vasodilation is a local mechanism of protection against frostbite in non-injured persons. We assessed whether an increase in skin blood flow (SkBF) during local cooling (LC) was observed in individuals with spinal cord injuries (SCIs) and if the response patterns differed between region levels or sites. SETTING Laboratory of Wakayama Medical University and the affiliated clinics, Japan. METHODS A local cooler device (diameter 4 cm) was placed on the chest (sensate) and right thigh (non-sensate) in persons with cervical (SCIC; n = 9) and thoracolumbar SCIs (SCITL; n = 9). After the surface temperature under the device was controlled at 33 °C for 10 min (baseline), LC (-0.045 °C/s) was applied and the skin temperature was maintained at 15 and 8 °C for 15 min of each stage. SkBF (laser Doppler flowmetry) was monitored using a 1-mm needle-type probe inserted into its center. RESULTS The percent change in SkBF (%ΔSkBF) on the chest remained unchanged until the end of 15 °C stage; thereafter, it increased to a level at least 70% greater than the baseline during the 8 °C stage in both groups. The %ΔSkBF on the thigh in both SCIC and SCITL notably increased from 8 and 6 min respectively, during the 8°C stage, compared to 1 min before the stage; however, it did not exceed the baseline level. CONCLUSIONS An increase in SkBF during LC was observed both in the sensate and non-sensate areas in SCIs, although the magnitude was larger in the sensate area.
Collapse
Affiliation(s)
- Yasuhisa Fujita
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yoshi-Ichiro Kamijo
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan.
| | - Tokio Kinoshita
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takamasa Hashizaki
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kouta Murai
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tatsuya Yoshikawa
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Chikako Kaminaka
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | | | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Rehabilitation Medicine, Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
2
|
Ushijima M, Kunimura K, Suzuki JI. S -1-Propenylcysteine, a sulfur compound in aged garlic extract, alleviates cold-induced reduction in peripheral blood flow in rat via activation of the AMPK/eNOS/NO pathway. Exp Ther Med 2020; 20:2815-2821. [PMID: 32765777 PMCID: PMC7401927 DOI: 10.3892/etm.2020.8969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Aged garlic extract (AGE) has been shown to improve peripheral circulatory disturbances in both clinical trials and experimental animal models. To investigate the effect of S-1-propenylcysteine (S1PC), a characteristic sulfur compound in AGE, on cold-induced reduction in tail blood flow of rat, Wistar rats were individually placed in a restraint cage and given the treatment with cold water (15˚C) after the oral administration of AGE or its constituents S1PC, S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC). After the cold-treatment the tail blood flow of rats was measured at the indicated times. The pretreatment with AGE (2 g/kg BW) and S1PC (6.5 mg/kg BW) significantly alleviated the reduction of rat tail blood flow induced by cold treatment. The effect of S1PC was dose-dependent and maximal at the dose of 6.5 mg/kg BW, whereas SAC and SAMC were ineffective. To gain insight into the mechanism of S1PC action, the concentration of nitrogen oxide metabolites (NOx) in the plasma and the levels of phosphorylated endothelial nitric oxide synthase (eNOS) and 5'-AMP-activated protein kinase (AMPK) in the aorta were measured. The pretreatment with S1PC significantly increased the plasma concentration of NOx as well as the level of phosphorylated form of AMPK and eNOS in the aorta after cold-treatment. The present findings suggest that S1PC is a major constituent responsible for the effect of AGE to alleviate the cold-induced reduction of peripheral blood flow in rat by acting on the AMPK/eNOS/NO pathway in the aorta.
Collapse
Affiliation(s)
- Mitsuyasu Ushijima
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Kayo Kunimura
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| |
Collapse
|
3
|
|
4
|
Zhang T, Niu J, Wang Y, Yan J, Hu W, Mi D. The role of C-afferents in mediating neurogenic vasodilatation in plantar skin after acute sciatic nerve injury in rats. BMC Neurosci 2020; 21:15. [PMID: 32299361 PMCID: PMC7161243 DOI: 10.1186/s12868-020-00564-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Background Vasomotor regulation of dermal blood vessels, which are critical in the function of the skin in thermoregulatory control, involves both neural and non-neural mechanisms. Whereas the role of sympathetic nerves in regulating vasomotor activities is comprehensively studied and well recognized, that of sensory nerves is underappreciated. Studies in rodents have shown that severance of the sciatic nerve leads to vasodilatation in the foot, but whether sympathetic or sensory nerve fibers or both are responsible for the neurogenic vasodilatation remains unknown. Results In adult Sprague–Dawley rats, vasodilatation after transection of the sciatic nerve gradually diminished to normal within 3–4 days. The neurotmesis-induced neurogenic vasodilatation was not detectable when the sciatic nerve was chronically deafferentated by selective resection of the dorsal root ganglia (DRGs) that supply the nerve. Specific activation of C-afferents by intra-neural injection of capsaicin resulted in neurogenic vasodilatation to a magnitude comparable to that by neurotmesis, and transection of the sciatic nerve pre-injected with capsaicin did not induce further vasodilatation. Conclusions Our results collectively indicate that vasodilatation after traumatic nerve injury in rats is predominantly mediated by C-fiber afferents.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiology, The Third People's Hospital of Nantong City and The Third Nantong Hospital Affiliated to Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahui Niu
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yaxian Wang
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001, Jiangsu, China
| | - Junying Yan
- School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Wen Hu
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Daguo Mi
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Lobov GI, Gerasimenko YP, Moshonkina TR. Mechanisms of Blood Flow Regulation in the Skin during Stimulation of the Spinal Cord in Humans. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2019; 485:27-29. [PMID: 31197588 DOI: 10.1134/s0012496619020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/14/2023]
Abstract
Changes in the blood flow in the shin skin were observed by laser Doppler flowmetry after transcutaneous electrical spinal cord stimulation (TSCS) by subthreshold bipolar pulses with a frequency of 30 Hz in 12 healthy subjects. It was found that TSCS in the area of the T11 and L1 vertebrae led to a significant increase in skin blood flow. The microcirculation rate increased by more than 85% relative to the baseline at a stimulus intensity of 90% of the motor threshold. Cutaneous blood flow activization by TSCS is implemented mainly through the antidromic stimulation of sensory nerve fibers. Nitric oxide (NO) is an important mediator that contributes to vasodilation and increase in cutaneous blood flow upon TSCS. NO is predominantly of endothelial origin.
Collapse
Affiliation(s)
- G I Lobov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034, St. Petersburg, Russia.
| | - Yu P Gerasimenko
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - T R Moshonkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034, St. Petersburg, Russia
| |
Collapse
|
6
|
Alba BK, Castellani JW, Charkoudian N. Cold‐induced cutaneous vasoconstriction in humans: Function, dysfunction and the distinctly counterproductive. Exp Physiol 2019; 104:1202-1214. [DOI: 10.1113/ep087718] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Billie K. Alba
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
- Oak Ridge Institute of Science and Education Belcamp MD USA
| | - John W. Castellani
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
| | - Nisha Charkoudian
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
| |
Collapse
|
7
|
Khoshnevis S, Matthew Brothers R, Diller KR. Level of Cutaneous Blood Flow Depression During Cryotherapy Depends on Applied Temperature: Criteria for Protocol Design. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2018; 1:0410071-410079. [PMID: 35832308 PMCID: PMC8597570 DOI: 10.1115/1.4041463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/06/2018] [Indexed: 06/15/2023]
Abstract
Cryotherapy is commonly used for the management of soft tissue injury. The dose effect of the applied cooling temperature has not been quantified previously. Six subjects were exposed during five different experiments to local skin temperatures of 16.6 °C, 19.8 °C, 24.7 °C, 27.3 °C, and 37.2 °C for 1 h of active heat transfer followed by 2 h of passive environmental interaction. Skin blood perfusion and temperature were measured continuously at treatment and control sites. All treatments resulted in significant changes in cutaneous vascular conductance (CVC, skin perfusion/mean arterial pressure) compared to baseline values. The drop in CVC for cooling to both 19.8 °C and 16.6 °C was significantly larger than for 27.3 °C (P < 0.05 and P < 0.0005, respectively). The depression of CVC for cooling to 16.6 °C was significantly larger than at 24.7 °C (P < 0.05). Active warming at 37.2 °C produced more than a twofold increase in CVC (P < 0.05). A simulation model was developed to describe the coupled effects of exposure time and temperature on skin perfusion. The model was applied to define an equivalent cooling dose defined by exposure time and temperature that produced equivalent changes in skin perfusion. The model was verified with data from 22 independent cryotherapy experiments. The equivalent doses were applied to develop a nomogram to identify therapeutic time and temperature combinations that would produce a targeted vascular response. The nomogram may be applied to design cryotherapy protocols that will yield a desired vascular response history that may combine the benefits of tissue temperature reduction while diminishing the risk of collateral ischemic injury.
Collapse
Affiliation(s)
- Sepideh Khoshnevis
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| | - R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, MAC 114, Arlington, TX 78229 e-mail:
| | - Kenneth R Diller
- Fellow ASME Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| |
Collapse
|
8
|
Hodges GJ, Cheung SS. The effect of repeated bouts of hyperaemia on sensory nerve-mediated cutaneous vasodilatation in humans. Microvasc Res 2018; 119:22-28. [DOI: 10.1016/j.mvr.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|
9
|
Khoshnevis S, Craik NK, Matthew Brothers R, Diller KR. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion. J Biomech Eng 2016; 138:4032126. [PMID: 26632263 DOI: 10.1115/1.4032126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 12/13/2022]
Abstract
The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC-skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy.
Collapse
|
10
|
Hodges GJ, McGarr GW, Mallette MM, Del Pozzi AT, Cheung SS. The contribution of sensory nerves to the onset threshold for cutaneous vasodilatation during gradual local skin heating of the forearm and leg. Microvasc Res 2016; 105:1-6. [DOI: 10.1016/j.mvr.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/03/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
11
|
The contribution of sensory nerves to cutaneous vasodilatation of the forearm and leg to local skin heating. Eur J Appl Physiol 2015; 115:2091-8. [PMID: 25998144 DOI: 10.1007/s00421-015-3188-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/09/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The initial cutaneous vasodilatory response to local skin heating is larger in the forearm than the leg. While the initial vasodilatation of the forearm to local heating is primarily dependent on sensory nerves, their role in the leg is unknown. We compared the contribution of sensory nerves in driving the cutaneous vasodilatory response of the forearm and leg to local heating using local anaesthetic (EMLA) cream. METHOD In seven participants, two skin sites were selected on both the dorsal forearm and anterolateral calf; one site on each region received EMLA, with the other an untreated control. All sites were controlled at 33 °C and then locally heated to 42 °C with integrated laser-Doppler local heating probes. RESULTS Cutaneous vascular conductance (CVC) during the initial vasodilatation to local heating was smaller in the leg (47 ± 9% max) compared to the forearm (62 ± 7 % max) (P = 0.012). EMLA reduced the initial vasodilatation at both the leg (27 ± 13 % max) (P = 0.02) and forearm (33 ± 14% max) (P < 0.001). The times to onset of vasodilatation, initial vasodilatory peak, and plateau phase were longer in the leg compared to the forearm (all P < 0.05), and EMLA increased these times in both regions (both P < 0.05). CVC during the plateau phase to sustained local skin heating was higher in the leg compared to the forearm at both the untreated (93 ± 6 vs. 85 ± 4% max) (P = 0.33) and EMLA-treated (94 ± 5 vs. 86 ± 6% max) (P = 0.001) sites; EMLA did not affect CVC (P > 0.05). CONCLUSION The differences in the initial vasodilatory peak to local skin heating between the forearm and the leg are due to the contribution of sensory nerves.
Collapse
|
12
|
Aubdool AA, Graepel R, Kodji X, Alawi KM, Bodkin JV, Srivastava S, Gentry C, Heads R, Grant AD, Fernandes ES, Bevan S, Brain SD. TRPA1 is essential for the vascular response to environmental cold exposure. Nat Commun 2014; 5:5732. [PMID: 25501034 PMCID: PMC4284811 DOI: 10.1038/ncomms6732] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/03/2014] [Indexed: 01/15/2023] Open
Abstract
The cold-induced vascular response, consisting of vasoconstriction followed by vasodilatation, is critical for protecting the cutaneous tissues against cold injury. Whilst this physiological reflex response is historic knowledge, the mechanisms involved are unclear. Here by using a murine model of local environmental cold exposure, we show that TRPA1 acts as a primary vascular cold sensor, as determined through TRPA1 pharmacological antagonism or gene deletion. The initial cold-induced vasoconstriction is mediated via TRPA1-dependent superoxide production that stimulates α2C-adrenoceptors and Rho-kinase-mediated MLC phosphorylation, downstream of TRPA1 activation. The subsequent restorative blood flow component is also dependent on TRPA1 activation being mediated by sensory nerve-derived dilator neuropeptides CGRP and substance P, and also nNOS-derived NO. The results allow a new understanding of the importance of TRPA1 in cold exposure and provide impetus for further research into developing therapeutic agents aimed at the local protection of the skin in disease and adverse climates. Blood flow in the skin of mammals changes in response to cold, but the mechanisms driving this response are unclear. Aubdool et al. show that the non-selective cation channel, TRPA1, is a vascular cold sensor and required for the vascular protective response to local cold exposure.
Collapse
Affiliation(s)
- Aisah A Aubdool
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Rabea Graepel
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Xenia Kodji
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Khadija M Alawi
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Jennifer V Bodkin
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Salil Srivastava
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Clive Gentry
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK
| | - Richard Heads
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Andrew D Grant
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK
| | - Elizabeth S Fernandes
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| | - Stuart Bevan
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK
| | - Susan D Brain
- BHF Cardiovascular Centre of Excellence and Centre of Integrative Biomedicine, Cardiovascular Division, King's College London, London SE1 9NH, UK
| |
Collapse
|
13
|
Albrecht PJ, Hou Q, Argoff CE, Storey JR, Wymer JP, Rice FL. Excessive peptidergic sensory innervation of cutaneous arteriole-venule shunts (AVS) in the palmar glabrous skin of fibromyalgia patients: implications for widespread deep tissue pain and fatigue. PAIN MEDICINE 2013; 14:895-915. [PMID: 23691965 DOI: 10.1111/pme.12139] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine if peripheral neuropathology exists among the innervation of cutaneous arterioles and arteriole-venule shunts (AVS) in fibromyalgia (FM) patients. SETTING Cutaneous arterioles and AVS receive a convergence of vasoconstrictive sympathetic innervation, and vasodilatory small-fiber sensory innervation. Given our previous findings of peripheral pathologies in chronic pain conditions, we hypothesized that this vascular location may be a potential site of pathology and/or serotonergic and norepinephrine reuptake inhibitors (SNRI) drug action. SUBJECTS Twenty-four female FM patients and nine female healthy control subjects were enrolled for study, with 14 additional female control subjects included from previous studies. AVS were identified in hypothenar skin biopsies from 18/24 FM patient and 14/23 control subjects. METHODS Multimolecular immunocytochemistry to assess different types of cutaneous innervation in 3 mm skin biopsies from glabrous hypothenar and trapezius regions. RESULTS AVS had significantly increased innervation among FM patients. The excessive innervation consisted of a greater proportion of vasodilatory sensory fibers, compared with vasoconstrictive sympathetic fibers. In contrast, sensory and sympathetic innervation to arterioles remained normal. Importantly, the sensory fibers express α2C receptors, indicating that the sympathetic innervation exerts an inhibitory modulation of sensory activity. CONCLUSIONS The excessive sensory innervation to the glabrous skin AVS is a likely source of severe pain and tenderness in the hands of FM patients. Importantly, glabrous AVS regulate blood flow to the skin in humans for thermoregulation and to other tissues such as skeletal muscle during periods of increased metabolic demand. Therefore, blood flow dysregulation as a result of excessive innervation to AVS would likely contribute to the widespread deep pain and fatigue of FM. SNRI compounds may provide partial therapeutic benefit by enhancing the impact of sympathetically mediated inhibitory modulation of the excess sensory innervation.
Collapse
|
14
|
Zalewski P, Klawe JJ, Pawlak J, Tafil-Klawe M, Newton J. Thermal and hemodynamic response to whole-body cryostimulation in healthy subjects. Cryobiology 2013; 66:295-302. [PMID: 23535554 DOI: 10.1016/j.cryobiol.2013.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 02/04/2013] [Accepted: 03/07/2013] [Indexed: 11/25/2022]
Abstract
Whole-body cryotherapy (WBC) is an increasing applied cryotherapeutic method, that involves application of a cryotherapeutic factor to stimulate the body by the means of intense hypothermia of virtually the body's entire area. This method is still not well recognized in Western Europe. However in recent years it is becoming increasingly popular in sports medicine and also in clinical application. Cryotherapeutic agents used in WBC are considered to be a strong stress stimulus which is associated with a variety of changes in functional parameters, particularly of the cardiovascular and autonomic nervous systems. However, such strong influence upon the entire body could be associated with the risk of unexpected reactions which might be dangerous for homeostasis. The present study evaluated the complex hemodynamic physiological reactions in response to WBC exposure in healthy subjects. Thirty healthy male volunteers participated. Each subject was exposed to WBC (-120°C) for 3-min. None of the participants had been exposed to such conditions previously. The research was conducted with modern and reliable measurements techniques, which assessed complex hemodynamic reactions and skin temperature changes non-invasively. All measurements were performed four times (before WBC, after WBC, WBC+3h and WBC+6h) with a Task Force Monitor (TFM - CNSystems, Medizintechnik, Gratz, Austria). Body superficial temperature was measured by infrared thermographic techniques - infra-red camera Flir P640 (Flir Systems Inc., Sweden). Our results show a significant decrease in heart rate, cardiac output, and increase in stroke volume, total peripheral resistance and baroreceptors reflex sensitivity. These changes were observed just after WBC exposure. At stages WBC+3h and WBC+6h there was observed a significant drop in baroreceptors reflex sensitivity due to increased thermogenesis. In conclusion, the present findings suggest that WBC strongly stimulates the baroreceptor cardiac reflex in response to body fluid changes which sequentially modulate HR and BP control in supine and resting healthy subjects. The study was performed on randomized and homogenic group of young healthy subjects. Our findings are important for WBC safety determination in research and clinical studies.
Collapse
Affiliation(s)
- Pawel Zalewski
- Department of Hygiene and Epidemiology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9 85-094 Bydgoszcz, Poland.
| | | | | | | | | |
Collapse
|
15
|
Wong BJ. Sensory nerves and nitric oxide contribute to reflex cutaneous vasodilation in humans. Am J Physiol Regul Integr Comp Physiol 2013; 304:R651-6. [PMID: 23408029 DOI: 10.1152/ajpregu.00464.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that inhibition of cutaneous sensory nerves would attenuate reflex cutaneous vasodilation in response to an increase in core temperature. Nine subjects were equipped with four microdialysis fibers on the forearm. Two sites were treated with topical anesthetic EMLA cream for 120 min. Sensory nerve inhibition was verified by lack of sensation to a pinprick. Microdialysis fibers were randomly assigned as 1) lactated Ringer (control); 2) 10 mM nitro-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase; 3) EMLA + lactated Ringer; and 4) EMLA + L-NAME. Laser-Doppler flowmetry was used as an index of skin blood flow, and blood pressure was measured via brachial auscultation. Subjects wore a water-perfused suit, and oral temperature was monitored as an index of core temperature. The suit was perfused with 50°C water to initiate whole body heat stress to raise oral temperature 0.8°C above baseline. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVC(max)). There was no difference in CVC between control and EMLA sites (67 ± 5 vs. 69 ± 6% CVC(max)), but the onset of vasodilation was delayed at EMLA compared with control sites. The L-NAME site was significantly attenuated compared with control and EMLA sites (45 ± 5% CVC(max); P < 0.01). Combined EMLA + L-NAME site (25 ± 6% CVC(max)) was attenuated compared with control and EMLA (P < 0.001) and L-NAME only (P < 0.01). These data suggest cutaneous sensory nerves contribute to reflex cutaneous vasodilation during the early, but not latter, stages of heat stress, and full expression of reflex cutaneous vasodilation requires functional sensory nerves and NOS.
Collapse
Affiliation(s)
- Brett J Wong
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
16
|
Yamazaki F. Oral vitamin C enhances the adrenergic vasoconstrictor response to local cooling in human skin. J Appl Physiol (1985) 2012; 112:1689-97. [DOI: 10.1152/japplphysiol.00043.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Local administration of ascorbic acid (Asc) at a supraphysiological concentration inhibits the cutaneous vasoconstrictor response to local cooling (LC). However, whether orally ingesting Asc inhibits the LC-induced vasoconstrictor response remains unknown. The purpose of the present study was to examine the acute influence of oral Asc on the adrenergic vasoconstrictor response to LC in human skin. In experiment 1, skin blood flow (SkBF) was measured by laser-Doppler flowmetry at three sites (forearm, calf, palm). The three skin sites were locally cooled from 34 to 24°C at −1°C/min and maintained at 24°C for 20 min before (Pre) and 1.5 h after (Post) oral Asc (2-g single dose) or placebo supplementation. Cutaneous vascular conductance (CVC) was calculated as the ratio of SkBF to blood pressure and expressed relative to the baseline value before LC. Oral Asc enhanced ( P < 0.05) the reductions in CVC in the forearm (Pre, −50.3 ± 3.3%; Post, −57.8 ± 2.2%), calf (Pre, −52.6 ± 3.7%; Post, −66.1 ± 4.3%), and palm (Pre, −46.2 ± 6.2%; Post, −60.4 ± 5.6%) during LC. The placebo did not change the responses at any site. In experiment 2, to examine whether the increased vasoconstrictor response caused by oral Asc is due to the adrenergic system, the release of neurotransmitters from adrenergic nerves in forearm skin was blocked locally by iontophoresis of bretylium tosylate (BT). Oral Asc enhanced ( P < 0.05) the reductions in CVC at untreated control sites but did not change the responses at BT-treated sites during LC. In experiment 3, to further examine whether adrenergically mediated vasoconstriction is enhanced by oral Asc, 0.1 mM tyramine was administered using intradermal microdialysis in the forearm skin at 34°C in the Pre and Post periods. Oral Asc increased ( P < 0.05) the tyramine-induced reduction in CVC. These findings suggest that oral Asc acutely enhances the cutaneous vasoconstrictor responses to LC through the modification of adrenergic sympathetic mechanisms.
Collapse
Affiliation(s)
- Fumio Yamazaki
- Laboratory for Human Physiology, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
17
|
Carter SJ, Hodges GJ. Sensory and sympathetic nerve contributions to the cutaneous vasodilator response from a noxious heat stimulus. Exp Physiol 2011; 96:1208-17. [PMID: 21890519 DOI: 10.1113/expphysiol.2011.059907] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We investigated the roles of sensory and noradrenergic sympathetic nerves on the cutaneous vasodilator response to a localized noxious heating stimulus. In two separate studies, four forearm skin sites were instrumented with microdialysis fibres, local heaters and laser-Doppler probes. Skin sites were locally heated from 33 to 42 °C or rapidly to 44 °C (noxious). In the first study, we tested sensory nerve involvement using EMLA cream. Treatments were as follows: (1) control 42 °C; (2) EMLA 42 °C; (3) control 44°C; and (4) EMLA 44 °C. At the EMLA-treated sites, the axon reflex was reduced compared with the control sites during heating to 42 °C (P < 0.05). There were no differences during the plateau phase (P > 0.05). At both the sites heated to 44 °C, the initial peak and nadir became indistinguishable, and the EMLA-treated sites were lower compared with the control sites during the plateau phase (P < 0.05). In the second study, we tested the involvement of noradrenergic sympathetic nerves in response to the noxious heating using bretylium tosylate (BT). Treatments were as follows: (1) control 42 °C; (2) BT 42 °C; (3) control 44 °C; and (4) BT 44 °C. Treatment with BT at the 42 °C sites resulted in a marked reduction in both the axon reflex and the secondary plateau (P < 0.05). At the 44 °C sites, there was no apparent initial peak or nadir, but the plateau phase was reduced at the BT-treated sites (P < 0.05). These data suggest that both sympathetic nerves and sensory nerves are involved during the vasodilator response to a noxious heat stimulus.
Collapse
Affiliation(s)
- Stephen J Carter
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35401, USA
| | | |
Collapse
|
18
|
Cold perception and cutaneous microvascular response to local cooling at different cooling temperatures. Microvasc Res 2011; 81:319-24. [PMID: 21256855 DOI: 10.1016/j.mvr.2011.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to investigate the effect of quantitatively measured cold perception (CP) thresholds on microcirculatory response to local cooling as measured by direct and indirect response of laser-Doppler (LD) flux during local cooling at different temperatures. The CP thresholds were measured in 18 healthy males using the Marstock method (thermode placed on the thenar). The direct (at the cooling site) and indirect (on contralateral hand) LD flux responses were recorded during immersion of the hand in a water bath at 20°C, 15°C, and 10°C. The cold perception threshold correlated (linear regression analysis, Pearson correlation) with the indirect LD flux response at cooling temperatures 20°C (r=0.782, p<0.01) and 15°C (r=0.605, p<0.01). In contrast, there was no correlation between the CP threshold and the indirect LD flux response during cooling in water at 10°C. The results demonstrate that during local cooling, depending on the cooling temperature used, cold perception threshold influences indirect LD flux response.
Collapse
|
19
|
Tew GA, Klonizakis M, Moss J, Ruddock AD, Saxton JM, Hodges GJ. Role of sensory nerves in the rapid cutaneous vasodilator response to local heating in young and older endurance-trained and untrained men. Exp Physiol 2010; 96:163-70. [DOI: 10.1113/expphysiol.2010.055434] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Wingo JE, Low DA, Keller DM, Brothers RM, Shibasaki M, Crandall CG. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans. J Appl Physiol (1985) 2010; 109:1301-6. [PMID: 20705945 DOI: 10.1152/japplphysiol.00646.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.
Collapse
Affiliation(s)
- Jonathan E Wingo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, USA
| | | | | | | | | | | |
Collapse
|
21
|
Johnson JM, Kellogg DL. Local thermal control of the human cutaneous circulation. J Appl Physiol (1985) 2010; 109:1229-38. [PMID: 20522732 DOI: 10.1152/japplphysiol.00407.2010] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The level of skin blood flow is subject to both reflex thermoregulatory control and influences from the direct effects of warming and cooling the skin. The effects of local changes in temperature are capable of maximally vasoconstricting or vasodilating the skin. They are brought about by a combination of mechanisms involving endothelial, adrenergic, and sensory systems. Local warming initiates a transient vasodilation through an axon reflex, succeeded by a plateau phase due largely to nitric oxide. Both phases are supported by sympathetic transmitters. The plateau phase is followed by the die-away phenomenon, a slow reversal of the vasodilation that is dependent on intact sympathetic vasoconstrictor nerves. The vasoconstriction with local skin cooling is brought about, in part, by a postsynaptic upregulation of α(2c)-adrenoceptors and, in part, by inhibition of the nitric oxide system at at least two points. There is also an early vasodilator response to local cooling, dependent on the rate of cooling. The mechanism for that transient vasodilation is not known, but it is inhibited by intact sympathetic vasoconstrictor nerve function and by intact sensory nerve function.
Collapse
Affiliation(s)
- John M Johnson
- Dept. of Physiology, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio TX 78231, USA.
| | | |
Collapse
|
22
|
Minson CT. Thermal provocation to evaluate microvascular reactivity in human skin. J Appl Physiol (1985) 2010; 109:1239-46. [PMID: 20507974 DOI: 10.1152/japplphysiol.00414.2010] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With increased interest in predictive medicine, development of a relatively noninvasive technique that can improve prediction of major clinical outcomes has gained considerable attention. Current tests that are the target of critical evaluation, such as flow-mediated vasodilation of the brachial artery and pulse-wave velocity, are specific to the larger conduit vessels. However, evidence is mounting that functional changes in the microcirculation may be an early sign of globalized microvascular dysfunction. Thus development of a test of microvascular reactivity that could be used to evaluate cardiovascular risk or response to treatment is an exciting area of innovation. This mini-review is focused on tests of microvascular reactivity to thermal stimuli in the cutaneous circulation. The skin may prove to be an ideal site for evaluation of microvascular dysfunction due to its ease of access and growing evidence that changes in skin vascular reactivity may precede overt clinical signs of disease. Evaluation of the skin blood flow response to locally applied heat has already demonstrated prognostic utility, and the response to local cooling holds promise in patients in whom cutaneous disorders are present. Whether either of these tests can be used to predict cardiovascular morbidity or mortality in a clinical setting requires further evaluation.
Collapse
|
23
|
Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age. Eur J Appl Physiol 2010; 109:915-21. [PMID: 20300768 PMCID: PMC2892071 DOI: 10.1007/s00421-010-1414-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2010] [Indexed: 11/21/2022]
Abstract
During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18–28 years) and 16 elderly (E: 68–78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33°C. Next, local temperature was reduced to 24°C. After 15 min of local cooling, noradrenalin (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: −76 ± 3 vs. E: −60 ± 5 (P < 0.01), dorsal hand Y: −74 ± 4 vs. E: −72 ± 4 (n.s.), ventral hand Y: −80 ± 7 vs. E: −70 ± 11 (n.s.)]. In conclusion, in contrast to results from the ventral forearm, elderly did not show a blunted response to local cooling and noradrenalin at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age.
Collapse
|
24
|
The effect of 48 weeks of aerobic exercise training on cutaneous vasodilator function in post-menopausal females. Eur J Appl Physiol 2009; 108:1259-67. [DOI: 10.1007/s00421-009-1330-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
|
25
|
Hodges GJ, Johnson JM. Adrenergic control of the human cutaneous circulation. Appl Physiol Nutr Metab 2009; 34:829-39. [DOI: 10.1139/h09-076] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cutaneous circulation is influenced by a variety of thermoregulatory (skin and internal temperature-driven) and nonthermoregulatory (e.g., baroreflex, exercise-associated reflexes) challenges. The responses to these stimuli are brought about through vasoconstrictor nerves, vasodilator nerves, and changes in the local temperature of the vessels themselves. In this review, we examine how thermoregulatory influences mediate changes in skin blood flow through the sympathetic nervous system. We discuss cutaneous vascular responses to both local and whole-body heating and cooling and the mechanisms underlying these responses, with the overarching conclusion that sympathetic function plays significant roles in reflex vasoconstriction and vasodilatation and in the responses to both local cooling and local heating of the skin.
Collapse
Affiliation(s)
- Gary J. Hodges
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - John M. Johnson
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
26
|
Davis SL, Shibasaki M, Low DA, Cui J, Keller DM, Wingo JE, Purdue GF, Hunt JL, Arnoldo BD, Kowalske KJ, Crandall CG. Sustained impairments in cutaneous vasodilation and sweating in grafted skin following long-term recovery. J Burn Care Res 2009; 30:675-85. [PMID: 19506504 PMCID: PMC2818725 DOI: 10.1097/bcr.0b013e3181abfd43] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously identified impaired cutaneous vasodilation and sweating in grafted skin 5 to 9 months postsurgery. The aim of this investigation was to test the hypothesis that cutaneous vasodilation, but not sweating, is restored as the graft heals. Skin blood flow and sweat rate were assessed from grafted skin and adjacent noninjured skin in three groups of subjects: 5 to 9 months postsurgery (n=13), 2 to 3 years postsurgery (n=13), and 4 to 8 years postsurgery (n=13) during three separate protocols: 1) whole-body heating and cooling, 2) local administration of vasoactive drugs, and 3) local heating and cooling. Cutaneous vasodilation and sweating during whole-body heating were significantly lower (P<.001) in grafted skin when compared with noninjured skin across all groups and demonstrated no improvements with recovery time postsurgery. Maximal endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) cutaneous vasodilation remained attenuated (P<.001) in grafted skin up to 4 to 8 years postsurgery, indicating postsynaptic impairments. In grafted skin, cutaneous vasoconstriction during whole-body and local cooling was preserved, whereas vasodilation to local heating was impaired, regardless of the duration postsurgery. Split-thickness skin grafts have impaired cutaneous vasodilation and sweating up to 4 to 8 years postsurgery, thereby limiting the capability of this skin's contribution to thermoregulation during a heats stress. In contrast, grafted skin has preserved vasoconstrictor capacity.
Collapse
Affiliation(s)
- Scott L Davis
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hodges GJ, Chiu C, Kosiba WA, Zhao K, Johnson JM. The effect of microdialysis needle trauma on cutaneous vascular responses in humans. J Appl Physiol (1985) 2009; 106:1112-8. [PMID: 19196910 DOI: 10.1152/japplphysiol.91508.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microdialysis enables in-depth mechanistic study of the cutaneous circulation in humans. However, whether the insertion or presence of the microdialysis fiber (MDF) affects the skin circulation or its responses is unknown. We tested whether the cutaneous vascular response to whole body heating (WBH) was affected by MDF or by pretreatment with ice (part 1) or local anesthesia (LA; part 2). Eleven subjects participated, 9 in part 1 and 8 in part 2 (5 participated in both). In both parts, four sites on the forearm were selected, providing untreated control, MDF only, ice or LA only, and combined MDF plus ice or LA. A tube-lined suit controlled whole body skin temperature, which was raised to approximately 38 degrees C for WBH. Skin sites were instrumented with laser-Doppler flow probes. Data were expressed as cutaneous vascular conductance (CVC). Baseline levels were not different among sites (P > 0.05). In part 1, the internal temperature for the onset of vasodilation was higher (P > 0.05) with MDF with or without ice pretreatment than at untreated control sites (control 36.6 +/- 0.1 degrees C, Ice 36.5 +/- 0.1, MDF 36.8 +/- 0.1 degrees C, and Ice+MDF 36.8 +/- 0.1 degrees C). Peak CVC during WBH was decreased (P < 0.05) by MDF (control 73 +/- 7 vs. MDF 59 +/- 6% of maximal CVC). Ice (73 +/- 6% of maximal CVC) or Ice+MDF (69 +/- 6% of maximal CVC) did not affect (P > 0.05) peak CVC compared with control. In part 2, the temperature threshold for the onset of vasodilation was increased by MDF with or without LA treatment and by LA alone (P < 0.05; control 36.6 +/- 0.1 degrees C, MDF 36.7 +/- 0.1 degrees C, LA 36.8 +/- 0.1 degrees C, and LA+MDF 36.8 +/- 0.1 degrees C). Peak CVC was decreased by MDF (control 69 +/- 6% of maximal CVC vs. MDF 58 +/- 8% of maximal CVC; P < 0.05). LA only (65 +/- 10% of maximal CVC) or MDF in the presence of LA (73 +/- 12% of maximal CVC) did not affect (P > 0.05) peak CVC compared with control. Thus LA or MDF increases the temperature threshold for the onset of vasodilation. MDF alone decreases the peak vasodilator response in CVC to WBH; however, this attenuation did not occur if ice or LA is used before MDF placement. Ice or LA alone do not affect the peak response in CVC to WBH. How those treatments prevent or reverse the effect of MDF placement is presently unclear.
Collapse
Affiliation(s)
- Gary J Hodges
- Department of Physiology The University of Texas Health Science Center San Antonio, Texas, USA.
| | | | | | | | | |
Collapse
|
28
|
Hodges GJ, Kosiba WA, Zhao K, Johnson JM. The involvement of heating rate and vasoconstrictor nerves in the cutaneous vasodilator response to skin warming. Am J Physiol Heart Circ Physiol 2008; 296:H51-6. [PMID: 19011042 DOI: 10.1152/ajpheart.00919.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Slow local skin heating (LH) causes vasodilator responses, some of which are dependent on sympathetic nerve function. It is not known, however, how the rate of LH affects either the sympathetic or the nonadrenergic components of the responses to LH and whether the adrenergic effects of LH depend on tonic sympathetic activity or whether LH stimulates transmitter release. In part 1, cutaneous vascular conductance (CVC) responses to slow and fast LH (+0.1 degrees and +2 degrees C/min) from 34 degrees to 40 degrees C were compared both at control sites and at sites pretreated with bretylium tosylate (BT; blocks transmitter release from adrenergic terminals). We confirmed, as previously found, the axon reflex (AR) response to slow LH to be blocked by BT (P < 0.05). Pretreatment with BT reduced the AR only with fast LH. BT inhibited the peak vasodilation achieved with both rates of LH (P < 0.05). Longer-term LH was associated with a slow fall in CVC, the classical "die away" phenomenon, at untreated sites (P < 0.05) but not at BT-pretreated sites. Thus the LH-stimulated AR is only partially dependent on intact sympathetic function, and the "die away" phenomenon is dependent on such function. In part 2, we tested whether the conditions in part 1 (whole body and local skin temperatures of 34 degrees C) completely suppressed sympathetic nerve activity. The infusion of BT by microdialysis did not change the CVC (P > 0.05), suggesting the absence of tonic activity in those conditions and therefore that the adrenergic components of the responses in part 1 are via the stimulation of the transmitter release by LH.
Collapse
Affiliation(s)
- Gary J Hodges
- Department of Physiology, The University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
29
|
Shibasaki M, Low DA, Davis SL, Crandall CG. Nitric oxide inhibits cutaneous vasoconstriction to exogenous norepinephrine. J Appl Physiol (1985) 2008; 105:1504-8. [PMID: 18801956 DOI: 10.1152/japplphysiol.91017.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we found that nitric oxide (NO) inhibits cutaneous vasoconstrictor responsiveness evoked by whole body cooling, as well as an orthostatic stress in the heat-stressed human (Shibasaki M, Durand S, Davis SL, Cui J, Low DA, Keller DM, Crandall CG. J Physiol 585: 627-634, 2007). However, it remains unknown whether this response occurs via NO acting through presynaptic or postsynaptic mechanisms. The aim of this study was to test the hypothesis that NO is capable of impairing cutaneous vasoconstriction via postsynaptic mechanisms. Skin blood flow was monitored over two forearm sites where intradermal microdialysis membranes were previously placed. Skin blood flow was elevated four- to fivefold through perfusion of the NO donor sodium nitroprusside at one site and through perfusion of adenosine (primarily non-NO mechanisms) at a second site. Once a plateau in vasodilation was evident, increasing concentrations of norepinephrine (1 x 10(-8) to 1 x 10(-2) M) were administrated through both microdialysis probes, while the aforementioned vasodilator agents continued to be perfused. Cutaneous vascular conductance was calculated by dividing skin blood flow by mean arterial blood pressure. The administration of norepinephrine decreased cutaneous vascular conductance at both sites. However, the dose of norepinephrine at the onset of vasoconstriction (-5.9 +/- 1.3 vs. -7.2 +/- 0.7 log M norepinephrine, P = 0.021) and the concentration of norepinephrine resulting in 50% of the maximal vasoconstrictor response (-4.9 +/- 1.2 vs. -6.1 +/- 0.2 log M norepinephrine dose; P = 0.012) occurred at significantly higher norepinephrine concentrations for the sodium nitroprusside site relative to the adenosine site, respectively. These results suggested that NO is capable of attenuating cutaneous vasoconstrictor responsiveness to norepinephrine via postsynaptic mechanisms.
Collapse
Affiliation(s)
- Manabu Shibasaki
- Department of Environmental Health, Nara Women's University, Dallas, TX, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Human exposure to cold stimulates cutaneous vasoconstriction by activating both sympathetic reflex and locally mediated pathways. Older humans are vulnerable to hypothermia because primary aging impairs thermoregulatory cutaneous vasoconstriction. This article highlights recent findings discussing how age-related decrements in sympathetic neurotransmission contribute directly to thermoregulatory impairment, whereas changes in local cold-induced intracellular signaling suggest a more generalized age-associated vascular dysfunction.
Collapse
|
31
|
Hodges GJ, Kosiba WA, Zhao K, Johnson JM. The involvement of norepinephrine, neuropeptide Y, and nitric oxide in the cutaneous vasodilator response to local heating in humans. J Appl Physiol (1985) 2008; 105:233-40. [PMID: 18483164 DOI: 10.1152/japplphysiol.90412.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presynaptic blockade of cutaneous vasoconstrictor nerves (VCN) abolishes the axon reflex (AR) during slow local heating (SLH) and reduces the vasodilator response. In a two-part study, forearm sites were instrumented with microdialysis fibers, local heaters, and laser-Doppler flow probes. Sites were locally heated from 33 to 40 degrees C over 70 min. In part 1, we tested whether this effect of VCN acted via nitric oxide synthase (NOS). In five subjects, treatments were as follows: 1) untreated; 2) bretylium, preventing neurotransmitter release; 3) N(G)-nitro-L-arginine methyl ester (L-NAME) to inhibit NOS; and 4) combined bretylium + L-NAME. At treated sites, the AR was absent, and there was an attenuation of the ultimate vasodilation (P < 0.05), which was not different among those sites (P > 0.05). In part 2, we tested whether norepinephrine and/or neuropeptide Y is involved in the cutaneous vasodilator response to SLH. In seven subjects, treatments were as follows: 1) untreated; 2) propranolol and yohimbine to antagonize alpha- and beta-receptors; 3) BIBP-3226 to antagonize Y(1) receptors; and 4) combined propranolol + yohimbine + BIBP-3226. Treatment with propranolol + yohimbine or BIBP-3226 significantly increased the temperature at which AR occurred (n = 4) or abolished it (n = 3). The combination treatment consistently eliminated it. Importantly, ultimate vasodilation with SLH at the treated sites was significantly (P < 0.05) less than at the control. These data suggest that norepinephrine and neuropeptide Y are important in the initiation of the AR and for achieving a complete vasodilator response. Since VCN and NOS blockade in combination do not have an inhibition greater than either alone, these data suggest that VCN promote heat-induced vasodilation via a nitric oxide-dependent mechanism.
Collapse
Affiliation(s)
- Gary J Hodges
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
32
|
Davis SL, Shibasaki M, Low DA, Cui J, Keller DM, Purdue GF, Hunt JL, Arnoldo BD, Kowalske KJ, Crandall CG. Cutaneous vasoconstriction during whole-body and local cooling in grafted skin five to nine months postsurgery. J Burn Care Res 2008; 29:36-41. [PMID: 18182895 PMCID: PMC2804966 DOI: 10.1097/bcr.0b013e31815f2b63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this investigation was to test the hypothesis that skin grafting (5-9 months after surgery) impairs sympathetically mediated cutaneous vasoconstrictor responsiveness. Skin blood flow (laser-Doppler flowmetry) was assessed in grafted skin and adjacent healthy control skin in fourteen subjects (seven male, seven female) during indirect whole-body cooling (ie, cooling the entire body, except the area where skin blood flow was assessed), as well as local cooling (ie, only cooling the area where skin blood flow was assessed). Whole-body cooling was performed by perfusing 5 degrees C water through a water perfusion suit for 3 minutes. Local cooling was performed on a separate visit using a custom Peltier cooling device, which decreased local skin temperature from 39 degrees C to 19 in 5 degrees C decrements in 15-minute stages. Cutaneous vascular conductance (CVC) was calculated from the ratio of skin blood flow to mean arterial pressure. Indirect whole-body cooling decreased CVC from baseline (DeltaCVC) similarly (P = 0.17) between grafted skin (DeltaCVC = -0.23 +/- 0.04 au/mm Hg) and adjacent healthy skin (DeltaCVC = -0.16 +/- 0.02 au/mm Hg). Likewise, decreasing local skin temperature from 39 to 19 degrees C resulted in similar decreases (P = .82) in CVC between grafted skin (DeltaCVC = -1.11 +/- 0.18 au/mm Hg) and adjacent healthy skin (DeltaCVC = -1.06 +/- 0.18 au/mm Hg). Appropriate cutaneous vasoconstriction in grafted skin to both indirect whole-body and local cooling indicates re-innervation of the cutaneous vasoconstrictor system at the graft site. These data suggest that persons with significant skin grafting may have a normal capacity to regulate body temperature during cold exposure by cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Scott L Davis
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Texas 75231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|