1
|
Méndez-Fernández A, Fernández-Mora Á, Bernal-Ramírez J, Alves-Figueiredo H, Nieblas B, Salazar-Ramírez F, Maldonado-Ruiz R, Zazueta C, García N, Lozano O, Treviño V, Torre-Amione G, García-Rivas G. Distinguishing pathophysiological features of heart failure with reduced and preserved ejection fraction: A comparative analysis of two mouse models. J Physiol 2024. [PMID: 39018163 DOI: 10.1113/jp286410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024] Open
Abstract
Heart failure (HF) is a heterogeneous condition that can be categorized according to the left ventricular ejection fraction (EF) into HF with reduced (HFrEF) or preserved (HFpEF) EF. Although HFrEF and HFpEF share some common clinical manifestations, the mechanisms underlying each phenotype are often found to be distinct. Identifying shared and divergent pathophysiological features might expand our insights on HF pathophysiology and assist the search for therapies for each HF subtype. In this study, we evaluated and contrasted two new murine models of non-ischaemic HFrEF and cardiometabolic HFpEF in terms of myocardial structure, left ventricular function, gene expression, cardiomyocyte calcium handling, mitochondrial polarization and protein acetylation in a head-to-head fashion. We found that in conditions of similar haemodynamic stress, the HFrEF myocardium underwent a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation was greater in the HFpEF myocardium. We observed opposing features on calcium release, which was diminished in the HFrEF cardiomyocyte but enhanced in the HFpEF cardiomyocyte. Mitochondria were less polarized in both HFrEF and HFpEF cardiomyocytes, reflecting similarly impaired metabolic capacity. Hyperacetylation of cardiac proteins was observed in both models, but it was more accentuated in the HFpEF heart. Despite shared features, unique triggering mechanisms (neurohormonal overactivation in HFrEF vs. inflammation in HFpEF) appear to determine the distinct phenotypes of HF. The findings of the present research stress the need for further exploration of the differential mechanisms underlying each HF subtype, because they might require specific therapeutic interventions. KEY POINTS: The mechanisms underlying heart failure with either reduced (HFrEF) or preserved (HFpEF) ejection fraction are often found to be different. Previous studies comparing pathophysiological traits between HFrEF and HFpEF have been conducted on animals of different ages and strains. The present research contrasted two age-matched mouse models of non-ischaemic HFrEF and cardiometabolic HFpEF to uncover divergent and shared features. We found that upon similar haemodynamic stress, the HFrEF heart experienced a more pronounced hypertrophic and fibrotic remodelling, whereas inflammation appeared to be greater in the HFpEF myocardium. Calcium release was diminished in the HFrEF cardiomyocyte and enhanced in the HFpEF cardiomyocyte. Mitochondria were comparably less polarized in both HFrEF and HFpEF myocytes. Hyperacetylation of proteins was common to both models, but stronger in the HFpEF heart. Casting light on common and distinguishing features might ease the quest for phenotype-specific therapies for heart failure patients.
Collapse
Affiliation(s)
- Abraham Méndez-Fernández
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Ángel Fernández-Mora
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Judith Bernal-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Hugo Alves-Figueiredo
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Bianca Nieblas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Felipe Salazar-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Roger Maldonado-Ruiz
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ciudad de Mexico, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Víctor Treviño
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Guillermo Torre-Amione
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
- Institute for Obesity Research, Tecnológico de Monterrey, Hospital Zambrano-Hellion, San Pedro Garza-García, Nuevo León, Mexico
| |
Collapse
|
2
|
Muromachi N, Ishida J, Noguchi K, Akiyama T, Maruhashi S, Motomura K, Usui J, Yamagata K, Fukamizu A. Cardiorenal damages in mice at early phase after intervention induced by angiotensin II, nephrectomy, and salt intake. Exp Anim 2024; 73:11-19. [PMID: 37460310 PMCID: PMC10877154 DOI: 10.1538/expanim.23-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 02/16/2024] Open
Abstract
The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues.
Collapse
Affiliation(s)
- Naoto Muromachi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Doctoral Program in Life and Agricultural Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazuyuki Noguchi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
| | - Tomoki Akiyama
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
| | - Syunsuke Maruhashi
- Master's Program in Agro-Bioresources Sciences and Technology, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8572, Japan
| | - Kaori Motomura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Joichi Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8575, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
3
|
Dorey TW, McRae MD, Belke DD, Rose RA. PDE4D mediates impaired β-adrenergic receptor signalling in the sinoatrial node in mice with hypertensive heart disease. Cardiovasc Res 2023; 119:2697-2711. [PMID: 37643895 PMCID: PMC10757582 DOI: 10.1093/cvr/cvad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS The sympathetic nervous system increases HR by activating β-adrenergic receptors (β-ARs) and increasing cAMP in sinoatrial node (SAN) myocytes while phosphodiesterases (PDEs) degrade cAMP. Chronotropic incompetence, the inability to regulate heart rate (HR) in response to sympathetic nervous system activation, is common in hypertensive heart disease; however, the basis for this is poorly understood. The objective of this study was to determine the mechanisms leading to chronotropic incompetence in mice with angiotensin II (AngII)-induced hypertensive heart disease. METHODS AND RESULTS C57BL/6 mice were infused with saline or AngII (2.5 mg/kg/day for 3 weeks) to induce hypertensive heart disease. HR and SAN function in response to the β-AR agonist isoproterenol (ISO) were studied in vivo using telemetry and electrocardiography, in isolated atrial preparations using optical mapping, in isolated SAN myocytes using patch-clamping, and using molecular biology. AngII-infused mice had smaller increases in HR in response to physical activity and during acute ISO injection. Optical mapping of the SAN in AngII-infused mice demonstrated impaired increases in conduction velocity and altered conduction patterns in response to ISO. Spontaneous AP firing responses to ISO in isolated SAN myocytes from AngII-infused mice were impaired due to smaller increases in diastolic depolarization (DD) slope, hyperpolarization-activated current (If), and L-type Ca2+ current (ICa,L). These changes were due to increased localization of PDE4D surrounding β1- and β2-ARs in the SAN, increased SAN PDE4 activity, and reduced cAMP generation in response to ISO. Knockdown of PDE4D using a virus-delivered shRNA or inhibition of PDE4 with rolipram normalized SAN sensitivity to β-AR stimulation in AngII-infused mice. CONCLUSIONS AngII-induced hypertensive heart disease results in impaired HR responses to β-AR stimulation due to up-regulation of PDE4D and reduced effects of cAMP on spontaneous AP firing in SAN myocytes.
Collapse
Affiliation(s)
- Tristan W Dorey
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Megan D McRae
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Darrell D Belke
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
4
|
Brandt M, Dörschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S, Stauber R, Karbach SH, Münzel T, Daiber A, Wenzel P. Telomere Shortening in Hypertensive Heart Disease Depends on Oxidative DNA Damage and Predicts Impaired Recovery of Cardiac Function in Heart Failure. Hypertension 2022; 79:2173-2184. [PMID: 35862118 DOI: 10.1161/hypertensionaha.121.18935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) coincides with cardiomyocyte telomere shortening. Arterial hypertension is the most prominent risk factor for HF. Both HF and arterial hypertension are associated with dysregulation of the neurohormonal axis. How neurohormonal activation is linked to telomere shortening in the pathogenesis of HF is incompletely understood. METHODS Cardiomyocyte telomere length was assessed in a mouse model of hypertensive HF induced by excess neurohormonal activation (AngII [angiotensin II] infusion, high salt diet, and uninephrectomy), in AngII-stimulated cardiomyocytes and in endomyocardial biopsies from patients with HF. Superoxide production, expression of NOX2 (NADPH oxidase 2) and PRDX1 (peroxiredoxin 1) and HDAC6 (histone deacetylase 6) activity were assessed. RESULTS Telomere shortening occurred in vitro and in vivo, correlating with both left ventricular (LV) dilatation and LV systolic function impairment. Telomere shortening coincided with increased superoxide production, increased NOX2 expression, increased HDAC6 activity, loss of the telomere-specific antioxidant PRDX1, and increased oxidative DNA-damage. NOX2 knockout prevented PRDX1 depletion, DNA-damage and telomere shortening confirming this enzyme as a critical source of reactive oxygen species. Cotreatment with the NOX inhibitor apocynin ameliorated hypertensive HF and telomere shortening. Similarly, treatment with the HDAC6 inhibitor tubastatin A, which increases PRDX1 bioavailability, prevented telomere shortening in adult cardiomyocytes. To explore the clinical relevance of our findings, we examined endomyocardial biopsies from an all-comer population of patients with HF with reduced ejection fraction. Here, cardiomyocyte telomere length predicted the recovery of cardiac function. CONCLUSIONS Cardiomyocyte telomere shortening and oxidative damage in heart failure with reduced ejection fraction induced by excess neurohormonal activation depends on NOX2-derived superoxide and may help to stratify HF therapy.
Collapse
Affiliation(s)
- Moritz Brandt
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Hendrik Dörschmann
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sana'a Khraisat
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Tanja Knopp
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Julia Ringen
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sanela Kalinovic
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Venkata Garlapati
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Svenja Siemer
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Michael Molitor
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sebastian Göbel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Roland Stauber
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Susanne Helena Karbach
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Thomas Münzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Andreas Daiber
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Philip Wenzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands (P.W.)
| |
Collapse
|
5
|
Krishnamoorthi MK, Thandavarayan RA, Youker KA, Bhimaraj A. An In Vitro Platform to Study Reversible Endothelial-to-Mesenchymal Transition. Front Pharmacol 2022; 13:912660. [PMID: 35814231 PMCID: PMC9259860 DOI: 10.3389/fphar.2022.912660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells can acquire a mesenchymal phenotype in response to external stimuli through both mechanical and biological factors, using a process known as endothelial-to-mesenchymal (EndoMT) transition. EndoMT is characterized by the decrease in endothelial characteristics, increase in mesenchymal markers, and morphological changes. It has been recognized not only during development but also in different pathological conditions including organ/tissue fibrosis in adults. The ability to modulate the EndoMT process could have a therapeutic potential in many fibrotic diseases. An in vitro method is presented here to induce EndoMT with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and angiotensin II (Ang II) followed by a protocol to study the reversibility of EndoMT. Using this method, we furnish evidence that the combination of L-NAME and Ang II can stimulate EndoMT in Human umbilical vascular endothelial cells (HUVECs) and this process can be reversed as observed using endothelial functionality assays. This method may serve as a model to screen and identify potential pharmacological molecules to target and regulate the EndoMT process, with applications in drug discovery for human diseases.
Collapse
Affiliation(s)
| | | | | | - Arvind Bhimaraj
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Li H, Xia YY, Xia CL, Li Z, Shi Y, Li XB, Zhang JX. Mimicking Metabolic Disturbance in Establishing Animal Models of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:879214. [PMID: 35592030 PMCID: PMC9110887 DOI: 10.3389/fphys.2022.879214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
Heart failure (HF), the terminal state of different heart diseases, imposed a significant health care burden worldwide. It is the last battlefield in dealing with cardiovascular diseases. HF with preserved ejection fraction (HFpEF) is a type of HF in which the symptoms and signs of HF are mainly ascribed to diastolic dysfunction of left ventricle, whereas systolic function is normal or near-normal. Compared to HF with reduced ejection fraction (HFrEF), the diagnosis and treatment of HFpEF have made limited progress, partly due to the lack of suitable animal models for translational studies in the past. Given metabolic disturbance and inflammatory burden contribute to HFpEF pathogenesis, recent years have witnessed emerging studies focusing on construction of animal models with HFpEF phenotype by mimicking metabolic disorders. These models prefer to recapitulate the metabolic disorders and endothelial dysfunction, leading to the more detailed understanding of the entity. In this review, we summarize the currently available animal models of HFpEF with metabolic disorders, as well as their advantages and disadvantages as tools for translational studies.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chun-Lei Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Intensive Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Shi
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Bo Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiao-Bo Li, ; Jun-Xia Zhang,
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiao-Bo Li, ; Jun-Xia Zhang,
| |
Collapse
|
7
|
Soppert J, Frisch J, Wirth J, Hemmers C, Boor P, Kramann R, Vondenhoff S, Moellmann J, Lehrke M, Hohl M, van der Vorst EPC, Werner C, Speer T, Maack C, Marx N, Jankowski J, Roma LP, Noels H. A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney Int 2021; 101:256-273. [PMID: 34774555 DOI: 10.1016/j.kint.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Janina Frisch
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Julia Wirth
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hemmers
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias Hohl
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Werner
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Iop L. Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Front Cardiovasc Med 2021; 7:591583. [PMID: 33748193 PMCID: PMC7969521 DOI: 10.3389/fcvm.2020.591583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide. Preclinical modeling by recapitulating human pathophysiology is fundamental to advance the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been applied to dissect many cardiovascular pathologies. Computational and bioinformatic simulations allow developing algorithmic disease models considering all known variables and severity degrees of disease. In vivo studies based on small or large animals have a long tradition and largely contribute to the current treatment and management of CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability to analyze the behavior of single, diseased cellular types. The introduction of induced pluripotent stem cell technology and the application of bioengineering principles raised the bar toward in vitro three-dimensional modeling by enabling the development of pathological tissue equivalents. This review article intends to describe the advantages and disadvantages of past and present modeling approaches applied to provide insights on some of the most relevant congenital and acquired CVDs, such as rhythm disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular fibrosis, atherosclerosis, and calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences, and Public Health, University of Padua Medical School, Padua, Italy
| |
Collapse
|
9
|
Noll NA, Lal H, Merryman WD. Mouse Models of Heart Failure with Preserved or Reduced Ejection Fraction. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1596-1608. [PMID: 32343958 DOI: 10.1016/j.ajpath.2020.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Heart failure (HF) is a chronic, complex condition with increasing incidence worldwide, necessitating the development of novel therapeutic strategies. This has led to the current clinical strategies, which only treat symptoms of HF without addressing the underlying causes. Multiple animal models have been developed in an attempt to recreate the chronic HF phenotype that arises following a variety of myocardial injuries. Although significant strides have been made in HF research, an understanding of more specific mechanisms will require distinguishing models that resemble HF with preserved ejection fraction (HFpEF) from those with reduced ejection fraction (HFrEF). Therefore, current mouse models of HF need to be re-assessed to determine which of them most closely recapitulate the specific etiology of HF being studied. This will allow for the development of therapies targeted specifically at HFpEF or HFrEF. This review will summarize the commonly used mouse models of HF and discuss which aspect of human HF each model replicates, focusing on whether HFpEF or HFrEF is induced, to allow better investigation into pathophysiological mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Natalie A Noll
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Hind Lal
- Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
10
|
Abstract
Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.
Collapse
|
11
|
Histamine provides an original vista on cardiorenal syndrome. Proc Natl Acad Sci U S A 2020; 117:5550-5552. [PMID: 32123107 DOI: 10.1073/pnas.2001336117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci U S A 2020; 117:3150-3156. [PMID: 31992639 PMCID: PMC7022214 DOI: 10.1073/pnas.1909124117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heart failure and chronic kidney disease are major causes of morbidity and mortality internationally. Although these dysfunctions are common and frequently coexist, the factors involved in their relationship in cardiorenal regulation are still largely unknown, mainly due to a lack of detailed molecular targets. Here, we found the increased plasma histamine in a preclinical mouse model of severe cardiac dysfunction, that had been cotreated with angiotensin II (Ang II), nephrectomy, and salt (ANS). The ANS mice exhibited impaired renal function accompanied with heart failure, and histamine depletion, by the genetic inactivation of histidine decarboxylase in mice, exacerbated the ANS-induced cardiac and renal abnormalities, including the reduction of left ventricular fractional shortening and renal glomerular and tubular injuries. Interestingly, while the pharmacological inhibition of the histamine receptor H3 facilitated heart failure and kidney injury in ANS mice, administration of the H3 agonist immethridine (Imm) was protective against cardiorenal damages. Transcriptome analysis of the kidney and biochemical examinations using blood samples illustrated that the increased inflammation in ANS mice was alleviated by Imm. Our results extend the pharmacological use of H3 agonists beyond the initial purposes of its drug development for neurogenerative diseases and have implications for therapeutic potential of H3 agonists that invoke the anti-inflammatory gene expression programming against cardiorenal damages.
Collapse
|
13
|
Kumar V, Yang C, Cowley AW. Temporal Expression and Cellular Localization of PAPPA2 in the Developing Kidney of Rat. J Histochem Cytochem 2020; 68:209-222. [PMID: 31989854 DOI: 10.1369/0022155420904478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PAPPA2 is a metalloproteinase which cleaves insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5, and its role in pregnancy and postnatal growth is primarily studied. Using exclusion mapping, we reported a subcongenic (26-P) rat where a 0.71-Mbp region containing the pregnancy-associated plasma protein a2 (Pappa2) allele of salt-insensitive Brown Norway (BN) was introgressed into Dahl saltsensitive (SS) genetic background, resulting in the reduction of salt sensitivity. Pappa2 was differentially expressed in the adult kidney of 26-P and SS rats. Here, the expression and cellular localization of Pappa2 in embryonic and postnatal kidneys of 26-P and SS rats were examined. Pappa2 mRNA expression was 5-fold higher in the embryonic kidney (day 20.5) of the 26-P rat compared with the SS rat. Pappa2 mRNA expression progressively increased with the development of kidney, reaching a peak at postnatal day 5 before trending downward in subsequent stages of development in both strains. At all tested time points, Pappa2 remained higher in the 26-P compared with the SS rat kidney. Immunohistochemistry studies localized PAPPA2 in the ureteric bud (UB) and distal part of S-shaped body. PAPPA2 was colocalized with IGFBP-5 in the UB and Na+/K+/2Cl- cotransporter-stained tubules, respectively. Future studies are needed to determine the role of Pappa2 in kidney development and mechanistic pathways involved in this process.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Relation of Dietary Sodium Intake With Subclinical Markers of Cardiovascular Disease (from MESA). Am J Cardiol 2019; 124:636-643. [PMID: 31300201 DOI: 10.1016/j.amjcard.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
The associations between dietary sodium intake and markers of subclinical cardiovascular disease (CVD), such as high-sensitivity cardiac troponin T (hs-cTnT) and amino terminal pro b-type natriuretic peptide (NT-proBNP), may provide mechanistic insight into the relation between dietary sodium and cardiovascular events. We studied 6,131 participants of the Multi-Ethnic Study of Atherosclerosis, who were free of clinical CVD at baseline. Food frequency questionnaires were used to assess estimated sodium intake (ESI) at baseline. We tested the associations between 5 quintiles of ESI (quintile 1: 0.2 to 1.3 grams/day, quintile 2: 1.3 to 1.8 grams/day, quintile 3: 1.8 to 2.4 grams/day, quintile 4: 2.4 to 3.2 grams/day, and quintile 5: 3.2 to 9.9 grams/day) with cross-sectional and 5-year longitudinal change in hs-cTnT and NT-proBNP concentrations. Restricted cubic spline plots were utilized to explore the shape of the associations between ESI and biomarker outcomes. A cross-sectional association between baseline sodium intake and hs-cTnT (but not NT-proBNP) was observed, driven predominantly by a strong positive relation at an intake range of 0.2 to 2.4 g/day. Conversely, a longitudinal association between baseline sodium intake and NT-proBNP (but not hs-cTnT) was observed, driven predominantly by a strong positive relation at intake levels ≥2.4 g/day. In conclusion, temporal shifts in the association between increased ESI and markers of subclinical CVD, hs-cTnT in the short term and NT-proBNP in the longer term, point to the complex pathobiology of the association between sodium intake and CVD. There was also no consistent evidence supporting a J-curve (i.e., excess biomarker values at very low ESI).
Collapse
|
15
|
Liu Y, Liu Y, Li G, Chen Z, Gu G. Ghrelin protects the myocardium with hypoxia/reoxygenation treatment through upregulating the expression of growth hormone, growth hormone secretagogue receptor and insulin-like growth factor-1, and promoting the phosphorylation of protein kinase B. Int J Mol Med 2018; 42:3037-3046. [PMID: 30272367 PMCID: PMC6202102 DOI: 10.3892/ijmm.2018.3886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Ghrelin is an endogenous ligand of growth hormone (GH) secretagogue receptor (GHSR) and has a number of biological effects, including heart protection. The present study aimed to reveal the positive effect of ghrelin on myocardium with hypoxia/reoxygenation (H/R) treatment and the involved molecular mechanisms. Successful construction of lentiviral expression vector (ghrelin-pLVX-Puro) was confirmed by colony polymerase chain reaction (PCR) verification. Primary rat cardiac myocytes were isolated and identified by immunofluorescence staining. Existence of red fluorescence of α-sarcomeric actinin indicated the successful isolation. Following ghrelin transfection and H/R treatment, primary cells were divided into four groups: Control, H/R, empty (empty pLVX-Puro + H/R) and ghrelin (ghrelin-pLVX-Puro + H/R). Cell viability and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) and Hoechst staining, respectively. The cell viability in the ghrelin group was significantly higher than that in the empty control group (P<0.05). The apoptosis rate in the ghrelin group was significantly lower than that in the empty control group (P<0.05). An ex vivo rat cardiac perfusion model was established. Following ghrelin incubation and H/R treatment, ex vivo myocardium was divided into four groups: Control, sham, H/R and ghrelin (ghrelin + H/R). Immunohistochemical analysis demonstrated that ghrelin increased the integrity of cardiac myocytes, and decreased shrinkage and apoptosis. mRNA and protein expression levels of GH, GHSR, insulin-like growth factor-1 (IGF-1), protein kinase B (Akt), phosphorylated Akt (p-Akt) were determined by reverse transcription (RT)-PCR, western blot analysis and immunohistochemical analysis. Ghrelin upregulated the mRNA and protein expression levels of GH, GHSR and IGF-1, and increased the ratio of p-Akt to Akt protein level (p-Akt/Akt) in cardiac myocytes and myocardial tissues with H/R treatment. In conclusion, ghrelin protected the myocardium with H/R treatment through upregulating the expression of GH, GHSR and IGF-1, and promoting the phosphorylation of Akt. This would provide promising insights into the treatment of hypoxic myocardial injury by ghrelin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Child Hygiene, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yanling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guolin Li
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengrong Chen
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Guixiong Gu
- Department of Child Hygiene, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
16
|
Cardiovascular Interactions between Fibroblast Growth Factor-23 and Angiotensin II. Sci Rep 2018; 8:12398. [PMID: 30120363 PMCID: PMC6098163 DOI: 10.1038/s41598-018-30098-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
Both the activation of the renin angiotensin aldosterone system (RAAS) and elevations of circulating Fibroblast Growth Factor-23 (FGF-23) have been implicated in the pathogenesis of left ventricular hypertrophy (LVH) in chronic kidney disease. To investigate potential cross-talk between RAAS and FGF-23, we administered angiotensin II (Ang II) to wild-type rodents and the Hyp mouse model of excess FGF-23. Ang II administration for four weeks to wild-type rodents resulted in significant increases in systolic blood pressure and LVH. Unexpectedly, FGF-23 circulating levels were increased by 1.5-1.7 fold in Ang II treated animals. In addition, Ang II treatment increased expression of FGF-23 message levels in bone, the predominant tissue for FGF-23 production, and induced expression of FGF-23 and its co-receptor α-Klotho in the heart, which normally does not express FGF-23 or α-Klotho in physiologically relevant levels. Hyp mice with elevated FGF-23 exhibited increased blood pressure and LVH at baseline. Ang II administration to Hyp mice resulted further increments in blood pressure and left ventricular hypertrophy, consistent with additive cardiovascular effects. These findings suggest that FGF-23 may participate in unexpected systemic and paracrine networks regulating hemodynamic and myocardial responses.
Collapse
|
17
|
Wang NP, Erskine J, Zhang WW, Zheng RH, Zhang LH, Duron G, Gendreau J, Zhao ZQ. Recruitment of macrophages from the spleen contributes to myocardial fibrosis and hypertension induced by angiotensin II. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317706653. [PMID: 28490219 PMCID: PMC5843916 DOI: 10.1177/1470320317706653] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The purpose of this study was to determine whether macrophages migrated from the spleen are associated with angiotensin II-induced cardiac fibrosis and hypertension. METHODS Sprague-Dawley rats were subjected to angiotensin II infusion in vehicle (500 ng/kg/min) for up to four weeks. In splenectomy, the spleen was removed before angiotensin II infusion. In the angiotensin II AT1 receptor blockade, telmisartan was administered by gastric gavage (10 mg/kg/day) during angiotensin II infusion. The heart and aorta were isolated for Western blot analysis and immunohistochemistry. RESULTS Angiotensin II infusion caused a significant reduction in the number of monocytes in the spleen through the AT1 receptor-activated monocyte chemoattractant protein-1. Comparison of angiotensin II infusion, splenectomy and telmisartan comparatively reduced the recruitment of macrophages into the heart. Associated with this change, transforming growth factor β1 expression and myofibroblast proliferation were inhibited, and Smad2/3 and collagen I/III were downregulated. Furthermore, interstitial/perivascular fibrosis was attenuated. These modifications occurred in coincidence with reduced blood pressure. At week 4, invasion of macrophages and myofibroblasts in the thoracic aorta was attenuated and expression of endothelial nitric oxide synthase was upregulated, along with a reduction in aortic fibrosis. CONCLUSIONS These results suggest that macrophages when recruited into the heart and aorta from the spleen potentially contribute to angiotensin II-induced cardiac fibrosis and hypertension.
Collapse
Affiliation(s)
- Ning-Ping Wang
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - James Erskine
- 2 Department of Internal Medicine, Navicent Health, USA
| | - Wei-Wei Zhang
- 3 Department of Physiology, Shanxi Medical University, China
| | - Rong-Hua Zheng
- 3 Department of Physiology, Shanxi Medical University, China
| | - Li-Hui Zhang
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - Garret Duron
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - Julian Gendreau
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - Zhi-Qing Zhao
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA.,3 Department of Physiology, Shanxi Medical University, China
| |
Collapse
|
18
|
Wang L, Wang X, Qu HY, Jiang S, Zhang J, Fu L, Buggs J, Pang B, Wei J, Liu R. Role of Kidneys in Sex Differences in Angiotensin II-Induced Hypertension. Hypertension 2017; 70:1219-1227. [PMID: 29061720 DOI: 10.1161/hypertensionaha.117.10052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/10/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
The significance of kidneys in regulation of sodium and water balance and hemodynamics has been demonstrated both in patients and animal models. In the present study, we tested our hypothesis that kidneys play an essential role in control of sex differences in angiotensin II (Ang II)-dependent hypertension. Kidney transplantations (KTXs) were performed between male (M) and female (F) C57BL/6 mice (donor→recipient: F→F, M→M, F→M, and M→F). Radiotelemetry transmitters were implanted for measurement of mean arterial pressure during the infusion of Ang II (600 ng·kg-1·min-1). Gene expressions and inflammatory responses in the transplanted grafts were assessed. We found that same-sex-KTX mice still exhibited sex differences in Ang II-dependent hypertension (31.3±0.8 mm Hg in M→M versus 12.2±0.6 mm Hg in F→F), which were reduced between males and females when they received kidneys of the opposite sex (32.9±1 mm Hg in M→F versus 22.3±0.7 mm Hg in F→M). The sex differences in gene expressions, including AT1R (angiotensin II receptor, type 1), AT1R/AT2R, ET-1 (endothelin-1), ETA (endothelin receptor type A), NHE3 (sodium-hydrogen exchanger 3), α-ENaC (α-epithelial sodium channel), and γ-ENaC, were unaltered in same-sex KTXs and much lessened in cross-sex KTXs. In addition, the cross-sex KTXs exhibited more robust inflammatory responses reflected by higher expression of IL-6 (interleukin 6), TNFα (tumor necrosis factor α), and KC (keratinocyte-derived chemokine) than same-sex KTX. Our results indicate that kidneys play an essential role in sex differences of Ang II-dependent hypertension. KTX of male kidneys to females augmented the blood pressure response, whereas KTX of female kidneys to males attenuated the blood pressure response. The host's extrarenal systems modulate expressions of many genes and inflammatory response, which may also contribute to the sex differences in blood pressure regulation.
Collapse
Affiliation(s)
- Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL.
| | - Ximing Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Helena Y Qu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Shan Jiang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Liying Fu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Jacentha Buggs
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Bo Pang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (L.W., X.W., H.Y.Q., S.J., J.Z., B.P., J.W., R.L.); and Pathology (L.F.) and Tampa General Medical Group Transplant Surgery (J.B.), Tampa General Hospital, FL
| |
Collapse
|
19
|
Jain A, Scott C, Chen HH. The renal-cardiac connection in subjects with preserved ejection fraction: a population based study. ESC Heart Fail 2017; 4:266-273. [PMID: 28772030 PMCID: PMC5542734 DOI: 10.1002/ehf2.12143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 08/15/2016] [Accepted: 02/03/2017] [Indexed: 01/04/2023] Open
Abstract
Aims Chronic kidney disease (CKD) is prevalent and is associated with increased cardiovascular morbidity and mortality. The interaction between diastolic dysfunction (DD) and CKD in subjects with preserved systolic function is not well defined. This study sought to determine the association between renal function and DD in subjects with preserved ejection fraction. Methods and results Through the Rochester Epidemiology Project, subjects who underwent echocardiography over 2 years with EF ≥50% were identified and the clinical data were obtained. Glomerular filtration rate (GFR) was estimated using the modification of diet in renal disease equation. Linear regression was used to test for association of GFR and DD. DD was defined as follows: Grade 2 or pseudonormal pattern (0.75 < E/A ≤ 1.5, E/e′ ≥ 10, DT > 140 ms, ΔE/A ≥ 0.5, and PV S < D) or Grade 3+ or restrictive pattern (E/A > 1.5, E/e′ ≥ 10, DT < 140 ms, and PV S < D). Cox regression was used to assess correlation of GFR and DD with time‐to‐event outcomes. A total of 2056 patients were identified. There was significant correlation between worsening GFR and degree of DD assessed by echo Doppler E/e′ ratio (P = 0.005), left ventricular mass index (P = 0.004), and right ventricular systolic pressure (P = 0.01). Worsening GFR was associated with increased mortality, development of heart failure, and hospitalization (P < 0.001). Within each GFR group, abnormal DD was associated with a higher risk of the clinical outcomes. No interaction between GFR and DD was noted, suggesting an increased risk of events associated with abnormal DD across ranges of GFR. Conclusions Worsening GFR was associated with a greater degree of diastolic dysfunction and adverse clinical outcomes. Within each GFR group, the presence of DD was associated with increased morbidity and mortality. Further studies are warranted to determine if improving DD in patients with CKD will benefit clinical outcomes.
Collapse
Affiliation(s)
- Amit Jain
- Department of Cardiology, University of California, Irvine, Orange, CA, USA
| | - Christopher Scott
- Department of Biostatistics, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Horng H Chen
- Division of Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, MN, USA
| |
Collapse
|
20
|
Wang X, Garrett MR. Nephron number, hypertension, and CKD: physiological and genetic insight from humans and animal models. Physiol Genomics 2017; 49:180-192. [PMID: 28130427 DOI: 10.1152/physiolgenomics.00098.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidneys play a vital role in the excretion of waste products and the regulation of electrolytes, maintenance of acid-base balance, regulation of blood pressure, and production of several hormones. Any alteration in the structure of the nephron (basic functional unit of the kidney) can have a major impact on the kidney's ability to work efficiently. Progressive decline in kidney function can lead to serious illness and ultimately death if not treated by dialysis or transplantation. While there have been numerous studies that implicate lower nephron numbers as being an important factor in influencing susceptibility to developing hypertension and chronic kidney disease, a direct association has been difficult to establish because of three main limitations: 1) the large variation in nephron number observed in the human population; 2) no established reliable noninvasive methods to determine nephron complement; and 3) to date, nephron measurements have been done after death, which doesn't adequately account for potential loss of nephrons with age or disease. In this review, we will provide an overview of kidney structure/function, discuss the current literature for both humans and other species linking nephron deficiency and cardio-renal complications, as well as describe the major molecular signaling factors involved in nephrogenesis that modulate variation in nephron number. As more detailed knowledge about the molecular determinants of nephron development and the role of nephron endowment in the cardio-renal system is obtained, it will hopefully provide clinicians the ability to accurately identify people at risk to develop CKD/hypertension and lead to a shift in patient care from disease treatment to prevention.
Collapse
Affiliation(s)
- Xuexiang Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and .,Department of Medicine (Nephrology) and Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
21
|
Asirvatham-Jeyaraj N, Fink GD. Possible role for brain prostanoid pathways in the development of angiotensin II-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R232-42. [PMID: 27225954 DOI: 10.1152/ajpregu.00535.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
Prostanoids generated by the cyclooxygenase (COX) pathway appear to contribute to the neurogenic hypertension (HTN) in rats. The first goal of this study was to establish the time frame during which prostanoids participate in ANG II-salt HTN. We induced HTN using ANG II (150 ng·kg(-1)·min(-1) sc) infusion for 14 days in rats on a high-salt (2% NaCl) diet. When ketoprofen pretreatment was combined with treatment during the first 7 days of ANG II infusion, development of HTN and increased neurogenic pressor activity (indexed by the depressor response to ganglion blockade) were significantly attenuated for the entire ANG II infusion period. This suggests that prostanoid generation caused by administration of ANG II and salt leads to an increase in neurogenic pressor activity and blood pressure (BP) via a mechanism that persists without the need for continuing prostanoid input. The second goal of this study was to determine whether prostanoid products specifically in the brain contribute to HTN development. Expression of prostanoid pathway genes was measured in brain regions known to affect neurogenic BP regulation. ANG II-treated rats exhibited changes in gene expression of phospholipase A2 (upregulated in organum vasculosum of the lamina terminalis, paraventricular nucleus, nucleus of the solitary tract, and middle cerebral artery) and lipocalin-type prostaglandin D synthase (upregulated in the organum vasculosum of the lamina terminalis). On the basis of our results, we propose that activation of the brain prostanoid synthesis pathway both upstream and downstream from COX at early stages plays an important role in the development of the neurogenic component of ANG II-salt HTN.
Collapse
Affiliation(s)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
22
|
Hamilton DJ, Zhang A, Li S, Cao TN, Smith JA, Vedula I, Cordero-Reyes AM, Youker KA, Torre-Amione G, Gupte AA. Combination of angiotensin II and l-NG-nitroarginine methyl ester exacerbates mitochondrial dysfunction and oxidative stress to cause heart failure. Am J Physiol Heart Circ Physiol 2016; 310:H667-80. [PMID: 26747502 DOI: 10.1152/ajpheart.00746.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction has been implicated as a cause of energy deprivation in heart failure (HF). Herein, we tested individual and combined effects of two pathogenic factors of nonischemic HF, inhibition of nitric oxide synthesis [with l-N(G)-nitroarginine methyl ester (l-NAME)] and hypertension [with angiotensin II (AngII)], on myocardial mitochondrial function, oxidative stress, and metabolic gene expression. l-NAME and AngII were administered individually and in combination to mice for 5 wk. Although all treatments increased blood pressure and reduced cardiac contractile function, the l-NAME + AngII group was associated with the most severe HF, as characterized by edema, hypertrophy, oxidative stress, increased expression of Nppa and Nppb, and decreased expression of Atp2a2 and Camk2b. l-NAME + AngII-treated mice exhibited robust deterioration of cardiac mitochondrial function, as observed by reduced respiratory control ratios in subsarcolemmal mitochondria and reduced state 3 levels in interfibrillar mitochondria for complex I but not for complex II substrates. Cardiac myofibrils showed reduced ADP-supported and oligomycin-inhibited oxygen consumption. Mitochondrial functional impairment was accompanied by reduced mitochondrial DNA content and activities of pyruvate dehydrogenase and complex I but increased H2O2 production and tissue protein carbonyls in hearts from AngII and l-NAME + AngII groups. Microarray analyses revealed the majority of the gene changes attributed to the l-NAME + AngII group. Pathway analyses indicated significant changes in metabolic pathways, such as oxidative phosphorylation, mitochondrial function, cardiac hypertrophy, and fatty acid metabolism in l-NAME + AngII hearts. We conclude that l-NAME + AngII is associated with impaired mitochondrial respiratory function and increased oxidative stress compared with either l-NAME or AngII alone, resulting in nonischemic HF.
Collapse
Affiliation(s)
- Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas; Houston Methodist Department of Medicine, Weill Cornell Medical College, Houston, Texas
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Tram N Cao
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Jessie A Smith
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Indira Vedula
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas
| | - Andrea M Cordero-Reyes
- Houston Methodist Department of Cardiology, Weill Cornell Medical College, Houston, Texas
| | - Keith A Youker
- Houston Methodist Department of Cardiology, Weill Cornell Medical College, Houston, Texas
| | - Guillermo Torre-Amione
- Houston Methodist Department of Cardiology, Weill Cornell Medical College, Houston, Texas; Catedra de Cardiologia y Medicina Vascular, Tecnologico de Monterrey, Nuevo Leon, Mexico
| | - Anisha A Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas;
| |
Collapse
|
23
|
Ikeda M, Nakao M, Hirano K, Yokoyama K, Yokoo T, Joki N, Ando R, Shinoda T, Inaguma D, Yamaka T, Komatsu Y, Koiwa F, Sakaguchi T, Negi S, Shigematsu T. Possible prevention of dialysis-requiring congestive heart failure by angiotensin-II receptor blockers in non-dialysis Japanese patients with Stage 5 chronic kidney disease. J Renin Angiotensin Aldosterone Syst 2015. [PMID: 26195266 DOI: 10.1177/1470320315592565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Preventive medications for dialysis-requiring congestive heart failure (CHF) in non-dialysis Japanese patients with Stage 5 chronic kidney disease (CKD) are unknown. Our aim was to explore which CKD medication was associated with a reduced prevalence of dialysis-requiring CHF in non-dialysis Japanese patients with Stage 5 CKD. METHODS The present multicenter, retrospective, cross-sectional study examined the association between CKD medications and the prevalence of dialysis-requiring CHF in non-dialysis Japanese patients with Stage 5 CKD. RESULTS There were 1536 Japanese Stage 5 CKD patients who satisfied our inclusion criteria. We had 309 (20.1%) patients whom had developed dialysis-requiring CHF and 940 patients (60.8%) whom had been using angiotensin-II receptor blockers (ARBs) before initiating dialysis. In our multivariate analysis, only ARB use was significantly associated with a lower risk of CHF (Odds ratio (OR): 0.680, 95% confidence interval (CI): 0.516-0.897; p = 0.0064), of the CKD treatments examined in this study. CONCLUSIONS We found that ARB use during the pre-dialysis period is associated with a lower prevalence of CHF in the non-dialysis Japanese patients with Stage 5 CKD, suggesting a possible prevention of dialysis-requiring CHF by ARBs, in non-dialysis Japanese patients with Stage 5 CKD.
Collapse
Affiliation(s)
- Masato Ikeda
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Katsushika medical center, Tokyo, Japan
| | - Masatsugu Nakao
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Katsushika medical center, Tokyo, Japan
| | - Keita Hirano
- Department of Nephrology, Asikaga Red Cross Hospital, Gunma, Japan
| | - Keitaro Yokoyama
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuhiko Joki
- Division of Nephrology, Toho University, Ohashi Medical Center, Tokyo, Japan
| | - Ryoichi Ando
- Department of Nephrology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Toshio Shinoda
- Dialysis Center, Kawakita General Hospital, Tokyo, Japan
| | - Daijo Inaguma
- Kidney Center, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Toshihiko Yamaka
- Department of Clinical Engineering, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yasuhiro Komatsu
- Department of Nephrology, Division of Internal Medicine, Saint Luke's International Hospital, Tokyo, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Toshifumi Sakaguchi
- Division of Nephrology, Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shigeo Negi
- Division of Nephrology, Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Shigematsu
- Division of Nephrology, Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
24
|
Takawale A, Sakamuri SS, Kassiri Z. Extracellular Matrix Communication and Turnover in Cardiac Physiology and Pathology. Compr Physiol 2015; 5:687-719. [DOI: 10.1002/cphy.c140045] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Zhao L, Li AQ, Zhou TF, Zhang MQ, Qin XM. Exendin-4 alleviates angiotensin II-induced senescence in vascular smooth muscle cells by inhibiting Rac1 activation via a cAMP/PKA-dependent pathway. Am J Physiol Cell Physiol 2014; 307:C1130-41. [PMID: 25298426 DOI: 10.1152/ajpcell.00151.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular aging has been implicated in the progression of diabetes and age-related cardiovascular disorders. Glucagon-like peptide-1 (GLP-1) is an incretin hormone capable of cytoprotective actions in addition to its glucose-lowering effect. The present study was undertaken to examine whether Exendin-4, a specific ligand for the GLP-1 receptor, could prevent angiotensin (ANG) II-induced premature senescence in vascular smooth muscle cells (VSMCs) and to determine the underlying mechanism involved. Senescence-associated β-galactosidase (SA β-gal) assay showed that ANG II induced premature senescence of VSMCs. Pretreatment with Exendin-4 significantly attenuated ANG II-induced generation of H2O2 and the subsequent VSMC senescence. These effects were, however, reversed in the presence of exendin fragment 9-39, a GLP-1 receptor antagonist, or PKI14-22. Moreover, a marked increase in the levels of p53 and p21 induced by ANG II was blunted by the treatment with Exendin-4. Nevertheless, Exendin-4 failed to decrease ANG II-induced expression of NAD(P)H oxidase 1 (Nox1), NAD(P)H oxidase 4 (Nox4), p22(phox), or p47(phox) in VSMCs. Mechanistically, Exendin-4 blocked ANG II-induced Rac1 activation through the cAMP/PKA signaling cascade. Specifically, NSC23766, a Rac1 inhibitor, abrogated the suppressive effects of Exendin-4 on ANG II-induced premature senescence and H2O2 generation, respectively. Thus Exendin-4 confers resistance to ANG II-induced superoxide anion generation from NAD(P)H oxidase and the resultant VSMC senescence by inhibiting Rac1 activation via a cAMP/PKA-dependent pathway. These findings demonstrate that GLP-1 as well as its analogs (GLP-1-related reagents) may hold therapeutic potential in the treatment of diabetes with cardiovascular disease.
Collapse
Affiliation(s)
- Liang Zhao
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China; and Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ai Q Li
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China; and Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Teng F Zhou
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China; and Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Meng Q Zhang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China; and Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Xiao M Qin
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China; and Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, China
| |
Collapse
|
26
|
The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:260429. [PMID: 25101151 PMCID: PMC4102082 DOI: 10.1155/2014/260429] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/12/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
Heart failure (HF) is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS) in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2-) related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.
Collapse
|