1
|
Tian Z, Cui Y, Yu M, Deng D, Li Z, Ma X, Qu M. Reduced Glutathione Promoted Growth Performance by Improving the Jejunal Barrier, Antioxidant Function, and Altering Proteomics of Weaned Piglets. Antioxidants (Basel) 2025; 14:107. [PMID: 39857441 PMCID: PMC11761254 DOI: 10.3390/antiox14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Reduced glutathione (GSH) is a main nonenzymatic antioxidant, but its effects and underlying mechanisms on growth and intestinal health in weaned piglets still require further assessment. A total of 180 weaned piglets were randomly allotted to 5 groups: a basal diet (CON), and a basal diet supplemented with antibiotic chlortetracycline (ABX), 50 (GSH1), 65 (GSH2), or 100 mg/kg GSH (GSH3). Results revealed that dietary GSH1, GSH2, and ABX improved body weight and the average daily gain of weaned piglets, and ABX decreased albumin content but increased aspartate aminotransferase (AST) activity and the ratio of AST to alanine transaminase levels in plasma. GSH2 significantly decreased glucose content but increased the content of triglyceride and cholesterol in the plasma. Both GSH1 and GSH2 improved the jejunal mucosa architecture (villus height, crypt depth, and the ratio of villus height to crypt depth), tight junction protein (ZO-1 and Occludin), and antioxidant capacity (CAT and MDA), and the effects were superior to ABX. Dietary GSH improved the jejunal barrier by probably inhibiting the myosin light chain kinas pathway to up-regulate the transcript expression of tight junction protein (ZO-1 and Occludin) and Mucins. Through the proteomics analysis of the jejunal mucosa using 4D-DIA, the KEGG pathway enrichment analysis showed that differentiated proteins were significantly enriched in redox homeostasis-related pathways such as glutathione metabolism, cytochrome P450, the reactive oxygen species metabolic pathway, the oxidative phosphorylation pathway, and the phosphatidylinositol 3-kinase-serine/threonine kinase pathway in GSH2 vs. CON and in GSH2 vs. ABX. The results of proteomics and qRT-PCR showed that GSH supplementation might dose-dependently promote growth performance and that it alleviated the weaning stress-induced oxidative injury of the jejunal mucosa in piglets by activating SIRTI and Akt pathways to regulate GPX4, HSP70, FoxO1. Therefore, diets supplemented with 50-65 mg/kg GSH can promote the growth of and relieve intestinal oxidative injury in weaned piglets.
Collapse
Affiliation(s)
- Zhimei Tian
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330006, China;
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yiyan Cui
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Miao Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xianyong Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330006, China;
| |
Collapse
|
2
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
3
|
Ran Q, Li A, Tan Y, Zhang Y, Zhang Y, Chen H. Action and therapeutic targets of myosin light chain kinase, an important cardiovascular signaling mechanism. Pharmacol Res 2024; 206:107276. [PMID: 38944220 DOI: 10.1016/j.phrs.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The global incidence of cardiac diseases is increasing, imposing a substantial socioeconomic burden on healthcare systems. The pathogenesis of cardiovascular disease is complex and not fully understood, and the physiological function of the heart is inextricably linked to well-regulated cardiac muscle movement. Myosin light chain kinase (MLCK) is essential for myocardial contraction and diastole, cardiac electrophysiological homeostasis, vasoconstriction of vascular nerves and blood pressure regulation. In this sense, MLCK appears to be an attractive therapeutic target for cardiac diseases. MLCK participates in myocardial cell movement and migration through diverse pathways, including regulation of calcium homeostasis, activation of myosin light chain phosphorylation, and stimulation of vascular smooth muscle cell contraction or relaxation. Recently, phosphorylation of myosin light chains has been shown to be closely associated with the activation of myocardial exercise signaling, and MLCK mediates systolic and diastolic functions of the heart through the interaction of myosin thick filaments and actin thin filaments. It works by upholding the integrity of the cytoskeleton, modifying the conformation of the myosin head, and modulating innervation. MLCK governs vasoconstriction and diastolic function and is associated with the activation of adrenergic and sympathetic nervous systems, extracellular transport, endothelial permeability, and the regulation of nitric oxide and angiotensin II. Additionally, MLCK plays a crucial role in the process of cardiac aging. Multiple natural products/phytochemicals and chemical compounds, such as quercetin, cyclosporin, and ML-7 hydrochloride, have been shown to regulate cardiomyocyte MLCK. The MLCK-modifying capacity of these compounds should be considered in designing novel therapeutic agents. This review summarizes the mechanism of action of MLCK in the cardiovascular system and the therapeutic potential of reported chemical compounds in cardiac diseases by modifying MLCK processes.
Collapse
Affiliation(s)
- Qingzhi Ran
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Aoshuang Li
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100053, China
| | - Yuqing Tan
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Yue Zhang
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| | - Yongkang Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| |
Collapse
|
4
|
Shen G, Zhang W, Tu Q, Wang J. Bergamottin (Ber) ameliorates the progression of osteoarthritis via the Sirt1/NF-κB pathway. Front Pharmacol 2024; 15:1389786. [PMID: 38741587 PMCID: PMC11089381 DOI: 10.3389/fphar.2024.1389786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease characterized by progressive cartilage degeneration and secondary synovial inflammation. Bergamottin (Ber) is an important natural derivative of the furanocoumarin compound, extracted from natural foods, such as the pulp of grapefruits and pomelos. Ber exhibits several characteristicsthat are beneficial to human health, such as anti-inflammation, antioxidant, and anti-cancer effects. However, the role of Ber in the treatment of OA has not been elucidated to date. Therefore, in the present study, in vitro experiments were conducted, which demonstrated that Ber reduces the secretion of inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase-2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin E2 (PGE2) under the stimulation of interleukin-1β (IL-1β). Ber also reversed the IL-1 β-mediated aggrecan and type II collagen degradation within the extracellular matrix (ECM). In addition, in vivo experiments were conducted, in which Ber ameliorated the progression of OA in mice. It was revealed that Ber exerted its cellular effect by activating the Sirt1/NF-kB pathways. In conclusion, the present study demonstrated the therapeutic potential of Ber in the context of OA.
Collapse
Affiliation(s)
| | | | | | - Juncheng Wang
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui’an, China
| |
Collapse
|
5
|
Iusupova AO, Pakhtusov NN, Slepova OA, Belenkov YN, Privalova EV, Bure IV, Vetchinkina EA, Nemtsova MV. MiRNA-21a, miRNA-145, and miRNA-221 Expression and Their Correlations with WNT Proteins in Patients with Obstructive and Non-Obstructive Coronary Artery Disease. Int J Mol Sci 2023; 24:17613. [PMID: 38139440 PMCID: PMC10744268 DOI: 10.3390/ijms242417613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development. OBJECTIVE To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA). METHOD The cross-sectional observational study comprised 94 subjects. The expression of miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6, and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25% men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers without risk factors for cardiovascular diseases (CVD). RESULTS Higher levels of WNT1 (0.189 [0.184; 0.193] ng/mL vs. 0.15 [0.15-0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07; 0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112; 0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001). MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001), whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012) and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with WNT1 (r = -0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive correlation between miR-145 expression and the WNT4 protein level was observed in patients with obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent predictors of INOCA (p < 0.001 and p = 0.002, respectively). CONCLUSIONS Activation of the canonical cascade of WNT-β-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved in the development of coronary artery obstruction, presumably through the regulation of the WNT4 protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the type of coronary artery lesion.
Collapse
Affiliation(s)
- Alfiya Oskarovna Iusupova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Nikolay Nikolaevich Pakhtusov
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Olga Alexandrovna Slepova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Yuri Nikitich Belenkov
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Elena Vitalievna Privalova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Irina Vladimirovna Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, 125445 Moscow, Russia
| | - Ekaterina Alexandrovna Vetchinkina
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
| | - Marina Vyacheslavovna Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
6
|
Zeng W, Deng Z, Gao Y, Sun G, Li X, Yuan D. Downregulation of connexin 43-based gap junctions underlies propofol-induced excessive relaxation in hypertensive vascular smooth muscle cells. Cell Commun Signal 2023; 21:163. [PMID: 37381027 DOI: 10.1186/s12964-023-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Postinduction hypotension caused by propofol remains a non-negligible problem for anesthesiologists, and is especially severe in chronic hypertensive patients with long-term vasoconstriction and decreased vascular elasticity. The functional change in gap junctions composed of Cx43 (Cx43-GJs) is reported as the biological basis of synchronized contraction or relaxation of blood vessels. Thus, we investigated the role of Cx43-GJs in propofol-induced dramatic blood pressure fluctuations in chronic hypertensive patients, and their internal mechanisms. METHODS Human umbilical artery smooth muscle cells (HUASMCs) were pretreated with long-term angiotensin II (Ang II), with or without propofol, to simulate the contraction and relaxation of normal and hypertensive VSMCs during anesthesia induction. The levels of F-actin polymerization and MLC2 phosphorylation were used as indicators to observe the contraction and relaxation of HUASMCs. Different specific activators, inhibitors and siRNAs were used to explore the role of Cx43-GJs and Ca2+ as well as the RhoA/ LIMK2/cofilin and RhoA/MLCK signaling pathways in the contraction and relaxation of normal and hypertensive HUASMCs. RESULTS Both F-actin polymerization and MLC2 phosphorylation were significantly enhanced in Ang II-pretreated HUASMCs, along with higher expression of Cx43 protein and stronger function of Cx43-GJs than in normal HUASMCs. However, with propofol administration, similar to Gap26 and Cx43-siRNA, the function of Cx43-GJs in Ang II-pretreated HUASMCs was inhibited compared with that in normal HUASMCs, accompanied by a larger decrease in intracellular Ca2+ and the RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways. Eventually F-actin polymerization and MLC2 phosphorylation were more dramatically decreased. However, these effects could be reversed by RA with enhanced Cx43-GJ function. CONCLUSION Long-term exposure to Ang II significantly enhanced the expression of the Cx43 protein and function of Cx43-GJs in HUASMCs, resulting in the accumulation of intracellular Ca2+ and the activation of its downstream RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways, which maintained HUASMCs in a state of excessive-contraction. With inhibition of Cx43-GJs by propofol in Ang II-pretreated HUASMCs, intracellular Ca2+ and its downstream signaling pathways were dramatically inhibited, which ultimately excessively relaxed HUASMCs. This is the reason why the blood pressure fluctuation of patients with chronic hypertension was more severe after receiving propofol induction. Video Abstract.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Zhizhao Deng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Yingxin Gao
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Guoliang Sun
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Xianlong Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Dongdong Yuan
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
7
|
Rogacka D, Rachubik P, Audzeyenka I, Kulesza T, Szrejder M, Myślińska D, Angielski S, Piwkowska A. Inhibition of phosphodiesterase 5A by tadalafil improves SIRT1 expression and activity in insulin-resistant podocytes. Cell Signal 2023; 105:110622. [PMID: 36754339 DOI: 10.1016/j.cellsig.2023.110622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
A decrease in intracellular levels of 3',5'-cyclic guanosine monophosphate (cGMP) has been implicated in the progression of diabetic nephropathy. Hyperglycemia significantly inhibits cGMP-dependent pathway activity in the kidney, leading to glomerular damage and proteinuria. The enhancement of activity of this pathway that is associated with an elevation of cGMP levels may be achieved by inhibition of the cGMP specific phosphodiesterase 5A (PDE5A) using selective inhibitors, such as tadalafil. Hyperglycemia decreased the insulin responsiveness of podocytes and impaired podocyte function. These effects were associated with lower protein amounts and activity of the protein deacetylase sirtuin 1 (SIRT1) and a decrease in the phosphorylation of adenosine monophosphate-dependent protein kinase (AMPK). We found that PDE5A protein levels increased in hyperglycemia, and PDE5A downregulation improved the insulin responsiveness of podocytes with reestablished SIRT1 expression and activity. PDE5A inhibitors potentiate nitric oxide (NO)/cGMP signaling, and NO modulates the activity and expression of SIRT1. Therefore, we investigated the effects of tadalafil on SIRT1 and AMPK in the context of improving the insulin sensitivity in podocytes and podocyte function in hyperglycemia. Our study revealed that tadalafil restored SIRT1 expression and activity and activated AMPK by increasing its phosphorylation. Tadalafil also restored stimulating effect of insulin on glucose transport in podocytes with high glucose-induced insulin resistance. Additionally, tadalafil improved the function of podocytes that were exposed to high glucose concentrations. Our results display novel mechanisms involved in the pathogenesis of glomerulopathies in diabetes, which may contribute to the development of more effective treatment strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| |
Collapse
|
8
|
Rogacka D, Rachubik P, Audzeyenka I, Szrejder M, Kulesza T, Myślińska D, Angielski S, Piwkowska A. Enhancement of cGMP-dependent pathway activity ameliorates hyperglycemia-induced decrease in SIRT1-AMPK activity in podocytes: Impact on glucose uptake and podocyte function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119362. [PMID: 36152759 DOI: 10.1016/j.bbamcr.2022.119362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyperglycemia significantly decreases 3',5'-cyclic guanosine monophosphate (cGMP)-dependent pathway activity in the kidney. A well-characterized downstream signaling effector of cGMP is cGMP-dependent protein kinase G (PKG), exerting a wide range of downstream effects, including vasodilation and vascular smooth muscle cells relaxation. In podocytes that are exposed to high glucose concentrations, crosstalk between the protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) decreased, attenuating insulin responsiveness and impairing podocyte function. The present study examined the effect of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk in podocytes under hyperglycemic conditions. We found that enhancing cGMP-dependent pathway activity using a cGMP analog was associated with increases in SIRT1 protein levels and activity, with a concomitant increase in the degree of AMPK phosphorylation. The beneficial effects of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk also included improvements in podocyte function. Based on our findings, we postulate an important role for SIRT1-AMPK crosstalk in the regulation of albumin permeability in hyperglycemia that is strongly associated with activity of the cGMP-dependent pathway.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
9
|
Yu X, Li Z, Bai R, Tang F. Transcriptional factor 3 binds to sirtuin 1 to activate the Wnt/β-catenin signaling in cervical cancer. Bioengineered 2022; 13:12516-12531. [PMID: 35587604 PMCID: PMC9275895 DOI: 10.1080/21655979.2022.2076481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transcriptional factor 3 (TCF3, also termed E2A), first reported to exert crucial functions during lymphocyte development, has been revealed to participate in the pathogenesis of human cancers. The aim of this work was to investigate the function of TCF3 in cervical cancer (CC) and the molecular interactions. The bioinformatics prediction suggested that TCF3 was highly expressed in CC and linked to poor prognosis. Increased TCF3 expression was identified in CC cell lines, and its downregulation reduced proliferation and migration of CC cells in vitro as well as growth of xenograft tumors in vivo. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the TCF-3-related genes and genes showed differential expression between CC and normal tissues were mainly enriched in the Wnt/β-catenin pathway. TCF3 bound to sirtuin 1 (SIRT1) promoter for transcriptional activation, and SIRT1 promoted deacetylation and nuclear translocation of β-catenin in CC. SIRT1 overexpression blocked the role of TCF3 silencing and restored cell proliferation in vitro and tumor growth in vivo. Treatment with XAV-939, a β-catenin inhibitor, significantly suppressed the cell proliferation and tumor growth induced by SIRT1 overexpression. In conclusion, this study demonstrates that TCF3 augments progression of CC by activating SIRT1-mediated β-catenin signaling.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Gynecological Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan, P.R. China
| | - Zhaoshuo Li
- Department of Cerebrovascular Disease, Henan Provincial People's Hospital, Henan, P.R. China
| | - Ruihua Bai
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan, P.R. China
| | - Fuxiang Tang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| |
Collapse
|
10
|
Wang L, Wang S, Jia T, Sun X, Xing Z, Liu H, Yao J, Chen Y. Dexmedetomidine prevents cardiomyocytes from hypoxia/reoxygenation injury via modulating tetmethylcytosine dioxygenase 1-mediated DNA demethylation of Sirtuin1. Bioengineered 2022; 13:9369-9386. [PMID: 35387565 PMCID: PMC9161963 DOI: 10.1080/21655979.2022.2054762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Myocardial hypoxia/reoxygenation (H/R) injury is a common pathological change in patients with acute myocardial infarction undergoing reperfusion therapy. Dexmedetomidine (DEX) has been found to substantially improve ischemia-mediated cell damage. Here, we focus on probing the role and mechanism of DEX in ameliorating myocardial H/R injury. Oxygen–glucose deprivation and reoxygenation (OGD/R) were applied to construct the H/R injury model in human myocardial cell lines. After different concentrations of DEX’s treatment, cell counting kit-8 (CCK-8) assay and BrdU assay were employed to test cell viability. The profiles of apoptosis-related proteins Bcl2, Bax, Bad and Caspase3, 8, 9 were determined by Western blot (WB). The expression of inflammatory factors interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) was checked by reverse transcription-polymerase chain reaction (RT-PCR). By conducting WB, we examined the expression of NF-κB, Sirt1, Tet methylcytosine dioxygenase 1 (TET1) and DNA methylation-related proteins (DNA methyltransferase 1, DNMT1; DNA methyltransferase 3 alpha, DNMT3A; and DNA methyltransferase 3 beta, DNMT3B). Our data showed that OGD/R stimulation distinctly hampered the viability and elevated apoptosis and inflammatory factor expression in cardiomyocytes. DEX treatment notably impeded myocardial apoptosis and inflammation and enhanced cardiomyocyte viability. OGD/R enhanced total DNA methylation levels in cardiomyocytes, while DEX curbed DNA methylation. In terms of mechanism, inhibiting TET1 or Sirtuin1 (Sirt1) curbed the DEX-mediated myocardial protection. TET1 strengthened demethylation of the Sirt1 promoter and up-regulated Sirt1. DEX up-regulates Sirt1 by accelerating TET1 and mediating demethylation of the Sirt1 promoter and improves H/R-mediated myocardial injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Shaowei Wang
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Tong Jia
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Xiaojia Sun
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Zhen Xing
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Hui Liu
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Jie Yao
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Yanlin Chen
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| |
Collapse
|
11
|
An N, Yang T, Zhang XX, Xu MX. Bergamottin alleviates LPS-induced acute lung injury by inducing SIRT1 and suppressing NF-κB. Innate Immun 2021; 27:543-552. [PMID: 34812690 PMCID: PMC8762093 DOI: 10.1177/17534259211062553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is associated with a high mortality due to inflammatory cell infiltration and lung edema. The development of ALI commonly involves the activation of NF-κB. Since bergamottin is a natural furanocoumarin showing the ability to inhibit the activation of NF-κB, in this study we aimed to determine the effect of bergamottin on ALI. RAW264.7 mouse macrophages were pre-treated with bergamottin and then stimulated with LPS. Macrophage inflammatory responses were examined. Bergamottin (50 mg/kg body mass) was intraperitoneally administrated to mice 12 h before injection of LPS, and the effect of bergamottin on LPS-induced ALI was evaluated. Our results showed that LPS exposure led to increased production of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which was impaired by bergamottin pre-treatment. In vivo studies confirmed that bergamottin pre-treatment suppressed LPS-induced lung inflammation and edema and reduced the levels of pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluids. Mechanistically, bergamottin blocked LPS-induced activation of NF-κB signaling in lung tissues. Additionally, bergamottin treatment reduced NF-κB p65 protein acetylation, which was coupled with induction of SIRT1 expression. In conclusion, our results reveal the anti-inflammatory property of bergamottin in preventing ALI. Induction of SIRT1 and inhibition of NF-κB underlies the anti-inflammatory activity of bergamottin.
Collapse
Affiliation(s)
- Ning An
- Institue of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Tao Yang
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xia Zhang
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Xia Xu
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Zhao X, Tian J, Liu Y, Ye Z, Xu M, Huang R, Song X. TLR4-Myd88 pathway upregulated caveolin-1 expression contributes to coronary artery spasm. Vascul Pharmacol 2021; 142:106947. [PMID: 34822994 DOI: 10.1016/j.vph.2021.106947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
AIM To study the role of toll-like receptors 4-myeloid differentiation factor 88 (TLR4-Myd88) dependent caveolin-1 (Cav-1) expression modulation in coronary artery spasm (CAS) and explore the underlying pathogenic mechanisms. METHODS AND RESULTS Lipopolysaccharide (LPS) and acetylcholine (Ach) were used to develop the in vitro and in vivo models mimicking the physiological CAS microenvironment. LPS-induced upregulation of Cav-1 expression in mouse coronary and aorta endothelial cells was shown by western blot and immunofluorescence (IF) staining (p < 0.01). Caveolin-1-knockout (Cav-1-/-) mice had reduced aortic inflammation after LPS challenge, and fewer ST segment changes were observed through electrocardiogram (ECG) monitoring compared to wild type mice after LPS and ACh administration. In vitro, pretreating human umbilical vein endothelial cells (HUVECs) with siCav-1 to knock down Cav-1 expression reduced the endothelial inflammation following LPS challenge. SiCav-1 also partially reversed the attenuated Ca2+ concentration after LPS and ACh administration compared to the control group, which was evaluated by fluorescent molecular probing for Ca2+ alternation monitoring (p < 0.05). TLR4 and Myd88 downregulation by siRNA partially blocked the increased Cav-1 mRNA and protein expressions following LPS treatment, as well as partially reversed the decreased NO production evaluated by nitrate reductase method and the impaired Ca2+ concentration of endothelial cells induced by LPS and ACh. CONCLUSION These findings suggested that Cav-1, which was upregulated by TLR4-Myd88, served as an important modulator of CAS microenvironment establishment in vivo and in vitro, making it a potential pharmacologic target for the treatment of vasospasm via reduced endothelial cell inflammation.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Yue Liu
- Cardiovascular Disease Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China
| | - Mingyue Xu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| |
Collapse
|
13
|
Lindsey ML, LeBlanc AJ, Ripplinger CM, Carter JR, Kirk JA, Hansell Keehan K, Brunt KR, Kleinbongard P, Kassiri Z. Reinforcing rigor and reproducibility expectations for use of sex and gender in cardiovascular research. Am J Physiol Heart Circ Physiol 2021; 321:H819-H824. [PMID: 34524922 DOI: 10.1152/ajpheart.00418.2021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Amanda J LeBlanc
- Department of Physiology and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | | | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Kara Hansell Keehan
- Strategic Journal Development, American Physiological Society, Rockville, Maryland.,AJP-Heart and Circulatory Physiology, American Physiological Society, Rockville, Maryland
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|