1
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- Jewish Heritage Fund for Excellence
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
2
|
Warrington JP, Collins HE, Davidge ST, do Carmo JM, Goulopoulou S, Intapad S, Loria AS, Sones JL, Wold LE, Zinkhan EK, Alexander BT. Guidelines for in vivo models of developmental programming of cardiovascular disease risk. Am J Physiol Heart Circ Physiol 2024; 327:H221-H241. [PMID: 38819382 PMCID: PMC11380980 DOI: 10.1152/ajpheart.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.
Collapse
Grants
- 20YVNR35490079 American Heart Association (AHA)
- R01HL139348 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135158 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54GM115428 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG057046 HHS | NIH | National Institute on Aging (NIA)
- P20 GM104357 NIGMS NIH HHS
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 GM149404 NIGMS NIH HHS
- P20GM104357 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM135002 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL163003 NHLBI NIH HHS
- R01HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK121411 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Excellence Faculty Support Grant Jewish Heritage Fund
- P30GM149404 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P30GM14940 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 23SFRNPCS1067044 American Heart Association (AHA)
- R01 HL146562 NHLBI NIH HHS
- R56HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- 1R01HL163076 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL51971 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- FS154313 CIHR
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, Kentucky, United States
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jussara M do Carmo
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, United States
- Department of Gynecology, and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Suttira Intapad
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jenny L Sones
- Equine Reproduction Laboratory, Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Erin K Zinkhan
- Department of Pediatrics, University of Utah and Intermountain Health, Salt Lake City, Utah, United States
- Intermountain Health, Salt Lake City, Utah, United States
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
3
|
Malamitsi-Puchner A, Briana DD. Advanced parental age affects cardiometabolic risk in offspring. Acta Paediatr 2023; 112:2307-2311. [PMID: 37410550 DOI: 10.1111/apa.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Advanced age at conception usually refers to human mothers aged 35 years plus and fathers aged 40 years plus. Advanced parental age may be responsible for genetic and/or epigenetic alterations and may affect the health of offspring. Limited epidemiological and experimental studies have addressed the effect of advanced parental age on cardio-metabolic functions in human and rodent offspring. This mini review aimed to present the knowledge by focusing on adverse and favourable outcomes related to sex-specific risks and intergenerational inheritance. The outcomes identified by this review were mainly negative, but there were also some positive results.
Collapse
Affiliation(s)
- Ariadne Malamitsi-Puchner
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina D Briana
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Bi W, Xiao Y, Wang X, Cui L, Song G, Yang Z, Zhang Y, Ren W. The association between assisted reproductive technology and cardiac remodeling in fetuses and early infants: a prospective cohort study. BMC Med 2022; 20:104. [PMID: 35361200 PMCID: PMC8973576 DOI: 10.1186/s12916-022-02303-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Limited data exist regarding the potential impact of assisted reproductive technology (ART) on cardiac remodeling. In particular, whether different ART techniques are related to different cardiac alterations remains unclear. We aimed to evaluate cardiac changes in fetuses and infants arising from ART and fetal cardiac alterations in fetuses conceived by specific ART procedures. METHODS This prospective and observational cohort study recruited 111 fetuses conceived by ART and 106 spontaneously conceived controls between December 2017 and April 2019. Echocardiography was performed between 28+0 and 32+6 weeks-of-gestation and at 0-2 and 6 months after birth. RESULTS A total of 88 ART fetuses and 85 controls were included in the final analysis. Compared to controls, ART fetuses demonstrated a globular enlarged left ventricle (LV) (LV sphericity index of mid-section, 2.29 ± 0.34 vs. 2.45 ± 0.39, P = 0.006; LV area, 262.33 ± 45.96 mm2 vs. 244.25 ± 47.13 mm2, P = 0.002), a larger right ventricle (RV) (RV area, 236.10 ± 38.63 mm2 vs. 221.14 ± 42.60 mm2, P = 0.003) and reduced LV systolic deformation (LV global longitudinal strain (GLS), -19.56% ± 1.90% vs. -20.65% ± 1.88%, P = 0.013; LV GLS rate S, -3.32 ± 0.36 s-1 vs. -3.58 ± 0.39 s-1, P = 0.023). There were no significant differences between the ART and control groups at postnatal follow-ups. Furthermore, we found fetal cardiac morphometry and function were comparable between different ART procedures. Compared to controls, the fetuses derived from various ART procedures all exhibited impairments in the LV GLS and the LV GLS rate S. CONCLUSIONS Our analysis demonstrated that subclinical cardiac remodeling and dysfunction were evident in ART fetuses, although these alterations did not persist in early infancy. In addition, various ART procedures may cause the same unfavorable changes in the fetal heart. TRIAL REGISTRATION This trial was registered at the Chinese Clinical Trial Registry ( www.chictr.org.cn ) ( ChiCTR1900021672 ) on March 4, 2019, retrospectively registered.
Collapse
Affiliation(s)
- Wenjing Bi
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China
| | - Yangjie Xiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China
| | - Xin Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China
| | - Li Cui
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China.,Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Song
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China
| | - Zeyu Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China
| | - Ying Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36# of Sanhao St. Heping District, Shenyang, 110004, China.
| |
Collapse
|
5
|
Zambrano E, Lomas-Soria C, Nathanielsz PW. Rodent studies of developmental programming and ageing mechanisms: Special issue: In utero and early life programming of ageing and disease. Eur J Clin Invest 2021; 51:e13631. [PMID: 34061987 DOI: 10.1111/eci.13631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/31/2022]
Abstract
Compelling evidence exists indicating that developmental programming influences ageing. Programming alters life-course phenotype in multiple organs, predisposing to diseases such as diabetes, obesity and cardiovascular disease that shorten lifespan. This review describes studies in rodents, the most commonly studied species, addressing interactions of programming challenges with ageing. We first consider ageing and programming of insulin function that has been clearly shown to decrease with age. It is important to evaluate ageing in pancreatic islets isolated from other systems. Studies discussed show premature pancreatic islet ageing resulting from both maternal under- and overnutrition. New ways to determine programming of adipose tissue and effects on fat storage are explored. Oxidative stress is a major factor that regulates ageing in tissues. Oxidative stress is discussed in relation to reproductive and cardiovascular ageing. Premature ageing is associated with both low and high glucocorticoid function. Both over and undernutrition have offspring sex-specific programming effects on life-course glucocorticoid concentrations. Evidence is provided that maternal age at conception affects offspring endocrine and metabolism ageing. Finally, the importance of matching foetal nutrition and energy availability with composition and energy content in the post-weaning diet is demonstrated. This mismatch can lead to a greatly shortened lifespan. General principles are discussed throughout. For example, sexual dimorphism of age-related outcomes can be marked. Accelerated ageing occurs early in life. Improving knowledge on programming ageing interactions will improve health span as well as lifespan. Finally, there are considerable similarities in outcomes programmed by maternal undernutrition and overnutrition.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Consuelo Lomas-Soria
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México.,Reproductive Biology Department, CONACyT-Cátedras, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, México
| | - Peter W Nathanielsz
- Department of Animal Science, Texas Pregnancy and Life-course Health Center, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
6
|
Pasha M, Wooldridge AL, Kirschenman R, Spaans F, Davidge ST, Cooke CLM. Altered Vascular Adaptations to Pregnancy in a Rat Model of Advanced Maternal Age. Front Physiol 2021; 12:718568. [PMID: 34393831 PMCID: PMC8356803 DOI: 10.3389/fphys.2021.718568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (≥35 years old) increases the risk of pregnancy complications such as preeclampsia and fetal growth restriction. We previously demonstrated vascular dysfunction and abnormal pregnancy outcomes in a rat model of advanced maternal age. However, vascular adaptations to pregnancy in aging were not studied. We hypothesize that advanced maternal age is associated with a more vasoconstrictive phenotype due to reduced nitric oxide (NO) and increased activity of matrix metalloproteinases (MMPs), contributing to impaired vascular adaptations to pregnancy. A rat model of advanced maternal age was used: young (4 months) and aged (9.5 months; ∼35 years in humans) non-pregnant and pregnant rats. On gestational day 20 (term = 22 days; non-pregnant rats were aged-matched), blood pressure and heart rate were measured (tail cuff plethysmography) and vascular function was assessed in mesenteric arteries (wire myography). Endothelium-dependent relaxation to methylcholine (MCh) was assessed in the presence/absence of nitric oxide synthase inhibitor (L-NAME), or inhibitors of endothelium-dependent hyperpolarization (EDH; apamin and TRAM-34). Vasoconstriction responses to big endothelin-1 (bigET-1), in the presence/absence of MMPs-inhibitor (GM6001) or endothelin converting enzyme (ECE-1) inhibitor (CGS35066), in addition, ET-1 responsiveness, were measured. Blood pressure was elevated only in aged non-pregnant rats (p < 0.001) compared to all other groups. MCh responses were not different, however, L-NAME decreased maximum vasodilation in young (p < 0.01) and aged pregnant rats (p < 0.001), and decreased MCh sensitivity in young non-pregnant rats (p < 0.01), without effects in aged non-pregnant rats. EDH contribution to relaxation was similar in young non-pregnant, and aged non-pregnant and pregnant rats, while EDH-mediated relaxation was absent in young pregnant rats (p < 0.001). BigET-1 responses were enhanced in aged non-pregnant (p < 0.01) and pregnant rats (p < 0.05). No significant changes in bigET-1 conversion occurred in the presence of MMP-inhibitor, whereas ECE-1 inhibition reduced bigET-1 constriction in aged rats (p < 0.01). No differences in ET-1 sensitivity were observed. In conclusion, contrary to our hypothesis, reduced blood pressure, and an increased EDH-dependent contribution to vasodilation suggest a compensatory mechanism that may reflect beneficial adaptations in these aged rats that were able to maintain pregnancy. These data increase our understanding of how the vascular adaptive pathways in pregnancy compensate for advanced maternal age.
Collapse
Affiliation(s)
- Mazhar Pasha
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Amy L. Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Yang H, Kuhn C, Kolben T, Ma Z, Lin P, Mahner S, Jeschke U, von Schönfeldt V. Early Life Oxidative Stress and Long-Lasting Cardiovascular Effects on Offspring Conceived by Assisted Reproductive Technologies: A Review. Int J Mol Sci 2020; 21:ijms21155175. [PMID: 32707756 PMCID: PMC7432066 DOI: 10.3390/ijms21155175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Assisted reproductive technology (ART) has rapidly developed and is now widely practised worldwide. Both the characteristics of ART (handling gametes/embryos in vitro) and the infertility backgrounds of ART parents (such as infertility diseases and unfavourable lifestyles or diets) could cause increased oxidative stress (OS) that may exert adverse influences on gametogenesis, fertilisation, and foetation, even causing a long-lasting influence on the offspring. For these reasons, the safety of ART needs to be closely examined. In this review, from an ART safety standpoint, the origins of OS are reviewed, and the long-lasting cardiovascular effects and potential mechanisms of OS on the offspring are discussed.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Zhi Ma
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Peng Lin
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
- Correspondence: ; Tel.: +49-(0)821-400-165505
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; (H.Y.); (C.K.); (T.K.); (Z.M.); (P.L.); (S.M.); (V.v.S.)
| |
Collapse
|
8
|
Zambrano E, Reyes-Castro LA, Rodríguez-González GL, Chavira R, Nathanielsz PW. Aging Endocrine and Metabolic Phenotypes Are Programmed by Mother’s Age at Conception in a Sex-Dependent Fashion in the Rat. J Gerontol A Biol Sci Med Sci 2020; 75:2304-2307. [DOI: 10.1093/gerona/glaa067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Programming of offspring life-course health by maternal nutrition and stress are well studied. At postnatal day 850, we evaluated male and female steroid levels and metabolism in aged offspring of primigravid sister rats bred at 70, 90, 150, or 300 days’ life. At 850 days life, male offspring corticosterone was similar regardless of maternal age. Female corticosterone was highest in offspring of 70- and 300-day mothers. Serum dehydroepiandrosterone:corticosterone was lowest in both sexes of offspring of 70- and 300-day mothers. Male and female fat depots were smaller in offspring of 150- than 70- and 90-day mothers. Insulin, glucose, and homeostatic model assessment were similar in all male offspring but higher in female offspring of 70-day mothers than other ages. We conclude, maternal age affects offspring aging in an offspring sex-dependent manner and merits consideration in designing and interpreting programming studies.
Collapse
Affiliation(s)
- Elena Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roberto Chavira
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Peter W Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie
| |
Collapse
|
9
|
Napso T, Hung YP, Davidge ST, Care AS, Sferruzzi-Perri AN. Advanced maternal age compromises fetal growth and induces sex-specific changes in placental phenotype in rats. Sci Rep 2019; 9:16916. [PMID: 31780670 PMCID: PMC6882885 DOI: 10.1038/s41598-019-53199-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Advanced maternal age is associated with an increased risk of pregnancy complications. It programmes sex-specific cardiovascular dysfunction in rat offspring, however the intrauterine mechanisms involved remain unknown. This study in the rat assessed the impact of advanced maternal age on placental phenotype in relation to the growth of female and male fetuses. We show that relative to young (3-4 months) dams, advanced maternal age (9.5-10 months) compromises growth of both female and male fetuses but affects the placental phenotype sex-specifically. In placentas from aged versus young dams, the size of the placental transport and endocrine zones were increased and expression of Igf2 (+41%) and placental lactogen (Prl3b1: +59%) genes were upregulated in female, but not male fetuses. Placental abundance of IGF2 protein also decreased in the placenta of males only (-95%). Moreover, in placentas from aged versus young dams, glucocorticoid metabolism (11β-hsd2: +63% and 11β-hsd1: -33%) was higher in females, but lower in males (11β-hsd2: -50% and 11β-hsd1: unaltered). There was however, no change in the placental abundance of 11β-HSD2 protein in aged versus young dams regardless of fetal sex. Levels of oxidative stress in the placenta were increased in female and male fetuses (+57% and +90%, respectively) and apoptosis increased specifically in the placenta of males from aged rat dams (+700%). Thus, advanced maternal age alters placental phenotype in a sex-specific fashion. These sexually-divergent changes may play a role in determining health outcomes of female and male offspring of aged mothers.
Collapse
Affiliation(s)
- Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yin-Po Hung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alison S Care
- Department of Obstetrics and Gynaecology, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Weeks KL, Henstridge DC, Salim A, Shaw JE, Marwick TH, McMullen JR. CORP: Practical tools for improving experimental design and reporting of laboratory studies of cardiovascular physiology and metabolism. Am J Physiol Heart Circ Physiol 2019; 317:H627-H639. [PMID: 31347916 DOI: 10.1152/ajpheart.00327.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The exercise consisted of: 1) a short survey to acquire baseline data on current practices regarding the conduct of animal studies, 2) a series of presentations for promoting awareness and providing advice and practical tools for improving experimental design, and 3) a follow-up survey 12 mo later to assess whether practices had changed. The surveys were compulsory for responsible investigators (n = 16; paired data presented). Other investigators named on animal ethics applications were encouraged to participate (2017, total of 36 investigators; 2018, 37 investigators). The major findings to come from the exercise included 1) a willingness of investigators to make changes when provided with knowledge/tools and solutions that were relatively simple to implement (e.g., proportion of responsible investigators showing improved practices using a structured method for randomization was 0.44, 95% CI (0.19; 0.70), P = 0.003, and deidentifying drugs/interventions was 0.40, 95% CI (0.12; 0.68), P = 0.010); 2) resistance to change if this involved more personnel and time (e.g., as required for allocation concealment); and 3) evidence that changes to long-term practices ("habits") require time and follow-up. Improved practices could be verified based on changes in reporting within publications or documented evidence provided during laboratory visits. In summary, this exercise resulted in changed attitudes, practices, and reporting, but continued follow-up, monitoring, and incentives are required. Efforts to improve experimental rigor will reduce bias and will lead to findings with the greatest translational potential.NEW & NOTEWORTHY The goal of this exercise was to encourage preclinical researchers to improve the quality of their cardiac and metabolic animal studies by 1) increasing awareness of concerns, which can arise from suboptimal experimental designs; 2) providing knowledge, tools, and templates to overcome bias; and 3) conducting two short surveys over 12 mo to monitor change. Improved practices were identified for the uptake of structured methods for randomization, and de-identifying interventions/drugs.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/experimental-design-survey-training-practical-tools/.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Mathematics and Statistics, La Trobe University Victoria, Australia
| | | | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Cooke CLM, Davidge ST. Advanced maternal age and the impact on maternal and offspring cardiovascular health. Am J Physiol Heart Circ Physiol 2019; 317:H387-H394. [PMID: 31199185 DOI: 10.1152/ajpheart.00045.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Delaying pregnancy, which is on the rise, may increase the risk of cardiovascular disease in both women and their children. The physiological mechanisms that lead to these effects are not fully understood but may involve inadequate adaptations of the maternal cardiovascular system to pregnancy. Indeed, there is abundant evidence in the literature that a fetus developing in a suboptimal in utero environment (such as in pregnancies complicated by fetal growth restriction, preterm birth, and/or preeclampsia) is at an increased risk of cardiovascular disease in adulthood, the developmental origins of health and disease theory. Although women of advanced age are at a significantly increased risk of pregnancy complications, there is limited information as to whether advanced maternal age constitutes an added stressor on the prenatal environment of the fetus, and whether or not this is secondary to impaired cardiovascular function during pregnancy. This review summarizes the current literature available on the impact of advanced maternal age on cardiovascular adaptations to pregnancy and the role of maternal age on long-term health risks for both the mother and offspring.
Collapse
Affiliation(s)
- Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| |
Collapse
|