1
|
Pizzo E, Cervantes DO, Ripa V, Filardo A, Berrettoni S, Ketkar H, Jagana V, Di Stefano V, Singh K, Ezzati A, Ghadirian K, Kouril A, Jacobson JT, Bisserier M, Jain S, Rota M. The cAMP/PKA signaling pathway conditions cardiac performance in experimental animals with metabolic syndrome. J Mol Cell Cardiol 2024; 196:35-51. [PMID: 39251059 PMCID: PMC11534532 DOI: 10.1016/j.yjmcc.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/20/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Metabolic syndrome (MetS) increases the risk of coronary artery disease, but effects of this condition on the working myocardium remain to be fully elucidated. In the present study we evaluated the consequences of diet-induced metabolic disorders on cardiac function and myocyte performance using female mice fed with Western diet. Animals maintained on regular chow were used as control (Ctrl). Mice on the Western diet (WesD) had increased body weight, impaired glucose metabolism, preserved diastolic and systolic function, but increased left ventricular (LV) mass, with respect to Ctrl animals. Moreover, WesD mice had reduced heart rate variability (HRV), indicative of altered cardiac sympathovagal balance. Myocytes from WesD mice had increased volume, enhanced cell mechanics, and faster kinetics of contraction and relaxation. Moreover, levels of cAMP and protein kinase A (PKA) activity were enhanced in WesD myocytes, and interventions aimed at stabilizing cAMP/PKA abrogated functional differences between Ctrl and WesD cells. Interestingly, in vivo β-adrenergic receptor (β-AR) blockade normalized the mechanical properties of WesD myocytes and revealed defective cardiac function in WesD mice, with respect to Ctrl. Collectively, these results indicate that metabolic disorders induced by Western diet enhance the cAMP/PKA signaling pathway, a possible adaptation required to maintain cardiac function.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | | - Valentina Ripa
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Andrea Filardo
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Silvia Berrettoni
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Vineeta Jagana
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | | | - Kanwardeep Singh
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Asha Ezzati
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Kash Ghadirian
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Anna Kouril
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, NY, USA; Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | - Malik Bisserier
- Department of Physiology, New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Pizzo E, Cervantes DO, Ketkar H, Ripa V, Nassal DM, Buck B, Parambath SP, Di Stefano V, Singh K, Thompson CI, Mohler PJ, Hund TJ, Jacobson JT, Jain S, Rota M. Phosphorylation of cardiac sodium channel at Ser571 anticipates manifestations of the aging myopathy. Am J Physiol Heart Circ Physiol 2024; 326:H1424-H1445. [PMID: 38639742 DOI: 10.1152/ajpheart.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Daniel O Cervantes
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valentina Ripa
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Benjamin Buck
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Kanwardeep Singh
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
3
|
Westhoff M, Del Villar SG, Voelker TL, Thai PN, Spooner HC, Costa AD, Sirish P, Chiamvimonvat N, Dickson EJ, Dixon RE. BIN1 knockdown rescues systolic dysfunction in aging male mouse hearts. Nat Commun 2024; 15:3528. [PMID: 38664444 PMCID: PMC11045846 DOI: 10.1038/s41467-024-47847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.
Collapse
Affiliation(s)
- Maartje Westhoff
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Silvia G Del Villar
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Taylor L Voelker
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Heather C Spooner
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Alexandre D Costa
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Farag A, Elfadadny A, Mandour AS, Ngeun SK, Aboubakr M, Kaneda M, Tanaka R. Potential protective effects of L-carnitine against myocardial ischemia/reperfusion injury in a rat model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18813-18825. [PMID: 38349499 DOI: 10.1007/s11356-024-32212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a growing concern for global public health. This study seeks to explore the potential protective effects of L-carnitine (LC) against heart ischemia-reperfusion injury in rats. To induce I/R injury, the rat hearts underwent a 30-min ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. We evaluated cardiac function through electrocardiography and heart rate variability (HRV) and conducted pathological examinations of myocardial structure. Additionally, the study investigated the influence of LC on myocardial apoptosis, inflammation, and oxidative stress in the context of I/R injury. The results show that pretreatment with LC led to improvements in the observed alterations in ECG waveforms and HRV parameters in the nontreated ischemic reperfusion model group, although most of these changes did not reach statistical significance. Similarly, although without a significant difference, LC reduced the levels of proinflammatory cytokines when compared to the values in the nontreated ischemic rat group. Furthermore, LC restored the reduced expressions of SOD1, SOD2, and SOD3. Additionally, LC significantly reduced the elevated Bax expressions and showed a nonsignificant increase in Bcl-2 expression, resulting in a favorable adjustment of the Bcl-2/Bax ratio. We also observed a significant enhancement in the histological appearance of cardiac muscles, a substantial reduction in myocardial fibrosis, and suppressed CD3 + cell proliferation in the ischemic myocardium. This small-scale, experimental, in vivo study indicates that LC was associated with enhancements in the pathological findings in the ischemic myocardium in the context of ischemia/reperfusion injury in this rat model. Although statistical significance was not achieved, LC exhibits potential and beneficial protective effects against I/R injury. It does so by modulating the expression of antioxidative and antiapoptotic genes, inhibiting the inflammatory response, and enhancing autonomic balance, particularly by increasing vagal tone in the heart. Further studies are necessary to confirm and elaborate on these findings.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan.
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qaliobiya, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
5
|
Brignole M, Groppelli A, Russo V, Fedorowski A, van Dijk G, Alboni P. The Rate of Asystolic Reflex Syncope Is Not Influenced by Age. JACC Clin Electrophysiol 2023:S2405-500X(23)00901-5. [PMID: 38243997 DOI: 10.1016/j.jacep.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The head-up tilt test (HUT) and other evidence suggest that the vagal effect on the heart decreases with age. OBJECTIVES The main aim of the study was to assess whether this age effect also affects the rate of asystole in spontaneous reflex syncope (RS). METHOD We performed an analysis of pooled individual data from 4 studies that recruited patients ≥40 years of age affected by certain or suspected RS who received an implantable loop recorder (ILR) and reported follow-up data on syncope recurrence. We assessed the presence of asystolic syncope of >3 seconds or nonsyncopal asystole of >6 seconds recorded by ILR and compared the findings to tilt test results on the same patients. RESULTS A total of 1,046 patients received ILR because of unexplained syncope. Of these, 201 (19.2%) had a documentation of an asystolic event of 10-second (Q1-Q3: 6- to 15-second) duration. They were subdivided in 3 age tertiles: ≤60 years (n = 64), 61 to 72 years (n = 72), and ≥73 years (n = 65). The rate of asystolic events was similar in the 3 subgroups (50.1%, 50.1%, and 49.2%, respectively; P = 0.99). Conversely, the rate of asystolic syncope induced during HUT (performed in 169 of 201) was greatly age dependent (31.0%, 12.1%, and 11.1% in increasing age tertiles, respectively; P = 0.009). CONCLUSIONS The rate of the spontaneous asystolic form of RS documented by ILR is constant at any age >40 years. Conversely, the rate of asystolic syncope induced by HUT is higher in younger patients and decreases with age. The contrasting results between spontaneous and tilt-induced events cast doubt on the concept that asystole in RS is less common in older patients.
Collapse
Affiliation(s)
- Michele Brignole
- IRCCS Istituto Auxologico Italiano, Faint and Fall Research Centre, Ospedale San Luca, Milan, Italy
| | - Antonella Groppelli
- IRCCS Istituto Auxologico Italiano, Faint and Fall Research Centre, Ospedale San Luca, Milan, Italy.
| | - Vincenzo Russo
- Cardiology and Syncope Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Monaldi Hospital, Naples, Italy
| | - Artur Fedorowski
- Department of Cardiology, Karolinska University Hospital, Solna, Sweden; Department of Medicine, Karolinska Institute, Solna, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Gert van Dijk
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Paolo Alboni
- Section of Cardiology, Ospedale Privato Quisisana, Ferrara, Italy
| |
Collapse
|
6
|
Farag A, Mandour AS, Kaneda M, Elfadadny A, Elhaieg A, Shimada K, Tanaka R. Effect of trehalose on heart functions in rats model after myocardial infarction: assessment of novel intraventricular pressure and heart rate variability. Front Cardiovasc Med 2023; 10:1182628. [PMID: 37469485 PMCID: PMC10353053 DOI: 10.3389/fcvm.2023.1182628] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Background Myocardial infarctions remain a leading cause of global deaths. Developing novel drugs to target cardiac remodeling after myocardial injury is challenging. There is an increasing interest in exploring natural cardioprotective agents and non-invasive tools like intraventricular pressure gradients (IVPG) and heart rate variability (HRV) analysis in myocardial infarctions. Trehalose (TRE), a natural disaccharide, shows promise in treating atherosclerosis, myocardial infarction, and neurodegenerative disorders. Objectives The objective of this study was to investigate the effectiveness of TRE in improving cardiac functions measured by IVPG and HRV and reducing myocardial remodeling following myocardial infarction in rat model. Methods Rats were divided into three groups: sham, myocardial infarction (MI), and trehalose-treated MI (TRE) groups. The animals in the MI and TRE groups underwent permanent ligation of the left anterior descending artery. The TRE group received 2% trehalose in their drinking water for four weeks after the surgery. At the end of the experiment, heart function was assessed using conventional echocardiography, novel color M-mode echocardiography for IVPG evaluation, and HRV analysis. After euthanasia, gross image scoring, histopathology, immunohistochemistry, and quantitative real-time PCR were performed to evaluate inflammatory reactions, oxidative stress, and apoptosis. Results The MI group exhibited significantly lower values in multiple IVPG parameters. In contrast, TRE administration showed an ameliorative effect on IVPG changes, with results comparable to the sham group. Additionally, TRE improved HRV parameters, mitigated morphological changes induced by myocardial infarction, reduced histological alterations in wall mass, and suppressed inflammatory reactions within the infarcted heart tissues. Furthermore, TRE demonstrated antioxidant, anti-apoptotic and anti-fibrotic properties. Conclusion The investigation into the effect of trehalose on a myocardial infarction rat model has yielded promising outcomes, as evidenced by improvements observed through conventional echocardiography, histological analysis, and immunohistochemical analysis. While minor trends were noticed in IVPG and HRV measurements. However, our findings offer valuable insights and demonstrate a correlation between IVPG, HRV, and other traditional markers of echo assessment in the myocardial infarction vs. sham groups. This alignment suggests the potential of IVPG and HRV as additional indicators for future research in this field.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
7
|
Jung SC, Zhou T, Ko EA. Age-dependent expression of ion channel genes in rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:85-94. [PMID: 36575936 PMCID: PMC9806634 DOI: 10.4196/kjpp.2023.27.1.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/29/2022]
Abstract
Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.
Collapse
Affiliation(s)
- Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea,Correspondence Eun-A Ko, E-mail:
| |
Collapse
|
8
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
9
|
Cervantes DO, Pizzo E, Ketkar H, Parambath SP, Tang S, Cianflone E, Cannata A, Vinukonda G, Jain S, Jacobson JT, Rota M. Scn1b expression in the adult mouse heart modulates Na + influx in myocytes and reveals a mechanistic link between Na + entry and diastolic function. Am J Physiol Heart Circ Physiol 2022; 322:H975-H993. [PMID: 35394857 PMCID: PMC9076421 DOI: 10.1152/ajpheart.00465.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (INa) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of INa. Variants in the gene SCN1B, encoding the VGSC β1- and β1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of β1/β1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of INa, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late INa with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of INa. Collectively, these results document that VGSC β1/β1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel β1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of β1-subunits in the physiology of the heart.
Collapse
Affiliation(s)
| | - Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Samantha Tang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Eleonora Cianflone
- Department of Physiology, New York Medical College, Valhalla, New York
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Antonio Cannata
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | | | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York
- Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
10
|
Pizzo E, Berrettoni S, Kaul R, Cervantes DO, Di Stefano V, Jain S, Jacobson JT, Rota M. Heart Rate Variability Reveals Altered Autonomic Regulation in Response to Myocardial Infarction in Experimental Animals. Front Cardiovasc Med 2022; 9:843144. [PMID: 35586660 PMCID: PMC9108187 DOI: 10.3389/fcvm.2022.843144] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The analysis of beating rate provides information on the modulatory action of the autonomic nervous system on the heart, which mediates adjustments of cardiac function to meet hemodynamic requirements. In patients with myocardial infarction, alterations of heart rate variability (HRV) have been correlated to the occurrence of arrhythmic events and all-cause mortality. In the current study, we tested whether experimental rodent models of myocardial infarction recapitulate dynamics of heart rate variability observed in humans, and constitute valid platforms for understanding mechanisms linking autonomic function to the development and manifestation of cardiovascular conditions. For this purpose, HRV was evaluated in two engineered mouse lines using electrocardiograms collected in the conscious, restrained state, using a tunnel device. Measurements were obtained in naïve mice and animals at 3-∼28 days following myocardial infarction, induced by permanent coronary artery ligation. Two mouse lines with inbred and hybrid genetic background and, respectively, homozygous (Homo) and heterozygous (Het) for the MerCreMer transgene, were employed. In the naïve state, Het female and male mice presented prolonged RR interval duration (∼9%) and a ∼4-fold increased short- and long-term RR interval variability, with respect to sex-matched Homo mice. These differences were abrogated by pharmacological interventions inhibiting the sympathetic and parasympathetic axes. At 3-∼14 days after myocardial infarction, RR interval duration increased in Homo mice, but was not affected in Het animals. In contrast, Homo mice had minor modifications in HRV parameters, whereas substantial (> 50%) reduction of short- and long-term RR interval variation occurred in Het mice. Interestingly, ex vivo studies in isolated organs documented that intrinsic RR interval duration increased in infarcted vs. non-infarcted Homo and Het hearts, whereas RR interval variation was not affected. In conclusion, our study documents that, as observed in humans, myocardial infarction in rodents is associated with alterations in heart rhythm dynamics consistent with sympathoexcitation and parasympathetic withdrawal. Moreover, we report that mouse strain is an important variable when evaluating autonomic function via the analysis of HRV.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Silvia Berrettoni
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Ridhima Kaul
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Daniel O. Cervantes
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Jason T. Jacobson
- Department of Physiology, New York Medical College, Valhalla, NY, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
11
|
Liu C, Li L, Yang B, Zhao Y, Dong X, Zhu L, Ren X, Huang B, Yue J, Jin L, Zhang H, Wang L. Transcriptome-wide N6-methyladenine methylation in granulosa cells of women with decreased ovarian reserve. BMC Genomics 2022; 23:240. [PMID: 35346019 PMCID: PMC8961905 DOI: 10.1186/s12864-022-08462-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The emerging epitranscriptome plays an essential role in female fertility. As the most prevalent internal mRNA modification, N6-methyladenine (m6A) methylation regulate mRNA fate and translational efficiency. However, whether m6A methylation was involved in the aging-related ovarian reserve decline has not been investigated. Herein, we performed m6A transcriptome-wide profiling in the ovarian granulosa cells of younger women (younger group) and older women (older group).
Results
m6A methylation distribution was highly conserved and enriched in the CDS and 3’UTR region. Besides, an increased number of m6A methylated genes were identified in the older group. Bioinformatics analysis indicated that m6A methylated genes were enriched in the FoxO signaling pathway, adherens junction, and regulation of actin cytoskeleton. A total of 435 genes were differently expressed in the older group, moreover, 58 of them were modified by m6A. Several specific genes, including BUB1B, PHC2, TOP2A, DDR2, KLF13, and RYR2 which were differently expressed and modified by m6A, were validated using qRT-PCR and might be involved in the decreased ovarian functions in the aging ovary.
Conclusions
Hence, our finding revealed the transcriptional significance of m6A modifications and provide potential therapeutic targets to promote fertility reservation for aging women.
Collapse
|
12
|
Choi S, Baudot M, Vivas O, Moreno CM. Slowing down as we age: aging of the cardiac pacemaker's neural control. GeroScience 2021; 44:1-17. [PMID: 34292477 PMCID: PMC8811107 DOI: 10.1007/s11357-021-00420-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
The cardiac pacemaker ignites and coordinates the contraction of the whole heart, uninterruptedly, throughout our entire life. Pacemaker rate is constantly tuned by the autonomous nervous system to maintain body homeostasis. Sympathetic and parasympathetic terminals act over the pacemaker cells as the accelerator and the brake pedals, increasing or reducing the firing rate of pacemaker cells to match physiological demands. Despite the remarkable reliability of this tissue, the pacemaker is not exempt from the detrimental effects of aging. Mammals experience a natural and continuous decrease in the pacemaker rate throughout the entire lifespan. Why the pacemaker rhythm slows with age is poorly understood. Neural control of the pacemaker is remodeled from birth to adulthood, with strong evidence of age-related dysfunction that leads to a downshift of the pacemaker. Such evidence includes remodeling of pacemaker tissue architecture, alterations in the innervation, changes in the sympathetic acceleration and the parasympathetic deceleration, and alterations in the responsiveness of pacemaker cells to adrenergic and cholinergic modulation. In this review, we revisit the main evidence on the neural control of the pacemaker at the tissue and cellular level and the effects of aging on shaping this neural control.
Collapse
Affiliation(s)
- Sabrina Choi
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Matthias Baudot
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Oscar Vivas
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Claudia M Moreno
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|