1
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Chooklin S, Chuklin S. PATHOPHYSIOLOGICAL MECHANISMS OF DEEP VEIN THROMBOSIS. FIZIOLOHICHNYĬ ZHURNAL 2023; 69:133-144. [DOI: 10.15407/fz69.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Deep venous thrombosis is a frequent multifactorial disease and most of the time is triggered by the interaction between acquired risk factors, particularly immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis has been determined. Alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells, monocytes, eosinophils, lymphocytes. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis are described.
Collapse
|
3
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Navarrete S, Solar C, Tapia R, Pereira J, Fuentes E, Palomo I. Pathophysiology of deep vein thrombosis. Clin Exp Med 2022:10.1007/s10238-022-00829-w. [PMID: 35471714 DOI: 10.1007/s10238-022-00829-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Deep venous thrombosis is a frequent, multifactorial disease and a leading cause of morbidity and mortality. Most of the time deep venous thrombosis is triggered by the interaction between acquired risk factors, such as hip fracture, pregnancy, and immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years, important advances have shed light on the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis. It has been described that the alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells. Thus, the concerted interaction of these phenomena allows the formation and growth of the thrombus. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis will be described.
Collapse
Affiliation(s)
- Simón Navarrete
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Carla Solar
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | | | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile.
| |
Collapse
|
5
|
Islam S, Boström KI, Di Carlo D, Simmons CA, Tintut Y, Yao Y, Hsu JJ. The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Front Physiol 2021; 12:734215. [PMID: 34566697 PMCID: PMC8458763 DOI: 10.3389/fphys.2021.734215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) lining the cardiovascular system are subjected to a highly dynamic microenvironment resulting from pulsatile pressure and circulating blood flow. Endothelial cells are remarkably sensitive to these forces, which are transduced to activate signaling pathways to maintain endothelial homeostasis and respond to changes in the environment. Aberrations in these biomechanical stresses, however, can trigger changes in endothelial cell phenotype and function. One process involved in this cellular plasticity is endothelial-to-mesenchymal transition (EndMT). As a result of EndMT, ECs lose cell-cell adhesion, alter their cytoskeletal organization, and gain increased migratory and invasive capabilities. EndMT has long been known to occur during cardiovascular development, but there is now a growing body of evidence also implicating it in many cardiovascular diseases (CVD), often associated with alterations in the cellular mechanical environment. In this review, we highlight the emerging role of shear stress, cyclic strain, matrix stiffness, and composition associated with EndMT in CVD. We first provide an overview of EndMT and context for how ECs sense, transduce, and respond to certain mechanical stimuli. We then describe the biomechanical features of EndMT and the role of mechanically driven EndMT in CVD. Finally, we indicate areas of open investigation to further elucidate the complexity of EndMT in the cardiovascular system. Understanding the mechanistic underpinnings of the mechanobiology of EndMT in CVD can provide insight into new opportunities for identification of novel diagnostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Shahrin Islam
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kristina I Boström
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Molecular Biology Institute, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yin Tintut
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yucheng Yao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
6
|
Sosińska-Zawierucha P, Bręborowicz A. Uremic serum induces prothrombotic changes in venous endothelial cells and inflammatory changes in aortic endothelial cells. Ren Fail 2021; 43:401-405. [PMID: 33641611 PMCID: PMC7928024 DOI: 10.1080/0886022x.2021.1890617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Uremia induces various pathologic changes in the endothelium. However, there is limited information about the differences of these effects in endothelial cells originating from different parts of the vascular tree. Methods The effect of uremic serum obtained from patients with end stage renal failure on the gene expression and secretory activity of venous endothelial cells (VEC) and aortic endothelial cells (AEC) was studied in in vitro culture. Results In VEC, the expression of genes regulating the synthesis of von Willebrand factor (vWF) was increased by 254% (p<.005), vascular endothelial growth factor (VEGF) synthesis by 150% (p<.001), tissue plasminogen activator (t-PA) synthesis by 62% (p<.005), platelet endothelial cell adhesion molecule by 89% (p<.005), and the expression of gene regulating interleukin-6 (IL-6) synthesis was reduced. In AEC, the expression of the gene regulating synthesis of IL-6 was increased by 174% (p<.001), and the expression of the other genes was reduced. The secretion of IL-6 was reduced in VEC by 38% (p<.01) and increased in AEC by 55% (p<.005). In VEC, increased synthesis of VEGF 64% (p<.001) vWF (+34%, p<.01), and t-PA (+53%, p<.002) was observed, and in AEC it was reduced. Conclusions VEC and AEC respond in different ways after exposure to uremic serum. VEC acquires the prothrombotic phenotype, whereas in AEC the inflammatory phenotype appears.
Collapse
Affiliation(s)
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Chemokine mediated signalling within arteries promotes vascular smooth muscle cell recruitment. Commun Biol 2020; 3:734. [PMID: 33277595 PMCID: PMC7719186 DOI: 10.1038/s42003-020-01462-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023] Open
Abstract
The preferential accumulation of vascular smooth muscle cells (vSMCs) on arteries versus veins during early development is a well-described phenomenon, but the molecular pathways underlying this polarization are not well understood. In zebrafish, the cxcr4a receptor (mammalian CXCR4) and its ligand cxcl12b (mammalian CXCL12) are both preferentially expressed on arteries at time points consistent with the arrival and differentiation of the first vSMCs during vascular development. We show that autocrine cxcl12b/cxcr4 activity leads to increased production of the vSMC chemoattractant ligand pdgfb by endothelial cells in vitro and increased expression of pdgfb by arteries of zebrafish and mice in vivo. Additionally, we demonstrate that expression of the blood flow-regulated transcription factor klf2a in primitive veins negatively regulates cxcr4/cxcl12 and pdgfb expression, restricting vSMC recruitment to the arterial vasculature. Together, this signalling axis leads to the differential acquisition of vSMCs at sites where klf2a expression is low and both cxcr4a and pdgfb are co-expressed, i.e. arteries during early development. Stratman et al. provide evidence linking the cxcl12b/cxcr4a signaling axis in endothelial cells to an increased release of platelet-derived growth factor b, leading to the recruitment of smooth muscle cells to developing arteries. This signalling axis is suppressed in the venous endothelium during early development by the high expression of blood flow-regulated transcription factor klf2a.
Collapse
|
8
|
Antonyshyn JA, D'''''Costa KA, Santerre JP. Advancing tissue-engineered vascular grafts via their endothelialization and mechanical conditioning. THE JOURNAL OF CARDIOVASCULAR SURGERY 2020; 61:555-576. [PMID: 32909708 DOI: 10.23736/s0021-9509.20.11582-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering has garnered significant attention for its potential to address the predominant modes of failure of small diameter vascular prostheses, namely mid-graft thrombosis and anastomotic intimal hyperplasia. In this review, we described two main features underpinning the promise of tissue-engineered vascular grafts: the incorporation of an antithrombogenic endothelium, and the generation of a structurally and biomechanically mimetic extracellular matrix. From the early attempts at the in-vitro endothelialization of vascular prostheses in the 1970s through to the ongoing clinical trials of fully tissue-engineered vascular grafts, the historical advancements and unresolved challenges that characterize the current state-of-the-art are summarized in a manner that establishes a guide for the development of an effective vascular prosthesis for small diameter arterial reconstruction. The importance of endothelial cell purity and their arterial specification for the prevention of both diffuse neointimal hyperplasia and the accelerated development of atherosclerotic lesions is delineated. Additionally, the need for an extracellular matrix that recapitulates both the composition and structure of native elastic arteries to facilitate the protracted stability and patency of an engineered vasoactive conduit is described. Finally, the capacity of alternative sources of cells and mechanical conditioning to overcome these technical barriers to the clinical translation of an effective small diameter vascular prosthesis is discussed. In conclusion, this review provides an overview of the historical development of tissue-engineered vascular grafts, highlighting specific areas warranting further research, and commentating on the outlook of a clinically feasible and therapeutically efficacious vascular prosthesis for small diameter arterial reconstruction.
Collapse
Affiliation(s)
- Jeremy A Antonyshyn
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Katya A D'''''Costa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada - .,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Karthika CL, Ahalya S, Radhakrishnan N, Kartha CC, Sumi S. Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases. Mol Cell Biochem 2020; 476:125-143. [PMID: 32844345 DOI: 10.1007/s11010-020-03890-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Endothelium of blood vessels is continuously exposed to various hemodynamic forces. Flow-mediated epigenetic plasticity regulates vascular endothelial function. Recent studies have highlighted the significant role of mechanosensing-related epigenetics in localized endothelial dysfunction and the regional susceptibility for lesions in vascular diseases. In this article, we review the epigenetic mechanisms such as DNA de/methylation, histone modifications, as well as non-coding RNAs in promoting endothelial dysfunction in major arterial and venous diseases, consequent to hemodynamic alterations. We also discuss the current challenges and future prospects for the use of mechanoepigenetic mediators as biomarkers of early stages of vascular diseases and dysregulated mechanosensing-related epigenetic regulators as therapeutic targets in various vascular diseases.
Collapse
Affiliation(s)
- C L Karthika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - S Ahalya
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - N Radhakrishnan
- St.Thomas Institute of Research on Venous Diseases, Changanassery, Kerala, India
| | - C C Kartha
- Society for Continuing Medical Education & Research (SOCOMER), Kerala Institute of Medical Sciences, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
10
|
Molins B, Mora A, Romero-Vázquez S, Pascual-Méndez A, Rovira S, Figueras-Roca M, Balcells M, Adán A, Martorell J. Shear stress modulates inner blood retinal barrier phenotype. Exp Eye Res 2019; 187:107751. [DOI: 10.1016/j.exer.2019.107751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
11
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
12
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Saemisch M, Balcells M, Riesinger L, Nickmann M, Bhaloo SI, Edelman ER, Methe H. Subendothelial matrix components influence endothelial cell apoptosis in vitro. Am J Physiol Cell Physiol 2018; 316:C210-C222. [PMID: 30566394 DOI: 10.1152/ajpcell.00005.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. Dysregulation of apoptosis has been linked with embryonal death and is involved in the pathophysiology of various diseases. Specifically, endothelial apoptosis plays pivotal roles in atherosclerosis whereas prevention of endothelial apoptosis is a prerequisite for neovascularization in tumors and metastasis. Endothelial biology is intertwined with the composition of subendothelial basement membrane proteins. Apoptosis was induced by addition of tumor necrosis factor-α to cycloheximide-sensitized endothelial cells. Cells were either grown on polystyrene culture plates or on plates precoated with healthy basement membrane proteins (collagen IV, fibronectin, or laminin) or collagen I. Our results reveal that proteins of healthy basement membrane alleviate cytokine-induced apoptosis whereas precoating with collagen type I had no significant effect on apoptosis by addition of tumor necrosis factor-α to cycloheximide-sensitized endothelial cells compared with cells cultured on uncoated plates. Yet, treatment with transforming growth factor-β1 significantly reduced the rate of apoptosis endothelial cells grown on collagen I. Detailed analysis reveals differences in intracellular signaling pathways for each of the basement membrane proteins studied. We provide additional insights into the importance of basement membrane proteins and the respective cytokine milieu on endothelial biology. Exploring outside-in signaling by basement membrane proteins may constitute an interesting target to restore vascular function and prevent complications in the atherosclerotic cascade.
Collapse
Affiliation(s)
- Michael Saemisch
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Department of Internal Medicine, Kliniken Neumarkt, Neumarkt, Germany
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Biological Engineering, IQS School of Engineering, Universitat Ramon Llull , Barcelona , Spain
| | - Lisa Riesinger
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany
| | - Markus Nickmann
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Heiko Methe
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
| |
Collapse
|
14
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front Immunol 2018. [PMID: 29515588 PMCID: PMC5826197 DOI: 10.3389/fimmu.2018.00294] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells that line the inner walls of blood vessels are in direct contact with blood and display remarkable heterogeneity in their response to exogenous stimuli. These ECs have unique location-dependent properties determined by the corresponding vascular beds and play an important role in regulating the homeostasis of the vascular system. Evidence suggests that vascular endothelial cells exposed to various environments undergo dynamic phenotypic switching, a key biological program in the context of endothelial heterogeneity, but that might result in EC dysfunction and, in turn, cause a variety of human diseases. Emerging studies show the importance of endothelial to mesenchymal transition (EndMT) in endothelial dysfunction during inflammation. EndMT is a complex biological process in which ECs lose their endothelial characteristics, acquire mesenchymal phenotypes, and express mesenchymal cell markers, such as alpha smooth muscle actin and fibroblast-specific protein 1. EndMT is induced by inflammatory responses, leading to pathological states, including tissue fibrosis, pulmonary arterial hypertension, and atherosclerosis, via dysfunction of the vascular system. Although the mechanisms associated with inflammation-induced EndMT have been identified, unraveling the specific role of this phenotypic switching in vascular dysfunction remains a challenge. Here, we review the current understanding on the interactions between inflammatory processes, EndMT, and endothelial dysfunction, with a focus on the mechanisms that regulate essential signaling pathways. Identification of such mechanisms will guide future research and could provide novel therapeutic targets for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jin Gu Cho
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Myeong-Sok Lee
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
16
|
Sotomi Y, Suwannasom P, Tenekecioglu E, Collet C, Nakatani S, Okamura T, Muramatsu T, Ishibashi Y, Tateishi H, Miyazaki Y, Asano T, Katagiri Y, von zur Muehlen C, Tanabe K, Kozuma K, Ozaki Y, Serruys PW, Onuma Y. Imaging assessment of bioresorbable vascular scaffolds. Cardiovasc Interv Ther 2017; 33:11-22. [DOI: 10.1007/s12928-017-0486-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
17
|
Sotomi Y, Tateishi H, Suwannasom P, Dijkstra J, Eggermont J, Liu S, Tenekecioglu E, Zheng Y, Abdelghani M, Cavalcante R, de Winter RJ, Wykrzykowska JJ, Onuma Y, Serruys PW, Kimura T. Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography. Int J Cardiovasc Imaging 2016; 32:871-83. [PMID: 26898315 PMCID: PMC4879175 DOI: 10.1007/s10554-016-0856-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022]
Abstract
The degree of stent/scaffold embedment could be a surrogate parameter of the vessel wall-stent/scaffold interaction and could have biological implications in the vascular response. We have developed a new specific software for the quantitative evaluation of embedment of struts by optical coherence tomography (OCT). In the present study, we described the algorithm of the embedment analysis and its reproducibility. The degree of embedment was evaluated as the ratio of the embedded part versus the whole strut height and subdivided into quartiles. The agreement and the inter- and intra-observer reproducibility were evaluated using the kappa and the interclass correlation coefficient (ICC). A total of 4 pullbacks of OCT images in 4 randomly selected coronary lesions with 3.0 × 18 mm devices [2 lesions with Absorb BVS and 2 lesions with XIENCE (both from Abbott Vascular, Santa Clara, CA, USA)] from Absorb Japan trial were evaluated by two investigators with QCU-CMS software version 4.69 (Leiden University Medical Center, Leiden, The Netherlands). Finally, 1481 polymeric struts in 174 cross-sections and 1415 metallic struts in 161 cross-sections were analyzed. Inter- and intra-observer reproducibility of quantitative measurements of embedment ratio and categorical assessment of embedment in Absorb BVS and XIENCE had excellent agreement with ICC ranging from 0.958 to 0.999 and kappa ranging from 0.850 to 0.980. The newly developed embedment software showed excellent reproducibility. Computer-assisted embedment analysis could be a feasible tool to assess the strut penetration into the vessel wall that could be a surrogate of acute injury caused by implantation of devices.
Collapse
Affiliation(s)
- Yohei Sotomi
- />Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hiroki Tateishi
- />ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pannipa Suwannasom
- />Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- />ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
- />Northern Region Heart Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jouke Dijkstra
- />Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Eggermont
- />Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shengnan Liu
- />Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Yaping Zheng
- />ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mohammad Abdelghani
- />Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Yoshinobu Onuma
- />ThoraxCenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Patrick W. Serruys
- />International Centre for Circulatory Health, NHLI, Imperial College London, London, UK
| | - Takeshi Kimura
- />Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
18
|
Meirson T, Orion E, Di Mario C, Webb C, Patel N, Channon KM, Ben Gal Y, Taggart DP. Flow patterns in externally stented saphenous vein grafts and development of intimal hyperplasia. J Thorac Cardiovasc Surg 2015; 150:871-8. [DOI: 10.1016/j.jtcvs.2015.04.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/26/2022]
|
19
|
Husarek KE, Katz PS, Trask AJ, Galantowicz ML, Cismowski MJ, Lucchesi PA. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice. Vascul Pharmacol 2015; 76:28-36. [PMID: 26133668 DOI: 10.1016/j.vph.2015.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/09/2015] [Accepted: 06/27/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events.
Collapse
Affiliation(s)
- Kathryn E Husarek
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; School of Biomedical Science, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Paige S Katz
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Aaron J Trask
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Maarten L Galantowicz
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Mary J Cismowski
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Pamela A Lucchesi
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
20
|
Valenzuela NM, Trinh KR, Mulder A, Morrison SL, Reed EF. Monocyte recruitment by HLA IgG-activated endothelium: the relationship between IgG subclass and FcγRIIa polymorphisms. Am J Transplant 2015; 15:1502-18. [PMID: 25648976 PMCID: PMC4439339 DOI: 10.1111/ajt.13174] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023]
Abstract
It is currently unclear which donor specific HLA antibodies confer the highest risk of antibody-mediated rejection (AMR) and allograft loss. In this study, we hypothesized that two distinct features (HLA IgG subclass and Fcγ receptor [FcγR] polymorphisms) which vary from patient to patient, influence the process of monocyte trafficking to and macrophage accumulation in the allograft during AMR in an interrelated fashion. Here, we investigated the contribution of human IgG subclass and FcγR polymorphisms in monocyte recruitment in vitro by primary human aortic endothelium activated with chimeric anti-HLA I human IgG1 and IgG2. Both subclasses triggered monocyte adhesion to endothelial cells, via a two-step process. First, HLA I crosslinking by antibodies stimulated upregulation of P-selectin on endothelium irrespective of IgG subclass. P-selectin-induced monocyte adhesion was enhanced by secondary interactions of IgG with FcγRs, which was highly dependent upon subclass. IgG1 was more potent than IgG2 through differential engagement of FcγRs. Monocytes homozygous for FcγRIIa-H131 adhered more readily to HLA antibody-activated endothelium compared with FcγRIIa-R131 homozygous. Finally, direct modification of HLA I antibodies with immunomodulatory enzymes EndoS and IdeS dampened recruitment by eliminating antibody-FcγR binding, an approach that may have clinical utility in reducing AMR and other forms of antibody-induced inflammation.
Collapse
Affiliation(s)
- Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - K. Ryan Trinh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sherie L. Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
21
|
Martorell J, Santomá P, Kolandaivelu K, Kolachalama VB, Melgar-Lesmes P, Molins JJ, Garcia L, Edelman ER, Balcells M. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovasc Res 2014; 103:37-46. [PMID: 24841070 PMCID: PMC4670884 DOI: 10.1093/cvr/cvu124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/10/2014] [Accepted: 05/01/2014] [Indexed: 11/12/2022] Open
Abstract
AIMS Atherogenesis, evolution of plaque, and outcomes following endovascular intervention depend heavily on the unique vascular architecture of each individual. Patient-specific, multiscale models able to correlate changes in microscopic cellular responses with relevant macroscopic flow, and structural conditions may help understand the progression of occlusive arterial disease, providing insights into how to mitigate adverse responses in specific settings and individuals. METHODS AND RESULTS Vascular architectures mimicking coronary and carotid bifurcations were derived from clinical imaging and used to generate conjoint computational meshes for in silico analysis and biocompatible scaffolds for in vitro models. In parallel with three-dimensional flow simulations, geometrically realistic scaffolds were seeded with human smooth muscle cells (SMC) or endothelial cells and exposed to relevant, physiological flows. In vitro surrogates of endothelial health, atherosclerotic progression, and thrombosis were locally quantified and correlated best with an quantified extent of flow recirculation occurring within the bifurcation models. Oxidized low-density lipoprotein uptake, monocyte adhesion, and tissue factor expression locally rose up to three-fold, and phosphorylated endothelial nitric oxide synthase and Krüppel-like factor 2 decreased up to two-fold in recirculation areas. Isolated testing in straight-tube idealized constructs subject to static, oscillatory, and pulsatile conditions, indicative of different recirculant conditions corroborated these flow-mediated dependencies. CONCLUSIONS Flow drives variations in vascular reactivity and vascular beds. Endothelial health was preserved by arterial flow but jeopardized in regions of flow recirculation in a quasi-linear manner. Similarly, SMC exposed to flow were more thrombogenic in large recirculating regions. Health, thrombosis, and atherosclerosis biomarkers correlate with the extent of recirculation in vascular cells lining certain vascular geometries.
Collapse
Affiliation(s)
- Jordi Martorell
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, IQS School of Engineering, URL, Via Augusta 390, 08017 Barcelona, Spain
| | - Pablo Santomá
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, IQS School of Engineering, URL, Via Augusta 390, 08017 Barcelona, Spain
| | - Kumaran Kolandaivelu
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vijaya B Kolachalama
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - José J Molins
- Department of Chemical Engineering, IQS School of Engineering, URL, Via Augusta 390, 08017 Barcelona, Spain
| | - Lawrence Garcia
- Department of Interventional Cardiology and Vascular Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Biological Engineering, IQS School of Engineering, URL, Barcelona, Spain
| |
Collapse
|
22
|
Alexander JS, Prouty L, Tsunoda I, Ganta CV, Minagar A. Venous endothelial injury in central nervous system diseases. BMC Med 2013; 11:219. [PMID: 24228622 PMCID: PMC3851779 DOI: 10.1186/1741-7015-11-219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/09/2013] [Indexed: 02/08/2023] Open
Abstract
The role of the venous system in the pathogenesis of inflammatory neurological/neurodegenerative diseases remains largely unknown and underinvestigated. Aside from cerebral venous infarcts, thromboembolic events, and cerebrovascular bleeding, several inflammatory central nervous system (CNS) diseases, such as multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), and optic neuritis, appear to be associated with venous vascular dysfunction, and the neuropathologic hallmark of these diseases is a perivenous, rather than arterial, lesion. Such findings raise fundamental questions about the nature of these diseases, such as the reasons why their pathognomonic lesions do not develop around the arteries and what exactly are the roles of cerebral venous inflammation in their pathogenesis. Apart from this inflammatory-based view, a new hypothesis with more focus on the hemodynamic features of the cerebral and extracerebral venous system suggests that MS pathophysiology might be associated with the venous system that drains the CNS. Such a hypothesis, if proven correct, opens new therapeutic windows in MS and other neuroinflammatory diseases. Here, we present a comprehensive review of the pathophysiology of MS, ADEM, pseudotumor cerebri, and optic neuritis, with an emphasis on the roles of venous vascular system programming and dysfunction in their pathogenesis. We consider the fundamental differences between arterial and venous endothelium, their dissimilar responses to inflammation, and the potential theoretical contributions of venous insufficiency in the pathogenesis of neurovascular diseases.
Collapse
Affiliation(s)
- Jonathan S Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | | | | | | | |
Collapse
|
23
|
Knockout of Density-Enhanced Phosphatase-1 impairs cerebrovascular reserve capacity in an arteriogenesis model in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:802149. [PMID: 24027763 PMCID: PMC3763586 DOI: 10.1155/2013/802149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 01/07/2023]
Abstract
Collateral growth, arteriogenesis, represents a proliferative mechanism involving endothelial cells, smooth muscle cells, and monocytes/macrophages. Here we investigated the role of Density-Enhanced Phosphatase-1 (DEP-1) in arteriogenesis in vivo, a protein-tyrosine-phosphatase that has controversially been discussed with regard to vascular cell biology. Wild-type C57BL/6 mice subjected to permanent left common carotid artery occlusion (CCAO) developed a significant diameter increase in distinct arteries of the circle of Willis, especially in the anterior cerebral artery. Analyzing the impact of loss of DEP-1 function, induction of collateralization was quantified after CCAO and hindlimb femoral artery ligation comparing wild-type and DEP-1−/− mice. Both cerebral collateralization assessed by latex perfusion and peripheral vessel growth in the femoral artery determined by microsphere perfusion and micro-CT analysis were not altered in DEP-1−/− compared to wild-type mice. Cerebrovascular reserve capacity, however, was significantly impaired in DEP-1−/− mice. Cerebrovascular transcriptional analysis of proarteriogenic growth factors and receptors showed specifically reduced transcripts of PDGF-B. SiRNA knockdown of DEP-1 in endothelial cells in vitro also resulted in significant PDGF-B downregulation, providing further evidence for DEP-1 in PDGF-B gene regulation. In summary, our data support the notion of DEP-1 as positive functional regulator in vascular cerebral arteriogenesis, involving differential PDGF-B gene expression.
Collapse
|
24
|
Scott DW, Vallejo MO, Patel RP. Heterogenic endothelial responses to inflammation: role for differential N-glycosylation and vascular bed of origin. J Am Heart Assoc 2013; 2:e000263. [PMID: 23900214 PMCID: PMC3828811 DOI: 10.1161/jaha.113.000263] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endothelial cell responses during inflammation are heterogeneous and key for selectivity in how leukocytes hone in on specific sites and why vascular diseases are highly bed specific. However, mechanisms for this specificity remain unclear. METHODS AND RESULTS Here, we exposed human endothelial cells isolated from 5 systemic arterial beds from 1 donor (to overcome donor-to-donor genetic/epigenetic differences), the umbilical vein, and pulmonary microvasculature to TNF-α, LPS, and IL-1β and assessed acute (ERK1/2 and p65) and chronic (ICAM-1, VCAM-1 total and surface expression) signaling responses and assessed changes in surface N-glycans and monocyte adhesion. Significant diversity in responses was evident by disparate changes in ERK1/2 and p65 NF-κB phosphorylation, which varied up to 5-fold between different cells and in temporal and magnitude differences in ICAM-1 and VCAM-1 expression (maximal VCAM-1 induction typically being observed by 4 hours, whereas ICAM-1 expression was increased further at 24 hours relative to 4 hours). N-glycan profiles both basally and with stimulation were also bed specific, with hypoglycosylated N-glycans correlating with increased THP-1 monocyte adhesion. Differences in surface N-glycan expression tracked with dynamic up- or downregulation of α-mannosidase activity during inflammation. CONCLUSIONS These results demonstrate a critical role for the vascular bed of origin in controlling endothelial responses and function to inflammatory stimuli and suggest that bed-specific expression of N-linked sugars may provide a signature for select leukocyte recruitment.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL
| | | | | |
Collapse
|
25
|
NIU JING, QIAO AIKE, JIAO LIQUN. HEMODYNAMIC ANALYSIS OF STENT EXPANSION RATIO FOR VERTEBRAL ARTERY OSTIAL STENOSIS INTERVENTION. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413500589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stents have been used successfully for treating stenosis in the vertebral artery ostium. The size of stent is found to be an important link in stent design, implantation strategy, and clinical outcome. However, there is no direct evidence of a relationship between stent expansion ratio and the stented artery. This study investigated the influence of stent expansion ratio on local hemodynamics (such as pressure distribution and pressure gradient) of vertebral artery ostial stenosis to determine a possible biomechanical mechanism. Computer-aided design of models with stents with different expansion ratios (i.e., 1.00, 1.125, and 1.25) and internal flow fields were created. All the models were meshed and simulated using computational fluid dynamics (CFD) tools. The comparisons of pressure distribution and pressure gradient are specifically presented. The results showed that the pressures increase and the pressure gradient decreases after stent implantation. The mean pressure at the stented region rises significantly with the increase of stent oversize. The heterogeneity of the pressure gradient was reduced at the stented region in the case with the expansion ratio of 1.125, whereas this effect was not obvious in other expansion ratio cases. Additionally, the combination of higher pressure and a lower pressure gradient in the case with the expansion ratio of 1.125 was significantly observed. This study demonstrated that the proper size of stent, especially with regards to the expansion ratio, is an important factor influencing the treatment of vertebral artery ostial stenosis. It is the recognition of the necessity to consider the relationship between expansion ratio and stenosis in vertebral artery ostium. These findings could help to address the optimization of hemodynamic performance for stent implantation.
Collapse
Affiliation(s)
- JING NIU
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - AI-KE QIAO
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - LI-QUN JIAO
- Beijing Xuanwu Hospital (affiliated to Capital Medical University), Beijing 100053, P. R. China
| |
Collapse
|
26
|
Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23:622-33. [PMID: 23445551 DOI: 10.1093/glycob/cwt014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a major contributing element to a host of diseases with the interaction between leukocytes and the endothelium being key in this process. Much is understood about the nature of the adhesion molecule proteins expressed on any given leukocyte and endothelial cell that modulates adhesive interactions. Although it is appreciated that these proteins are heavily glycosylated, relatively little is known about the roles of these posttranslational modifications and whether they are regulated, and if so how during inflammation. Herein, we suggest that a paucity in this understanding is one major reason for the lack of successful therapies to date for modulating leukocyte-endothelial interactions in human inflammatory disease and discuss developing paradigms of (i) how endothelial adhesion molecule glycosylation (with a focus on N-glycosylation) maybe a critical element in understanding endothelial heterogeneity between different vascular beds and species, (ii) how adhesion molecule N-glycosylation may be under distinct, and as yet, unknown modes of regulation during inflammatory stress to affect the inflammatory response in a vascular bed- and disease-specific manner (analogous to a "zip code" for inflammation) and finally (iii) to underscore the concept that a fuller appreciation of the role of adhesion molecule glycoforms is needed to provide foundations for disease and tissue-specific targeting of inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th St. South, BMRII 532, Birmingham, AL 35294, USA
| | | |
Collapse
|
27
|
Alaiti MA, Orasanu G, Tugal D, Lu Y, Jain MK. Kruppel-like factors and vascular inflammation: implications for atherosclerosis. Curr Atheroscler Rep 2012; 14:438-49. [PMID: 22850980 PMCID: PMC4410857 DOI: 10.1007/s11883-012-0268-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mohamad Amer Alaiti
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Gabriela Orasanu
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Derin Tugal
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Yuan Lu
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Mukesh K. Jain
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Chaitanya GV, Cromer W, Wells S, Jennings M, Mathis JM, Minagar A, Alexander JS. Metabolic modulation of cytokine-induced brain endothelial adhesion molecule expression. Microcirculation 2012; 19:155-65. [PMID: 21981016 DOI: 10.1111/j.1549-8719.2011.00141.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cytokines contribute to cerebro-vascular inflammatory and immune responses by inducing ECAMs' expression. Ischemic insults can be separated into aglycemic and hypoxic components. However, whether aglycemia, hypoxia or OGD plays a major role in dysregulating BBB or promotes immune cell infiltration via ECAMs' expression is not clear. We investigated how expression of ICAM-1, VCAM-1, MAdCAM-1, PECAM-1, E- and P-selectin in response to TNF-α, IL-1β and IFN-γ was altered by aglycemia (A), hypoxia (H) or combined oxygen glucose deprivation (OGD). METHODS A cell surface enzyme linked immunoabsorbent assay (cell surface ELISA) was used to analyze ECAM expression. RESULTS We observed that ICAM-1 and PECAM-1 expressions were insensitive to hypoxia, aglycemia or OGD. Conversely, VCAM-1 and E-selectin were increased by hypoxia, but not by aglycemia. MAdCAM-1 and P-selectin were induced by hypoxia, and decreased by aglycemia. Patterns of cytokine-regulated ECAMs' expression were also modified by metabolic conditions. CONCLUSIONS Our results indicate that patterns of inflammation-associated ECAMs represent cumulative influences from metabolic stressors, as well as cytokine activation. The expression of ECAMs following tissue injury reflects mechanistic interactions between metabolic disturbances, and alterations in tissue cytokines. Normalization of tissue metabolism, as well as cytokine profiles, may provide important targets for therapeutic treatment of inflammation.
Collapse
Affiliation(s)
- Ganta Vijay Chaitanya
- Departments of Molecular and Cellular Physiology Cell Biology and Anatomy Neurology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Simmons GH, Padilla J, Laughlin MH. Heterogeneity of endothelial cell phenotype within and amongst conduit vessels of the swine vasculature. Exp Physiol 2012; 97:1074-82. [PMID: 22542613 DOI: 10.1113/expphysiol.2011.064006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to investigate the extent of endothelial cell phenotypic heterogeneity throughout the swine vasculature, with a focus on the conduit vessels of the arterial and venous circulations. We tested the hypothesis that atheroprone arteries exhibit higher expression of markers of inflammation and oxidative stress than do veins and atheroresistant arteries. The study sample included tissues from 79 castrated, male swine. Immediately after the animals were killed, endothelial cells were mechanically scraped from isolated segments of the thoracic and abdominal aorta, carotid, brachial, femoral and renal arteries, and the vein regionally associated with each of these vessels, as well as the internal mammary and right coronary arteries. Cells were also taken from two regions of the aortic arch contrasted by atheroprone versus atherosusceptible haemodynamics. Endothelial cell phenotype was assessed by either immunoblotting or quantitative real-time PCR for a host of both pro- and anti-atherogenic markers (e.g. endothelial nitric oxide synthase, p67phox, cyclo-oxygenase-1 and superoxide dismutase 1). Marked heterogeneity across the vasculature was observed in the expression of both pro- and anti-atherogenic markers, at both the protein and transcriptional levels. In particular, the coronary vascular endothelium expressed higher levels of the oxidative stress marker p67phox (P < 0.05 versus other arteries). In addition, differential expression of endothelial nitric oxide synthase and KLF4 was evident between atheroprone and atherosusceptible regions of the aorta, while expression of endothelial nitric oxide synthase, KLF2, KLF4 and cyclo-oxygenase-1 was lower in both areas of the aortic arch compared with the internal mammary artery. Conduit arteries typically expressed higher levels of both pro- and anti-atherogenic markers relative to their associated veins. We show, for the first time, that endothelial cell phenotype is variable within vessels, across six major vascular territories, and between the arterial and venous circulations. Importantly, even straight vessel segments from systemic conduit arteries (e.g. brachial and carotid arteries) exhibited regional phenotypic heterogeneity; a finding not expected on the basis of local haemodynamic forces alone.
Collapse
Affiliation(s)
- Grant H Simmons
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.
| | | | | |
Collapse
|
30
|
Yamazaki KG, Ihm SH, Thomas RL, Roth D, Villarreal F. Cell adhesion molecule mediation of myocardial inflammatory responses associated with ventricular pacing. Am J Physiol Heart Circ Physiol 2012; 302:H1387-93. [PMID: 22268115 DOI: 10.1152/ajpheart.00496.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poorly synchronized activation of the ventricles can lead to impairment of normal cardiac structure/function. We reported previously that short term (4 h) left ventricular (LV) pacing-induced ventricular dyskinesis led to an inflammatory response localized to the epicardium. Results from this study demonstrated that neutrophils may play a major role in this inflammatory process. Neutrophil recruitment to a site of injury is a process that is highly dependent on an upregulation of cell adhesion molecules (CAM). The dependence of ventricular dysynchrony-induced inflammatory responses on CAM upregulation has not been explored. To gain further insight, we used a mouse model of LV pacing to evaluate the role of CAM in mediating the inflammatory response associated with ventricular dyskinesis. We first examined the effects of LV pacing in wild-type mice. Results demonstrate that 40 min of LV pacing increases ICAM-1 immunostaining as well as myeloperoxidase activity and tissue oxidative stress by twofold in early-activated myocardium. Matrix metalloproteinase-9 activity also increased in the same region by ∼3.5-fold. To determine the role of CAM, mice null for ICAM-1 or p-selectin were subjected to 40 min LV pacing. Results demonstrate that the inflammatory response seen in the wild-type mice was significantly mitigated in the ICAM-1 and p-selectin null mice. In conclusion, results demonstrate that CAM expression plays a critical role in the triggering of LV pacing-induced inflammation, thus providing evidence of a vascular mechanism underlying this response. The mechanisms that trigger an upregulation of myocardial CAM expression and, therefore, inflammation await further investigation since they suggest a specific involvement of vascular events.
Collapse
Affiliation(s)
- Katrina Go Yamazaki
- Department of Biological Sciences, California State University Los Angeles, 90032, USA.
| | | | | | | | | |
Collapse
|
31
|
Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32:979-87. [PMID: 22267480 DOI: 10.1161/atvbaha.111.244053] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Endothelial transcription factors Krüppel-like factor 4 (KLF4) and KLF2 are implicated in protection against atherogenesis. Steady-state microRNA (miR) regulation of KLFs in vivo is accessible by screening region-specific endothelial miRs and their targets. METHODS AND RESULTS A subset of differentially expressed endothelial miRs was identified in atherosusceptible versus protected regions of normal swine aorta. In silico analyses predicted highly conserved binding sites in the 3'-untranslated region (3'UTR) of KLF4 for 5 miRs of the subset (miR-26a, -26b, -29a, -92a, and -103) and a single binding site for a miR-92a complex in the 3'UTR of KLF2. Of these, only miR-92a knockdown and knock-in resulted in responses of KLF4 and KLF2 expression in human arterial endothelial cells. Dual luciferase reporter assays demonstrated functional interactions of miR-92a with full-length 3'UTR sequences of both KLFs and with the specific binding elements therein. Two evolutionarily conserved miR-92a sites in KLF4 3'UTR and 1 site in KLF2 3'UTR were functionally validated. Knockdown of miR-92a in vitro resulted in partial rescue from cytokine-induced proinflammatory marker expression (monocyte chemotactic protein 1, vascular cell adhesion molecule-1, E-selectin, and endothelial nitric oxide synthase) that was attributable to enhanced KLF4 expression. Leukocyte-human arterial endothelial cell adhesion experiments supported this conclusion. In swine aortic arch endothelium, a site of atherosusceptibility where miR-92a expression was elevated, both KLFs were expressed at low levels relative to protected thoracic aorta. CONCLUSIONS miR-92a coregulates KLF4 and KLF2 expression in arterial endothelium and contributes to phenotype heterogeneity associated with regional atherosusceptibility and protection in vivo.
Collapse
Affiliation(s)
- Yun Fang
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
32
|
Chacko BK, Scott DW, Chandler RT, Patel RP. Endothelial surface N-glycans mediate monocyte adhesion and are targets for anti-inflammatory effects of peroxisome proliferator-activated receptor γ ligands. J Biol Chem 2011; 286:38738-38747. [PMID: 21911496 PMCID: PMC3207389 DOI: 10.1074/jbc.m111.247981] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/24/2011] [Indexed: 01/13/2023] Open
Abstract
Endothelial-monocyte interactions are regulated by adhesion molecules and key in the development of vascular inflammatory disease. Peroxisome proliferator-activated receptor (PPAR) γ activation in endothelial cells is recognized to mediate anti-inflammatory effects that inhibit monocyte rolling and adhesion. Herein, evidence is provided for a novel mechanism for the anti-inflammatory effects of PPARγ ligand action that involves inhibition of proinflammatory cytokine-dependent up-regulation of endothelial N-glycans. TNFα treatment of human umbilical vein endothelial cells increased surface expression of high mannose/hybrid N-glycans. A role for these sugars in mediating THP-1 or primary human monocyte rolling and adhesion was indicated by competition studies in which addition of α-methylmannose, but not α-methylglucose, inhibited monocyte rolling and adhesion during flow, but not under static conditions. This result supports the notion that adhesion molecules provide scaffolds for sugar epitopes to mediate adhesion with cognate receptors. A panel of structurally distinct PPARγ agonists all decreased TNFα-dependent expression of endothelial high mannose/hybrid N-glycans. Using rosiglitazone as a model PPARγ agonist, which decreased TNFα-induced high mannose N-glycan expression, we demonstrate a role for these carbohydrate residues in THP-1 rolling and adhesion that is independent of endothelial surface adhesion molecule expression (ICAM-1 and E-selectin). Data from N-glycan processing gene arrays identified α-mannosidases (MAN1A2 and MAN1C1) as targets for down-regulation by TNFα, which was reversed by rosiglitazone, a result consistent with altered high mannose/hybrid N-glycan epitopes. Taken together we propose a novel anti-inflammatory mechanism of endothelial PPARγ activation that involves targeting protein post-translational modification of adhesion molecules, specifically N-glycosylation.
Collapse
Affiliation(s)
- Balu K Chacko
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - David W Scott
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Robert T Chandler
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Rakesh P Patel
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294.
| |
Collapse
|
33
|
Clark PR, Jensen TJ, Kluger MS, Morelock M, Hanidu A, Qi Z, Tatake RJ, Pober JS. MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation 2011; 18:102-17. [PMID: 21166929 DOI: 10.1111/j.1549-8719.2010.00071.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE ECs lining arteries respond to LSS by suppressing pro-inflammatory changes, in part through the activation of MEK5, ERK5 and induction of KLF4. We examined if this anti-inflammatory pathway operates in human ECs lining microvessels, the principal site of inflammatory responses. METHODS We used immunofluorescence microscopy of human skin to assess ERK5 activation and KLF4 expression in HDMECs in situ. We applied LSS to or overexpressed MEK5/CA in cultured HDMECs and assessed gene expression by microarrays and qRT-PCR and protein expression by Western blotting. We assessed effects of MEK5/CA on TNF responses using qRT-PCR, FACS and measurements of HDMEC monolayer electrical resistance. We used siRNA knockdown to assess the role of ERK5 and KLF4 in these responses. RESULTS ERK5 phosphorylation and KLF4 expression is observed in HDMECs in situ. LSS activates ERK5 and induces KLF4 in cultured HDMECs. MEK5/CA-transduced HDMECs show activated ERK5 and increased KLF4, thrombomodulin, eNOS, and ICAM-1 expression. MEK5 induction of KLF4 is mediated by ERK5. MEK5/CA-transduced HDMECs are less responsive to TNF, an effect partly mediated by KLF4. CONCLUSIONS MEK5 activation by LSS inhibits inflammatory responses in microvascular ECs, in part through ERK5-dependent induction of KLF4.
Collapse
Affiliation(s)
- Paul R Clark
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8089, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ni CW, Qiu H, Jo H. MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol 2011; 300:H1762-9. [PMID: 21378144 DOI: 10.1152/ajpheart.00829.2010] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanisms by which oscillatory shear stress (OS) induces, while high laminar shear stress (LS) prevents, atherosclerosis are still unclear. Here, we examined the hypothesis that OS induces inflammatory response, a critical atherogenic event, in endothelial cells by a microRNA (miRNA)-dependent mechanism. By miRNA microarray analysis using total RNA from human umbilical vein endothelial cells (HUVECs) that were exposed to OS or LS for 24 h, we identified 21 miRNAs that were differentially expressed. Of the 21 miRNAs, 13 were further examined by quantitative PCR, which validated the result for 10 miRNAs. Treatment of HUVECs with the miR-663 antagonist (miR-663-locked nucleic acids) blocked OS-induced monocyte adhesion, but not apoptosis. In contrast, overexpression of miR-663 increased monocyte adhesion in LS-exposed cells. Subsequent mRNA expression microarray study using HUVECs treated with miR-663-locked nucleic acids and OS revealed 32 up- and 3 downregulated genes, 6 of which are known to be involved in inflammatory response. In summary, we identified 10 OS-sensitive miRNAs, including miR-663, which plays a key role in OS-induced inflammatory responses by mediating the expression of inflammatory gene network in HUVECs. These OS-sensitive miRNAs may mediate atherosclerosis induced by disturbed flow.
Collapse
Affiliation(s)
- Chih-Wen Ni
- Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
35
|
Yamazaki KG, Villarreal FJ. Ventricular pacing-induced loss of contractile function and development of epicardial inflammation. Am J Physiol Heart Circ Physiol 2011; 300:H1282-90. [PMID: 21297025 DOI: 10.1152/ajpheart.01079.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perturbations in the normal sequence of ventricular activation can create regions of early and late activation, leading to dysynchronous contraction and areas of dyskinesis. Dyskinesis occurs across the left ventricular (LV) wall, and its presence may have important consequences on cardiac structure and function in normal and failing hearts. Acutely, dyskinesis can trigger inflammation and, in the long term (6 wk and above), leads to LV remodeling. The mechanisms that trigger these changes are unknown. To gain further insight, we used a canine model to evaluate transumural changes in myocardial function and inflammation induced by epicardial LV pacing. The results indicate that 4 h of LV suprathreshold pacing resulted in a 30% local loss of endocardial thickening. Assessment of neutrophil infiltration showed a significant approximately fivefold increase in myeloperoxidase activity in the epicardium versus the midwall/endocardium. Matrix metalloproteinase-9 activity increased ∼2 fold in the epicardium and ROS generation increased ∼2.5-fold compared with the midwall/endocardium. To determine the effects that electrical current alone has on these end points, a group of animals was subjected to subthreshold pacing. Significant increases were observed only in epicardial myeloperoxidase levels. Thus, the results indicate that transmural dyskinesis induced by suprathreshold epicardial LV activation triggers a localized epicardial inflammatory response, whereas subthreshold stimulation appears to solely induce the trapping of leucocytes. Suprathreshold pacing also induces a loss of endocardial function. These results may have important implications as to the nature of the mechanisms that trigger the inflammatory response and possibly long-term remodeling in the setting of dysynchrony.
Collapse
Affiliation(s)
- Katrina Go Yamazaki
- Departments of 1Pharmacology, University of California-San Diego, La Jolla, 92093-0613, USA
| | | |
Collapse
|
36
|
Zakkar M, Luong LA, Chaudhury H, Ruud O, Punjabi PP, Anderson JR, Mullholand JW, Clements AT, Krams R, Foin N, Athanasiou T, Leen ELS, Mason JC, Haskard DO, Evans PC. Dexamethasone arterializes venous endothelial cells by inducing mitogen-activated protein kinase phosphatase-1: a novel antiinflammatory treatment for vein grafts? Circulation 2011; 123:524-32. [PMID: 21262999 DOI: 10.1161/circulationaha.110.979542] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Vein grafting in coronary artery surgery is complicated by a high restenosis rate resulting from the development of vascular inflammation, intimal hyperplasia, and accelerated atherosclerosis. In contrast, arterial grafts are relatively resistant to these processes. Vascular inflammation is regulated by signaling intermediaries, including p38 mitogen-activated protein (MAP) kinase, that trigger endothelial cell (EC) expression of chemokines (eg, interleukin-8, monocyte chemotactic protein-1) and other proinflammatory molecules. Here, we have tested the hypothesis that p38 MAP kinase activation in response to arterial shear stress (flow) may occur more readily in venous ECs, leading to greater proinflammatory activation. METHODS AND RESULTS Comparative reverse-transcriptase polymerase chain reaction and Western blotting revealed that arterial shear stress induced p38-dependent expression of monocyte chemotactic protein-1 and interleukin-8 in porcine jugular vein ECs. In contrast, porcine aortic ECs were protected from shear stress-induced expression of p38-dependent chemokines as a result of rapid induction of MAP kinase phosphatase-1. However, we observed with both cultured porcine jugular vein ECs and perfused veins that venous ECs can be protected by brief treatment with dexamethasone, which induced MAP kinase phosphatase-1 to suppress proinflammatory activation. CONCLUSIONS Arterial but not venous ECs are protected from proinflammatory activation in response to short-term exposure to high shear stress by the induction of MAP kinase phosphatase-1. Dexamethasone pretreatment arterializes venous ECs by inducing MAP kinase phosphatase-1 and may protect veins from inflammation.
Collapse
Affiliation(s)
- Mustafa Zakkar
- British Heart Fund Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91:327-87. [PMID: 21248169 PMCID: PMC3844671 DOI: 10.1152/physrev.00047.2009] [Citation(s) in RCA: 1473] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Taiwan
| | | |
Collapse
|
38
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
39
|
Burridge KA, Friedman MH. Environment and vascular bed origin influence differences in endothelial transcriptional profiles of coronary and iliac arteries. Am J Physiol Heart Circ Physiol 2010; 299:H837-46. [PMID: 20543076 PMCID: PMC2944485 DOI: 10.1152/ajpheart.00002.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/10/2010] [Indexed: 12/20/2022]
Abstract
Atherosclerotic plaques tend to form in the major arteries at certain predictable locations. As these arteries vary in atherosusceptibility, interarterial differences in endothelial cell biology are of considerable interest. To explore the origin of differences observed between typical atheroprone and atheroresistant arteries, we used DNA microarrays to compare gene expression profiles of harvested porcine coronary (CECs) and iliac artery endothelial cells (IECs) grown in static culture out to passage 4. Fewer differences were observed between the transcriptional profiles of CECs and IECs in culture compared with in vivo, suggesting that most differences observed in vivo were due to distinct environmental cues in the two arteries. One-class significance of microarrays revealed that most in vivo interarterial differences disappeared in culture, as fold differences after passaging were not significant for 85% of genes identified as differentially expressed in vivo at 5% false discovery rate. However, the three homeobox genes, HOXA9, HOXA10, and HOXD3, remained underexpressed in coronary endothelium for all passages by at least nine-, eight-, and twofold, respectively. Continued differential expression, despite removal from the in vivo environment, suggests that primarily heritable or epigenetic mechanism(s) influences transcription of these three genes. Quantitative real-time polymerase chain reaction confirmed expression ratios for seven genes associated with atherogenesis and over- or underexpressed by threefold in CECs relative to IECs. The present study provides evidence that both local environment and vascular bed origin modulate gene expression in arterial endothelium. The transcriptional differences observed here may provide new insights into pathways responsible for coronary artery susceptibility.
Collapse
Affiliation(s)
- Kelley A Burridge
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
40
|
Cowan CE, Kohler EE, Dugan TA, Mirza MK, Malik AB, Wary KK. Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ Res 2010; 107:959-66. [PMID: 20724706 DOI: 10.1161/circresaha.110.219592] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Vascular endothelial (VE)-cadherin localized at adherens junctions (AJs) regulates endothelial barrier function. Because WNT (wingless) signaling-induced activation of the transcription factor Krüppel-like factor (KLF)4 may have an important role in mediating the expression of VE-cadherin and AJ integrity, we studied the function of KLF4 in regulating VE-cadherin expression and the control of endothelial barrier function. OBJECTIVE The goal of this study was to determine the transcriptional role of KLF4 in regulating VE-cadherin expression and endothelial barrier function. METHODS AND RESULTS Expression analysis, microscopy, chromatin immunoprecipitation, electrophoretic mobility shift assays, and VE-cadherin-luciferase reporter experiments demonstrated that KLF4 interacted with specific domains of VE-cadherin promoter and regulated the expression of VE-cadherin at AJs. KLF4 knockdown disrupted the endothelial barrier, indicating that KLF4 is required for normal barrier function. In vivo studies in mice showed augmented lipopolysaccharide-induced lung injury and pulmonary edema following Klf4 depletion. CONCLUSION Our data show the key role of KLF4 in the regulation of VE-cadherin expression at the level of the AJs and in the acquisition of VE-cadherin-mediated endothelial barrier function. Thus, KLF4 maintains the integrity of AJs and prevents vascular leakage in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Colleen E Cowan
- Department of Pharmacology, University of Illinois, 835 S Wolcott, Room E403, Mail code 868, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
41
|
Balcells M, Martorell J, Olivé C, Santacana M, Chitalia V, Cardoso AA, Edelman ER. Smooth muscle cells orchestrate the endothelial cell response to flow and injury. Circulation 2010; 121:2192-9. [PMID: 20458015 DOI: 10.1161/circulationaha.109.877282] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Local modulation of vascular mammalian target of rapamycin (mTOR) signaling reduces smooth muscle cell (SMC) proliferation after endovascular interventions but may be associated with endothelial cell (EC) toxicity. The trilaminate vascular architecture juxtaposes ECs and SMCs to enable complex paracrine coregulation but shields SMCs from flow. We hypothesized that flow differentially affects mTOR signaling in ECs and SMCs and that SMCs regulate mTOR in ECs. METHODS AND RESULTS SMCs and/or ECs were exposed to coronary artery flow in a perfusion bioreactor. We demonstrated by flow cytometry, immunofluorescence, and immunoblotting that EC expression of phospho-S6 ribosomal protein (p-S6RP), a downstream target of mTOR, was doubled by flow. Conversely, S6RP in SMCs was growth factor but not flow responsive, and SMCs eliminated the flow sensitivity of ECs. Temsirolimus, a sirolimus analog, eliminated the effect of growth factor on SMCs and of flow on ECs, reducing p-S6RP below basal levels and inhibiting endothelial recovery. EC p-S6RP expression in stented porcine arteries confirmed our in vitro findings: Phosphorylation was greatest in ECs farthest from intact SMCs in metal stented arteries and altogether absent after sirolimus stent elution. CONCLUSIONS The mTOR pathway is activated in ECs in response to luminal flow. SMCs inhibit this flow-induced stimulation of endothelial mTOR pathway. Thus, we now define a novel external stimulus regulating phosphorylation of S6RP and another level of EC-SMC crosstalk. These interactions may explain the impact of local antiproliferative delivery that targets SMC proliferation and suggest that future stents integrate design influences on flow and drug effects on their molecular targets.
Collapse
MESH Headings
- Animals
- Aorta/physiology
- Arteries/physiology
- Arteries/physiopathology
- Cell Communication/physiology
- Cells, Cultured
- Coronary Vessels/physiology
- Endothelial Cells/metabolism
- Endothelium, Vascular/injuries
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Ribosomal Protein S6/metabolism
- Signal Transduction
- Sirolimus/analogs & derivatives
- Sirolimus/pharmacology
- Stents/adverse effects
- Swine
- Swine, Miniature
- TOR Serine-Threonine Kinases
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Mercedes Balcells
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Villarreal G, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, García-Cardeña G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 2009; 391:984-9. [PMID: 19968965 DOI: 10.1016/j.bbrc.2009.12.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022]
Abstract
The Kruppel-like factor 2 (KLF2) and Kruppel-like factor 4 (KLF4) transcription factors have recently been shown to act as critical regulators of endothelial homeostasis. While several insights have been made into the signaling mechanisms orchestrating endothelial KLF2 expression, those governing the expression of KLF4 in the vascular endothelium remain largely unknown. Here, we show that diverse vasoprotective stimuli including an atheroprotective shear stress waveform, simvastatin, and resveratrol induce the expression of KLF4 in cultured human endothelial cells. We further demonstrate that the induction of KLF4 by resveratrol and atheroprotective shear stress occurs via a MEK5/MEF2-dependent signaling pathway. Since MEK5 activation is also critical for the expression of KLF2, we assessed the individual contribution of KLF4 and KLF2 to the global transcriptional activity triggered by MEK5 activation. Genome-wide transcriptional profiling of endothelial cells overexpressing KLF4, KLF2, or constitutively active MEK5 revealed that 59.2% of the genes regulated by the activation of MEK5 were similarly controlled by either KLF2 or KLF4. Collectively, our data identify a significant degree of mechanistic and functional conservation between KLF2 and KLF4, and importantly, provide further insights into the complex regulatory networks governing endothelial vasoprotection.
Collapse
Affiliation(s)
- Guadalupe Villarreal
- Laboratory for Systems Biology, Center for Excellence in Vascular Biology, Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sumagin R, Lamkin-Kennard KA, Sarelius IH. A separate role for ICAM-1 and fluid shear in regulating leukocyte interactions with straight regions of venular wall and venular convergences. Microcirculation 2009; 16:508-20. [PMID: 19468960 DOI: 10.1080/10739680902942271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Variation in expression of adhesion molecules plays a key role in regulating leukocyte behavior, but the contribution of fluid shear to these interactions cannot be ignored. Here, we dissected the effects of each of these factors on leukocyte behavior in different venular regions. MATERIALS AND METHODS Leukocyte behavior was quantified in blood-perfused microvascular networks in anesthetized mouse cremaster muscle, using intravital confocal microscopy. ICAM-1 expression and fluid shear rate were quantified by using ICAM-1 fluorescent labeling, fluorescent particle tracking, and computational fluid dynamics. RESULTS Tumor necrosis factor alpha induced an increase in ICAM-1 expression and abolished the differences observed among control venules of different sizes. Consequently, leukocyte adhesion was increased to a similar level across all vessel sizes [5.1+/-0.46 leukocytes/100 microm vs. 2.1+/-0.47 (control)], but remained significantly higher in venular convergences (7.8+/-0.4). Leukocyte transmigration occurred primarily in the smallest venules and venular convergences (23.9+/-5.1 and 31.9+/-2.7 leukocytes/10,000 microm(2) tissue, respectively). In venular convergences, the two inlet vessels are predicted to create a region of low velocity, increasing leukocyte adhesion probability. CONCLUSIONS In straight regions of different-sized venules, the variability in ICAM-1 expression accounts for the differences in leukocyte behavior; in converging regions, fluid shear potentially has a greater effect on leukocyte endothelial cell interactions.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | | | | |
Collapse
|
44
|
van Meurs M, Kümpers P, Ligtenberg JJM, Meertens JHJM, Molema G, Zijlstra JG. Bench-to-bedside review: Angiopoietin signalling in critical illness - a future target? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:207. [PMID: 19435476 PMCID: PMC2689450 DOI: 10.1186/cc7153] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple organ dysfunction syndrome (MODS) occurs in response to major insults such as sepsis, severe haemorrhage, trauma, major surgery and pancreatitis. The mortality rate is high despite intensive supportive care. The pathophysiological mechanism underlying MODS are not entirely clear, although several have been proposed. Overwhelming inflammation, immunoparesis, occult oxygen debt and other mechanisms have been investigated, and – despite many unanswered questions – therapies targeting these mechanisms have been developed. Unfortunately, only a few interventions, usually those targeting multiple mechanisms at the same time, have appeared to be beneficial. We clearly need to understand better the mechanisms that underlie MODS. The endothelium certainly plays an active role in MODS. It functions at the intersection of several systems, including inflammation, coagulation, haemodynamics, fluid and electrolyte balance, and cell migration. An important regulator of these systems is the angiopoietin/Tie2 signalling system. In this review we describe this signalling system, giving special attention to what is known about it in critically ill patients and its potential as a target for therapy.
Collapse
Affiliation(s)
- Matijs van Meurs
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Teebken O, Puschmann C, Breitenbach I, Rohde B, Burgwitz K, Haverich A. Preclinical Development of Tissue-Engineered Vein Valves and Venous Substitutes using Re-Endothelialised Human Vein Matrix. Eur J Vasc Endovasc Surg 2009; 37:92-102. [DOI: 10.1016/j.ejvs.2008.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/20/2008] [Indexed: 11/28/2022]
|
46
|
Abstract
In organ transplantation, blood borne cells and macromolecules (e.g., antibodies) of the host immune system are brought into direct contact with the endothelial cell lining of graft vessels. In this location, graft endothelial cells play several roles in allograft rejection, including the initiation of rejection responses by presentation of alloantigen to circulating T cells; the development of inflammation and thrombosis; and as targets of injury and agents of repair.
Collapse
|
47
|
Abstract
In organ transplantation, blood borne cells and macromolecules (e.g., antibodies) of the host immune system are brought into direct contact with the endothelial cell lining of graft vessels. In this location, graft endothelial cells play several roles in allograft rejection, including the initiation of rejection responses by presentation of alloantigen to circulating T cells; the development of inflammation and thrombosis; and as targets of injury and agents of repair.
Collapse
|
48
|
Zhang J, Burridge KA, Friedman MH. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am J Physiol Heart Circ Physiol 2008; 295:H1556-61. [PMID: 18689496 PMCID: PMC2593512 DOI: 10.1152/ajpheart.00540.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/04/2008] [Indexed: 12/21/2022]
Abstract
Endothelial cells (ECs) from different vascular beds display a remarkable heterogeneity in both structure and function. Phenotypic heterogeneity among arterial ECs is particularly relevant to atherosclerosis since the disease occurs predominantly in major arteries, which vary in their atherosusceptibility. To explore EC heterogeneity between typical atheroprone and atheroresistant arteries, we used DNA microarrays to compare gene expression profiles of freshly harvested porcine coronary (CECs) and iliac artery (IECs) ECs. Statistical analysis revealed 51 genes that were differentially expressed in CECs relative to IECs at a false discovery rate of 5%. Seventeen of these genes are known to be involved in atherogenesis. Consistent with coronary arteries being more atherosusceptible, almost all putative atherogenic genes were overexpressed in CECs, whereas all atheroprotective genes were downregulated, relative to IECs. A subset of the identified genes was validated by quantitative polymerase chain reaction (PCR). PCR results suggest that the differences in expression levels between CECs and IECs for the HOXA10 and HOXA9 genes were >100-fold. Gene ontology (GO) and biological pathway analysis revealed a global expression difference between CECs and IECs. Genes in twelve GO categories, including complement immune activation, immunoglobulin-mediated response, and system development, were significantly upregulated in CECs. CECs also overexpressed genes involved in several inflammatory pathways, including the classical pathway of complement activation and the IGF-1-mediated pathway. The in vivo transcriptional differences between CECs and IECs found in this study may provide new insights into the factors responsible for coronary artery atherosusceptibility.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
49
|
Daculsi R, Grellier M, Rémy M, Bareille R, Pierron D, Fernandez P, Bordenave L. Unusual transduction response of progenitor-derived and mature endothelial cells exposed to laminar pulsatile shear stress. J Biomech 2008; 41:2781-5. [PMID: 18621377 DOI: 10.1016/j.jbiomech.2008.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/30/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Progenitor-derived endothelial cells (PDECs) isolated from human umbilical cord blood generate a great hope in the fields of vascular tissue engineering. Endothelial cells subjected to shear stress convert mechanical stimuli into intracellular signals that affect cellular functions. It is essential to ensure that PDECs are able to sense shear stress as mature endothelial cells from human saphenous veins (HSVECs) do with mitogen-activated protein (MAP) kinase and nuclear factor (NF)-kappaB signal transduction pathways. HSVECs and PDECs were seeded on glass slides coated with gelatin and exposed to 12 dyn/cm2 in a parallel-plate flow chamber. In both cell types, shear stress activated extracellular signal-related kinase (ERK)1/2 with a rapid time course (maximum 5 min) followed by a reduced phosphorylation, and p38 pathway. c-Jun N-terminal protein kinase (JNK) phosphorylation is observed only in PDECs. With respect to NF-kappaB translocation to the nucleus, the NF-kappaB pathway is not activated by flow in HSVECs and PDECs although interleukin-1alpha (IL-1alpha) activates this pathway in both cell types. In our experimental conditions, shear stress does not modify the nuclear translocation of NF-kappaB in HSVECs after IL-1alpha stimulation. It can be stated that PDECs are shear stress sensitive and capable of signal transduction as mature HSVECs are, despite the unusual transduction response of both cell types.
Collapse
Affiliation(s)
- Richard Daculsi
- INSERM, U577, Bordeaux and Université Victor Segalen Bordeaux 2, UMR-S577, Bordeaux, F-33076, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Girdhar G, Bluestein D. Biological effects of dynamic shear stress in cardiovascular pathologies and devices. Expert Rev Med Devices 2008; 5:167-81. [PMID: 18331179 PMCID: PMC2865252 DOI: 10.1586/17434440.5.2.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Altered and highly dynamic shear stress conditions have been implicated in endothelial dysfunction leading to cardiovascular disease, and in thromboembolic complications in prosthetic cardiovascular devices. In addition to vascular damage, the pathological flow patterns characterizing cardiovascular pathologies and blood flow in prosthetic devices induce shear activation and damage to blood constituents. Investigation of the specific and accentuated effects of such flow-induced perturbations on individual cell-types in vitro is critical for the optimization of device design, whereby specific design modifications can be made to minimize such perturbations. Such effects are also critical in understanding the development of cardiovascular disease. This review addresses limitations to replicate such dynamic flow conditions in vitro and also introduces the idea of modified in vitro devices, one of which is developed in the authors' laboratory, with dynamic capabilities to investigate the aforementioned effects in greater detail.
Collapse
Affiliation(s)
- Gaurav Girdhar
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-8181, USA.
| | | |
Collapse
|