1
|
Lubomirov LT, Weber G, Schroeter M, Metzler D, Bust M, Korotkova T, Hescheler J, Todorov VT, Pfitzer G, Grisk O. Alanine mutation of the targeting subunit of the myosin phosphatase, MYPT1 at threonine 696 reduces cGMP responsiveness of mouse femoral arteries. Eur J Pharmacol 2025; 986:177133. [PMID: 39551336 DOI: 10.1016/j.ejphar.2024.177133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
The femoral artery (FA) is the largest vessel in the hindlimb circulation and its proper tone regulation ensures adequate blood supply to muscle tissue. We investigated whether an alanine mutation of the targeting subunit of myosin-light-chain-phosphatase (MLCP), MYPT1, at threonine 696 (MYPT1-T696A/+), decisive for enzyme acivity, affects the responsiveness of young and old FAs (y-FAs and o-FAs) to activation of nitric-oxide/soluble-guanylate-cyclase/protein-kinase-G cascade (NO/sGC/PKG). Contractile responses of the vessels were measured by wire myography. Phosphorylation of the regulatory myosin-light-chain at serine 19 (MLC20-S19), the myosin-light-chain-phosphatase targeting subunit, MYPT1-T696, the PKG-sensitive site of MYPT1 at S695 (MYPT1-S695) and S668 (MYPT1-S668), and the regulatory phosphorylation of eNOS at S1177 (eNOS-S1177) were determined in arterial homogenates by Western blot. In FAs of all ages, the MYPT1-T696A-mutation did not alter vessel diameter and the contractile reactivity to the thromboxaneA2-analogue, U46619 and the RhoA kinase inhibitor, Y27632. In contrast, the mutation T696 into alanine attenuated the relaxing effect of exogenous NO (DEA-NONOate) in y-FAs. The effect of a direct sGC activation by cinaciguat was also attenuated in both age groups of MYPT1-T696A/+, but strongly in o-FA. The MYPT1-T696A-mutation also attenuated acetylcholine-induced relaxation, but only in o-FAs. Similary, the alanine mutation attenuated the acetylcholine effect on MLC20-S19- and MYPT1-T696 only in WT o-FAs. Interestingly, neither eNOS-S1177 nor the phosphorylation of the PKG phosphospecific sites, MYPT1-S695 and MYPT1-S668 were altered by MYPT1-T696A-mutation or aging. These findings suggest that the alanine mutation of MYPT1-T696 reduces the ability of the NO/cGMP/PKG-system to relax FAs in aging.
Collapse
Affiliation(s)
- Lubomir T Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Germany; Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Germany; Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany; Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.
| | - Greta Weber
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Germany
| | - Mechthild Schroeter
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Germany
| | - Doris Metzler
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Germany
| | - Maria Bust
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Germany
| | - Tatiana Korotkova
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Center of Physiology, University of Cologne, Germany
| | - Vladimir T Todorov
- Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany; Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Germany; Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| |
Collapse
|
2
|
Venturelli M, Morgan GR, Tarperi C, Zhao J, Naro F, Reggiani C, Donato AJ, Richardson RS, Schena F. Physiological determinants of mechanical efficiency during advanced ageing and disuse. J Physiol 2024; 602:355-372. [PMID: 38165402 DOI: 10.1113/jp285639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Garrett R Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
- The Murtha Cancer Center at Walter Reed Bethesda, Bethesda, Maryland, USA
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jia Zhao
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fabio Naro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University, Rome, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
- The Murtha Cancer Center at Walter Reed Bethesda, Bethesda, Maryland, USA
- George E. Whalen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, USA
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
- George E. Whalen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, USA
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah, USA
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Grotle AK, Langlo JV, Holsbrekken E, Stone AJ, Tanaka H, Fadel PJ. Age-related alterations in the cardiovascular responses to acute exercise in males and females: role of the exercise pressor reflex. Front Physiol 2023; 14:1287392. [PMID: 38028783 PMCID: PMC10652405 DOI: 10.3389/fphys.2023.1287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Autonomic adjustments of the cardiovascular system are critical for initiating and sustaining exercise by facilitating the redistribution of blood flow and oxygen delivery to meet the metabolic demands of the active skeletal muscle. Afferent feedback from active skeletal muscles evokes reflex increases in sympathetic nerve activity and blood pressure (BP) (i.e., exercise pressor reflex) and contributes importantly to these primary neurovascular adjustments to exercise. When altered, this reflex contributes significantly to the exaggerated sympathetic and BP response to exercise observed in many cardiovascular-related diseases, highlighting the importance of examining the reflex and its underlying mechanism(s). A leading risk factor for the pathogenesis of cardiovascular disease in both males and females is aging. Although regular exercise is an effective strategy for mitigating the health burden of aging, older adults face a greater risk of experiencing an exaggerated cardiovascular response to exercise. However, the role of aging in mediating the exercise pressor reflex remains highly controversial, as conflicting findings have been reported. This review aims to provide a brief overview of the current understanding of the influence of aging on cardiovascular responses to exercise, focusing on the role of the exercise pressor reflex and proposing future directions for research. We reason that this review will serve as a resource for health professionals and researchers to stimulate a renewed interest in this critical area.
Collapse
Affiliation(s)
- A. K. Grotle
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - J. V. Langlo
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - E. Holsbrekken
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - A. J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - H. Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - P. J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
4
|
Smith JR, Senefeld JW, Larson KF, Joyner MJ. Consequences of group III/IV afferent feedback and respiratory muscle work on exercise tolerance in heart failure with reduced ejection fraction. Exp Physiol 2023; 108:1351-1365. [PMID: 37735814 PMCID: PMC10900130 DOI: 10.1113/ep090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Exercise intolerance and exertional dyspnoea are the cardinal symptoms of heart failure with reduced ejection fraction (HFrEF). In HFrEF, abnormal autonomic and cardiopulmonary responses arising from locomotor muscle group III/IV afferent feedback is one of the primary mechanisms contributing to exercise intolerance. HFrEF patients also have pulmonary system and respiratory muscle abnormalities that impair exercise tolerance. Thus, the primary impetus for this review was to describe the mechanistic consequences of locomotor muscle group III/IV afferent feedback and respiratory muscle work in HFrEF. To address this, we first discuss the abnormal autonomic and cardiopulmonary responses mediated by locomotor muscle afferent feedback in HFrEF. Next, we outline how respiratory muscle work impairs exercise tolerance in HFrEF through its effects on locomotor muscle O2 delivery. We then discuss the direct and indirect evidence supporting an interaction between locomotor muscle group III/IV afferent feedback and respiratory muscle work during exercise in HFrEF. Last, we outline future research directions related to locomotor and respiratory muscle abnormalities to progress the field forward in understanding the pathophysiology of exercise intolerance in HFrEF. NEW FINDINGS: What is the topic of this review? This review is focused on understanding the role that locomotor muscle group III/IV afferent feedback and respiratory muscle work play in the pathophysiology of exercise intolerance in patients with heart failure. What advances does it highlight? This review proposes that the concomitant effects of locomotor muscle afferent feedback and respiratory muscle work worsen exercise tolerance and exacerbate exertional dyspnoea in patients with heart failure.
Collapse
Affiliation(s)
- Joshua R. Smith
- Department of Cardiovascular MedicineMayo ClinicRochesterMNUSA
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMNUSA
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | | | - Michael J. Joyner
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMNUSA
| |
Collapse
|
5
|
Thurston TS, Weavil JC, Georgescu VP, Wan HY, Birgenheier NM, Morrissey CK, Jessop JE, Amann M. The exercise pressor reflex - a pressure-raising mechanism with a limited role in regulating leg perfusion during locomotion in young healthy men. J Physiol 2023; 601:4557-4572. [PMID: 37698303 PMCID: PMC10592099 DOI: 10.1113/jp284870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
We investigated the role of the exercise pressor reflex (EPR) in regulating the haemodynamic response to locomotor exercise. Eight healthy participants (23 ± 3 years,V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ : 49 ± 6 ml/kg/min) performed constant-load cycling exercise (∼36/43/52/98%V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ; 4 min each) without (CTRL) and with (FENT) lumbar intrathecal fentanyl attenuating group III/IV locomotor muscle afferent feedback and, thus, the EPR. To avoid different respiratory muscle metaboreflex and arterial chemoreflex activation during FENT, subjects mimicked the ventilatory response recorded during CTRL. Arterial and leg perfusion pressure (femoral arterial and venous catheters), femoral blood flow (Doppler-ultrasound), microvascular quadriceps blood flow index (indocyanine green), cardiac output (inert gas breathing), and systemic and leg vascular conductance were quantified during exercise. There were no cardiovascular and ventilatory differences between conditions at rest. Pulmonary ventilation, arterial blood gases and oxyhaemoglobin saturation were not different during exercise. Furthermore, cardiac output (-2% to -12%), arterial pressure (-7% to -15%) and leg perfusion pressure (-8% to -22%) were lower, and systemic (up to 16%) and leg (up to 27%) vascular conductance were higher during FENT compared to CTRL. Leg blood flow, microvascular quadriceps blood flow index, and leg O2 -transport and utilization were not different between conditions (P > 0.5). These findings reflect a critical role of the EPR in the autonomic control of the heart, vasculature and, ultimately, arterial pressure during locomotor exercise. However, the lack of a net effect of the EPR on leg blood flow challenges the idea of this cardiovascular reflex as a key determinant of leg O2 -transport during locomotor exercise in healthy, young individuals. KEY POINTS: The role of the exercise pressor reflex (EPR) in regulating leg O2 -transport during human locomotion remains uncertain. We investigated the influence of the EPR on the cardiovascular response to cycling exercise. Lumbar intrathecal fentanyl was used to block group III/IV leg muscle afferents and debilitate the EPR at intensities ranging from 30% to 100%V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . To avoid different respiratory muscle metaboreflex and arterial chemoreflex activation during exercise with blocked leg muscle afferents, subjects mimicked the ventilatory response recorded during control exercise. Afferent blockade increased leg and systemic vascular conductance, but reduced cardiac output and arterial-pressure, with no net effect on leg blood flow. The EPR influenced the cardiovascular response to cycling exercise by contributing to the autonomic control of the heart and vasculature, but did not affect leg blood flow. These findings challenge the idea of the EPR as a key determinant of leg O2 -transport during locomotor exercise in healthy, young individuals.
Collapse
Affiliation(s)
- Taylor S. Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Joshua C. Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT
| | - Vincent P. Georgescu
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | | | | | - Jacob E. Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT
| |
Collapse
|
6
|
Wan HY, Bunsawat K, Amann M. Autonomic cardiovascular control during exercise. Am J Physiol Heart Circ Physiol 2023; 325:H675-H686. [PMID: 37505474 PMCID: PMC10659323 DOI: 10.1152/ajpheart.00303.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The cardiovascular response to exercise is largely determined by neurocirculatory control mechanisms that help to raise blood pressure and modulate vascular resistance which, in concert with regional vasodilatory mechanisms, promote blood flow to active muscle and organs. These neurocirculatory control mechanisms include a feedforward mechanism, known as central command, and three feedback mechanisms, namely, 1) the baroreflex, 2) the exercise pressor reflex, and 3) the arterial chemoreflex. The hemodynamic consequences of these control mechanisms result from their influence on the autonomic nervous system and subsequent alterations in cardiac output and vascular resistance. Although stimulation of the baroreflex inhibits sympathetic outflow and facilitates parasympathetic activity, central command, the exercise pressor reflex, and the arterial chemoreflex facilitate sympathetic activation and inhibit parasympathetic drive. Despite considerable understanding of the cardiovascular consequences of each of these mechanisms in isolation, the circulatory impact of their interaction, which occurs when various control systems are simultaneously activated (e.g., during exercise at altitude), has only recently been recognized. Although aging and cardiovascular disease (e.g., heart failure, hypertension) have both been recognized to alter the hemodynamic consequences of these regulatory systems, this review is limited to provide a brief overview on the action and interaction of neurocirculatory control mechanisms in health.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
7
|
O'Halloran KD. Potentiated respiratory metaboreflex in older males and females: afferent or efferent mechanisms? J Physiol 2023; 601:393-394. [PMID: 36632665 DOI: 10.1113/jp284167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Smith JR, Joyner MJ, Curry TB, Borlaug BA, Keller-Ross ML, Van Iterson EH, Olson TP. Influence of locomotor muscle group III/IV afferents on cardiovascular and ventilatory responses in human heart failure during submaximal exercise. J Appl Physiol (1985) 2022; 132:903-914. [PMID: 35201931 PMCID: PMC8957342 DOI: 10.1152/japplphysiol.00371.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study is to determine the influence of locomotor muscle group III/IV afferent inhibition on central and peripheral hemodynamics at multiple levels of submaximal cycling exercise in patients with heart failure with reduced ejection fraction (HFrEF). Eleven patients with HFrEF and nine healthy matched controls were recruited. The participants performed a multiple stage [i.e., 30 W, 50%peak workload (WL), and a workload eliciting a respiratory exchange ratio (RER) of ∼1.0] exercise test with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Cardiac output ([Formula: see text]tot) was measured via open-circuit acetylene wash-in technique and stroke volume was calculated. Leg blood flow ([Formula: see text]l) was measured via constant infusion thermodilution and leg vascular conductance (LVC) was calculated. Radial artery and femoral venous blood gases were measured. For HFrEF, stroke volume was higher at the 30 W (FENT: 110 ± 21 vs. PLA: 100 ± 18 mL), 50%peak WL (FENT: 113 ± 22 vs. PLA: 103 ± 23 mL), and RER = 1.0 (FENT: 119 ± 28 vs. PLA: 110 ± 26 mL) stages, whereas heart rate and systemic vascular resistance were lower with fentanyl than with placebo (all, P < 0.05). [Formula: see text]tot in HFrEF and [Formula: see text]tot, stroke volume, and heart rate in controls were not different between fentanyl and placebo (all, P > 0.19). During submaximal exercise, controls and patients with HFrEF exhibited increased leg vascular conductance (LVC) with fentanyl compared with placebo (all, P < 0.04), whereas no differences were present in [Formula: see text]l or O2 delivery with fentanyl (all, P > 0.20). Taken together, these findings provide support for locomotor muscle group III/IV afferents playing a role in integrative control mechanisms during submaximal cycling exercise in patients with HFrEF and older controls.NEW & NOTEWORTHY Patients with HFrEF exhibit severe exercise intolerance. One of the primary peripheral mechanisms contributing to exercise intolerance in patients with HFrEF is locomotor muscle group III/IV afferent feedback. However, it is unknown whether these afferents impact the central and peripheral responses during submaximal cycling exercise. Herein, we demonstrate that inhibition of locomotor muscle group III/IV afferent feedback elicited increases in stroke volume during submaximal exercise in HFrEF, but not in healthy controls.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy B Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Erik H Van Iterson
- Section of Preventative Cardiology and Rehabilitation, Cleveland Clinic, Cleveland, Ohio
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Hasegawa D, Hori A, Okamura Y, Baba R, Suijo K, Mizuno M, Sugawara J, Kitatsuji K, Ogata H, Toda K, Hotta N. Aging exaggerates blood pressure response to ischemic rhythmic handgrip exercise in humans. Physiol Rep 2021; 9:e15125. [PMID: 34817113 PMCID: PMC8611780 DOI: 10.14814/phy2.15125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Ischemic skeletal muscle conditions are known to augment exercise-induced increases in blood pressure (BP). Aging is also a factor that enhances the pressor response to exercise. However, the effects of aging on the BP response to ischemic exercise remain unclear. We, therefore, tested the hypothesis that aging enhances the BP response to rhythmic handgrip (RHG) exercise during postexercise muscle ischemia (PEMI). We divided the normotensive participants without cardiovascular diseases into three age groups: young (n = 26; age, 18-28 years), middle-aged (n = 23; age, 35-59 years), and older adults (n = 23; age, 60-80 years). The participants performed RHG exercise with minimal effort for 1 min after rest with and without PEMI, which was induced by inflating a cuff on the upper arm just before the isometric handgrip exercise ended; the intensity was 30% of maximal voluntary contraction force. Under PEMI, the increase in diastolic BP (DBP) from rest to RHG exercise in the older adult group (Δ13 ± 2 mmHg) was significantly higher than that in the young (Δ5 ± 2 mmHg) and middle-aged groups (Δ6 ± 1 mmHg), despite there being no significant difference between the groups in the DBP response from rest to RHG exercise without PEMI. Importantly, based on multiple regression analysis, age remained a significant independent determinant of both the SBP and DBP responses to RHG exercise during PEMI (p < 0.01). These findings indicate that aging enhances the pressor response to ischemic rhythmic exercise.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- Nagoya Heisei College of Nursing and Medical CareNagoyaJapan
| | - Amane Hori
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Yukiko Okamura
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Reizo Baba
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Kenichi Suijo
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Masaki Mizuno
- Department of Applied Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jun Sugawara
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Koji Kitatsuji
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Hisayoshi Ogata
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Kaoru Toda
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| | - Norio Hotta
- Graduate School of Life and Health SciencesChubu UniversityKasugaiJapan
- College of Life and Health SciencesChubu UniversityKasugaiJapan
| |
Collapse
|
10
|
The association of elevated blood pressure during ischaemic exercise with sport performance in Master athletes with and without morbidity. Eur J Appl Physiol 2021; 122:211-221. [PMID: 34652528 PMCID: PMC8748359 DOI: 10.1007/s00421-021-04828-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 11/04/2022]
Abstract
Background An exaggerated exercise blood pressure (BP) is associated with a reduced exercise capacity. However, its connection to physical performance during competition is unknown. Aim To examine BP responses to ischaemic handgrip exercise in Master athletes (MA) with and without underlying morbidities and to assess their association with athletic performance during the World Master Track Cycling Championships 2019. Methods Forty-eight Master cyclists [age 59 ± 13yrs; weekly training volume 10.4 ± 4.1 h/week; handgrip maximum voluntary contraction (MVC) 46.3 ± 11.5 kg] divided into 2 matched groups (24 healthy MA and 24 MA with morbidity) and 10 healthy middle-aged non-athlete controls (age 48.3 ± 8.3 years; MVC 40.4 ± 14.8 kg) performed 5 min of forearm occlusion including 1 min handgrip isometric contraction (40%MVC) followed by 5 min recovery. Continuous beat-by-beat BP was recorded using finger plethysmography. Age-graded performance (AGP) was calculated to compare race performances among MA. Healthy Master cyclists were further grouped into middle-age (age 46.2 ± 6.4 years; N:12) and old-age (age 65.0 ± 7.7 years; N:12) for comparison with middle-aged non-athlete controls. Results Healthy and morbidity MA groups showed similar BP responses during forearm occlusion and AGP (90.1 ± 4.3% and 91.0 ± 5.3%, p > 0.05, respectively). Healthy and morbidity MA showed modest correlation between the BP rising slope for 40%MVC ischaemic exercise and AGP (r = 0.5, p < 0.05). MA showed accelerated SBP recovery after cessation of ischaemic handgrip exercise compared to healthy non-athlete controls. Conclusion Our findings associate long-term athletic training with improved BP recovery following ischaemic exercise regardless of age or reported morbidity. Exaggerated BP in Master cyclists during ischaemic exercise was associated with lower AGP during the World Master Cycling Championships. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04828-9.
Collapse
|
11
|
Craig JC, Broxterman RM, Cerbie JF, La Salle DT, Roundy CS, Jarrett CL, Richardson RS, Trinity JD. The dynamic adjustment of mean arterial pressure during exercise: a potential tool for discerning cardiovascular health status. J Appl Physiol (1985) 2021; 130:1544-1554. [PMID: 33830814 DOI: 10.1152/japplphysiol.00057.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The regulation of mean arterial pressure (MAP) during exercise has important physiological and clinical implications. Kinetics analysis on numerous physiological variables following the transition from unloaded-to-loaded exercise has revealed important information regarding their control. Surprisingly, the dynamic response of MAP during this transition remains to be quantified. Therefore, ten healthy participants (5/5 M/F, 24 ± 3 yr) completed repeated transitions from unloaded to moderate- and heavy-intensity dynamic single-leg knee-extensor exercise to investigate the on-kinetics of MAP. Following the transition to loaded exercise, MAP increased in a first-order dynamic manner, subsequent to a time delay (moderate: 23 ± 10; heavy: 19 ± 9 s, P > 0.05) at a speed (τ, moderate: 59 ± 30; heavy: 66 ± 19 s, P > 0.05), which did not differ between intensities, but the MAP amplitude was doubled during heavy-intensity exercise (moderate: 12 ± 5; heavy: 24 ± 8 mmHg, P < 0.001). The reproducibility [coefficient of variation (CV)] during heavy intensity for unloaded baseline, amplitude, and mean response time, when assessed as individual transitions, was 7 ± 1%, 18 ± 2%, and 25 ± 4%, respectively. Averaging two transitions improved the CVs to 4 ± 1%, 8 ± 2%, and 13 ± 3%, respectively. Preliminary findings supporting the clinical relevance of evaluating MAP kinetics in middle-aged hypertensive (n = 5) and, age-matched, normotensive (n = 5) participants revealed an exaggerated MAP response in both older groups (P < 0.05), but the MAP response was slowed only for the patients with hypertension (P < 0.05). It is concluded that kinetics modeling of MAP is practical for heavy-intensity knee-extensor exercise and may provide insight into cardiovascular health and the effect of aging.NEW & NOTEWORTHY Kinetics analysis of physiological variables following workload transitions provides important information, but this has not been performed on mean arterial pressure (MAP), despite the clear clinical importance of this variable. This investigation reveals that kinetic modeling of MAP following unloaded-to-loaded knee-extensor exercise is practical and repeatable. Additional preliminary findings in hypertensive and, age-matched, normotensive subjects suggest that MAP kinetics may provide insight into cardiovascular health and the effect of aging.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Ryan M Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - James F Cerbie
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Caleb S Roundy
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
Smith JR, Joyner MJ, Curry TB, Borlaug BA, Keller-Ross ML, Van Iterson EH, Olson TP. Locomotor muscle group III/IV afferents constrain stroke volume and contribute to exercise intolerance in human heart failure. J Physiol 2020; 598:5379-5390. [PMID: 32886795 PMCID: PMC10039366 DOI: 10.1113/jp280333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Heart failure patients with reduced ejection fraction (HFrEF) exhibit severe limitations in exercise capacity ( V̇O2 peak). One of the primary peripheral mechanisms suggested to underlie exercise intolerance in HFrEF is excessive locomotor muscle group III/IV afferent feedback; however, this has never been investigated in human heart failure. HFrEF patients and controls performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output, leg blood flow and radial artery and femoral venous blood gases were measured. With fentanyl, compared with placebo, patients with HFrEF achieved a higher peak workload, V̇O2 peak, cardiac output, stroke volume and leg blood flow. These findings suggest that locomotor muscle group III/IV afferent feedback in HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery thereby impairing V̇O2 peak and thus exercise capacity. ABSTRACT To better understand the underlying mechanisms contributing to exercise limitation in heart failure with reduced ejection fraction (HFrEF), we investigated the influence of locomotor muscle group III/IV afferent inhibition via lumbar intrathecal fentanyl on peak exercise capacity ( V̇O2 peak) and the contributory mechanisms. Eleven HFrEF patients and eight healthy matched controls were recruited. The participants performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output and leg blood flow ( Q̇L ) were measured via open-circuit acetylene wash-in technique and constant infusion thermodilution, respectively. Radial artery and femoral venous blood gases were measured. V̇O2 peak was 15% greater with fentanyl compared with placebo for HFrEF (P < 0.01), while no different in the controls. During peak exercise with fentanyl, cardiac output was 12% greater in HFrEF secondary to significant decreases in systemic vascular resistance and increases in stroke volume compared with placebo (all, P < 0.01). From placebo to fentanyl, leg V̇O2 , Q̇L and O2 delivery were greater for HFrEF during peak exercise (all, P < 0.01), but not control. These findings indicate that locomotor muscle group III/IV afferent feedback in patients with HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery, thereby impairing V̇O2 peak and thus exercise capacity. These findings have important clinical implications as V̇O2 peak is highly predictive of morbidity and mortality in HF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, MN, USA
| | - Timothy B Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, MN, USA
| | | | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Sciences, University of Minnesota, MN, USA
| | - Erik H Van Iterson
- Section of Preventative Cardiology and Rehabilitation, Cleveland Clinic, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, MN, USA
| |
Collapse
|
13
|
Amann M, Wan HY, Thurston TS, Georgescu VP, Weavil JC. On the Influence of Group III/IV Muscle Afferent Feedback on Endurance Exercise Performance. Exerc Sport Sci Rev 2020; 48:209-216. [PMID: 32658041 DOI: 10.1249/jes.0000000000000233] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses evidence suggesting that group III/IV muscle afferents affect locomotor performance by influencing neuromuscular fatigue. These neurons regulate the hemodynamic and ventilatory response to exercise and, thus, assure appropriate locomotor muscle O2 delivery, which optimizes peripheral fatigue development and facilitates endurance performance. In terms of central fatigue, group III/IV muscle afferents inhibit motoneuronal output and thereby limit exercise performance.
Collapse
Affiliation(s)
| | - Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah
| | - Taylor S Thurston
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| | - Vincent P Georgescu
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| |
Collapse
|
14
|
Zarzissi S, Bouzid MA, Zghal F, Rebai H, Hureau TJ. Aging reduces the maximal level of peripheral fatigue tolerable and impairs exercise capacity. Am J Physiol Regul Integr Comp Physiol 2020; 319:R617-R625. [PMID: 32966120 DOI: 10.1152/ajpregu.00151.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to determine the magnitude of the maximal level of peripheral fatigue attainable (fatigue threshold) during an all-out intermittent isometric knee-extensor protocol in both younger (24 ± 1 yr, n = 12) and older (60 ± 2 yr, n = 12) participants to provide new insights into the effects of aging on neuromuscular function. Participants performed two experimental sessions, in which they performed 60 maximal voluntary contractions (MVCs; 3 s of contraction, 2 s of relaxation). One trial was performed in the unfatigued state (CTRL) and one other following fatiguing neuromuscular electrical stimulation of the quadriceps (FNMES). Peripheral fatigue was quantified via pre/postexercise decrease in quadriceps twitch force (∆Ptw). Critical force (CF) was determined as the mean force output of the last 12 contractions, whereas W' was calculated as the area above CF. Although FNMES led to a significant decrease in Ptw before performing the 60-MVCs protocol (P = 0.024), ∆Ptw was not different between CTRL and FNMES for both the young group (P = 0.491) and the old group (P = 0.523). However, this peripheral fatigue threshold was significantly greater in young versus old participants (∆Ptw = -48 ± 10% vs. -29 ± 13%, respectively, P = 0.028). In CTRL, W' was 55 ± 13% lower in the old group than in the young group (P < 0.001), but CF was similar (326 ± 10 N vs. 322 ± 12 N, respectively, P = 0.941). ∆Ptw was correlated with W', independently of age (r2 = 0.84, P < 0.001). Exercise performance decreases with aging consequent to a lower tolerance to peripheral fatigue. However, the peripheral fatigue threshold mechanism persists with healthy aging and continues to play a protective role in preserving locomotor muscle function during exercise.
Collapse
Affiliation(s)
- Slim Zarzissi
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Thomas J Hureau
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France.,European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Wan HY, Weavil JC, Thurston TS, Georgescu VP, Hureau TJ, Bledsoe AD, Buys MJ, Jessop JE, Richardson RS, Amann M. The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human. J Physiol 2020; 598:2311-2321. [PMID: 32170732 DOI: 10.1113/jp279456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Although the exercise pressor reflex (EPR) and the chemoreflex (CR) are recognized for their sympathoexcitatory effect, the cardiovascular implication of their interaction remains elusive. We quantified the individual and interactive cardiovascular consequences of these reflexes during exercise and revealed various modes of interaction. The EPR and hypoxia-induced CR interaction is hyper-additive for blood pressure and heart rate (responses during co-activation of the two reflexes are greater than the summation of the responses evoked by each reflex) and hypo-additive for peripheral haemodynamics (responses during co-activation of the reflexes are smaller than the summated responses). The EPR and hypercapnia-induced CR interaction results in a simple addition of the individual responses to each reflex (i.e. additive interaction). Collectively, EPR:CR co-activation results in significant cardiovascular interactions with restriction in peripheral haemodynamics, resulting from the EPR:CR interaction in hypoxia, likely having the most crucial impact on the functional capacity of an exercising human. ABSTRACT We investigated the interactive effect of the exercise pressor reflex (EPR) and the chemoreflex (CR) on the cardiovascular response to exercise. Eleven healthy participants (5 females) completed a total of six bouts of single-leg knee-extension exercise (60% peak work rate, 4 min each) either with or without lumbar intrathecal fentanyl to attenuate group III/IV afferent feedback from lower limbs to modify the EPR, while breathing either ambient air, normocapnic hypoxia (Sa O2 ∼79%, Pa O2 ∼43 mmHg, Pa CO2 ∼33 mmHg, pH ∼7.39), or normoxic hypercapnia (Sa O2 ∼98%, Pa O2 ∼105 mmHg, Pa CO2 ∼50 mmHg, pH ∼7.26) to modify the CR. During co-activation of the EPR and the hypoxia-induced CR (O2 -CR), mean arterial pressure and heart rate were significantly greater, whereas leg blood flow and leg vascular conductance were significantly lower than the summation of the responses evoked by each reflex alone. During co-activation of the EPR and the hypercapnia-induced CR (CO2 -CR), the haemodynamic responses were not different from the summated responses to each reflex response alone (P ≥ 0.1). Therefore, while the interaction resulting from the EPR:O2 -CR co-activation is hyper-additive for blood pressure and heart rate, and hypo-additive for peripheral haemodynamics, the interaction resulting from the EPR:CO2 -CR co-activation is simply additive for all cardiovascular parameters. Thus, EPR:CR co-activation results in significant interactions between cardiovascular reflexes, with the impact differing when the CR activation is achieved by hypoxia or hypercapnia. Since the EPR:CR co-activation with hypoxia potentiates the pressor response and restricts blood flow to contracting muscles, this interaction entails the most functional impact on an exercising human.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Vincent P Georgescu
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Michael J Buys
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Sidhu SK, Weavil JC, Rossman MJ, Jessop JE, Bledsoe AD, Buys MJ, Supiano MS, Richardson RS, Amann M. Exercise Pressor Reflex Contributes to the Cardiovascular Abnormalities Characterizing: Hypertensive Humans During Exercise. Hypertension 2019; 74:1468-1475. [PMID: 31607174 DOI: 10.1161/hypertensionaha.119.13366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated the impact of hypertension on circulatory responses to exercise and the role of the exercise pressor reflex in determining the cardiovascular abnormalities characterizing patients with hypertension. After a 7-day drug washout, 8 hypertensive (mean arterial pressure [MAP] 130±4 mm Hg; 65±3 years) and 8 normotensive (MAP 117±2 mm Hg; 65±2 years) individuals performed single-leg knee-extensor exercise (7 W, 15 W, 50%, 80%-Wpeak) under control conditions and with lumbar intrathecal fentanyl impairing feedback from µ-opioid receptor-sensitive leg muscle afferents. Femoral artery blood flow (QL), MAP (femoral artery), leg vascular conductance, and changes in cardiac output were continuously measured. While the increase in MAP from rest to control exercise was significantly greater in hypertension compared with normotension, the exercise-induced increase in cardiac output was comparable between groups, and QL and leg vascular conductance responses were ≈18% and ≈32% lower in the hypertensive patients (P<0.05). The blockade-induced decreases in MAP were significantly larger during exercise in hypertensive (≈11 mm Hg) compared with normotensive (≈6 mm Hg). Afferent blockade attenuated the central hemodynamic response to exercise similarly in both groups resulting in a ≈15% lower cardiac output at each workload. With no effect in normotensive, afferent blockade significantly raised the peripheral hemodynamic response to exercise in hypertensive, resulting in ≈14% and ≈23% higher QL and leg vascular conductance during exercise. Finally, QL and MAP during fentanyl-exercise in hypertensive were comparable to that of normotensive under control conditions (P>0.2). These findings suggest that exercise pressor reflex abnormalities largely account for the exaggerated MAP response and the impaired peripheral hemodynamics during exercise in hypertension.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- From the Department of Internal Medicine, Division of Geriatrics (S.K.S., M.J.R., M.S.S., R.S.R., M.A.), University of Utah, Salt Lake City.,Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Australia (S.K.S.)
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT (J.C.W., M.S.S., R.S.R., M.A.)
| | - Matthew J Rossman
- From the Department of Internal Medicine, Division of Geriatrics (S.K.S., M.J.R., M.S.S., R.S.R., M.A.), University of Utah, Salt Lake City
| | - Jacob E Jessop
- Department of Anesthesiology (J.E.J., A.D.B., M.J.B., M.A.), University of Utah, Salt Lake City
| | - Amber D Bledsoe
- Department of Anesthesiology (J.E.J., A.D.B., M.J.B., M.A.), University of Utah, Salt Lake City
| | - Michael J Buys
- Department of Anesthesiology (J.E.J., A.D.B., M.J.B., M.A.), University of Utah, Salt Lake City
| | - Mark S Supiano
- From the Department of Internal Medicine, Division of Geriatrics (S.K.S., M.J.R., M.S.S., R.S.R., M.A.), University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT (J.C.W., M.S.S., R.S.R., M.A.)
| | - Russell S Richardson
- From the Department of Internal Medicine, Division of Geriatrics (S.K.S., M.J.R., M.S.S., R.S.R., M.A.), University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT (J.C.W., M.S.S., R.S.R., M.A.)
| | - Markus Amann
- From the Department of Internal Medicine, Division of Geriatrics (S.K.S., M.J.R., M.S.S., R.S.R., M.A.), University of Utah, Salt Lake City.,Department of Anesthesiology (J.E.J., A.D.B., M.J.B., M.A.), University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT (J.C.W., M.S.S., R.S.R., M.A.)
| |
Collapse
|
17
|
Zarzissi S, Zghal F, Bouzid MA, Hureau TJ, Sahli S, Ben Hassen H, Rebai H. Centrally-mediated regulation of peripheral fatigue during knee extensor exercise and consequences on the force-duration relationship in older men. Eur J Sport Sci 2019; 20:641-649. [PMID: 31397211 DOI: 10.1080/17461391.2019.1655099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to investigate the existence of a critical threshold beyond which peripheral fatigue would not further decrease during knee extensor (KE) exercise in older men, and the consequences of this mechanism on the force-duration relationship. Twelve old men (59 ± 2 years) randomly performed two different sessions, in which they performed 60 maximum voluntary contractions (MVC; 3s contraction, 2s relaxation). One trial was performed in the unfatigued state (CTRL) and one other following fatiguing neuromuscular electrical stimulation of the KE (FNMES). Peripheral and central fatigue were quantified via pre/post-exercise decreases in quadriceps twitch-force (Δ Ptw) and voluntary activation (ΔVA). Critical torque (CT) was determined as the mean force of the last 12 contractions while W' was calculated as the area above CT. Compared with CTRL, pre-fatigue (Δ Ptw = -10.3 ± 6.2%) resulted in a significant (p < 0.05) reduction in W' (-18.2 ± 1.6%) in FNMES. However, CT (∼964 N), ΔVA (∼15%) and Δ Ptw (∼25%) post-MVCs were similar between both conditions. In CTRL, W' was correlated with Δ Ptw (r 2 = 0.78). Moreover, the difference in W' between CTRL and FNMES was correlated with the level of pre-fatigue induced in FNMES (r 2 = 0.76). These findings document that peripheral fatigue is confined to an individual threshold during KE exercise in older men. Furthermore, correlative results suggest that mechanisms regulating peripheral fatigue to a critical threshold also restrict W', and therefore play a role in exercise capacity in older men.
Collapse
Affiliation(s)
- Slim Zarzissi
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia.,Faculté des Sciences du Sport, Université Côte d'Azur, LAMHESS, Nice, France
| | - Mohamed Amine Bouzid
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Thomas J Hureau
- Mitochondria, oxidative stress and muscular protection laboratory (EA 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Sonia Sahli
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Habib Ben Hassen
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| |
Collapse
|
18
|
Caron G, Decherchi P, Marqueste T. Alteration of Metabosensitive Afferent Response With Aging: Exercised versus Non-exercised Rats. Front Aging Neurosci 2018; 10:367. [PMID: 30483115 PMCID: PMC6240616 DOI: 10.3389/fnagi.2018.00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/23/2018] [Indexed: 01/24/2023] Open
Abstract
This study was designed to evaluate the effect of aging on the activity of metabosensitive afferent fibers (thin muscle afferents from group III and IV) and to determine if physical activity performed at old age may influence the afferent discharge. Afferents from tibialis anterior and soleus muscles were recorded on non-exercised rats aged of 3, 6, 12, and 20 months and on animals aged of 12 and 20 months performing a daily incremental treadmill exercise protocol during the last 8 weeks preceding the recordings. Metabosensitive afferent fibers were activated with potassium chloride (KCl) and lactic acid (LA) injections into the blood stream or by muscle electrically-induced fatigue (EIF). Results indicated that aging is associated to a decrease in the magnitude of the responses to chemical injections and EIF. Unfortunately, physical activity did not allow restoring the metabosensitive afferents responses. These results indicate an alteration of the thin afferent fibers with aging and should be taken into account regarding the management of muscle fatigue and potential alterations of exercise pressor reflex (EPR) occurring with aging.
Collapse
Affiliation(s)
- Guillaume Caron
- Aix-Marseille Univ, CNRS, ISM, Equipe Plasticité des Systèmes Nerveux et Musculaire, Faculté des Sciences du Sport, Marseille, France
| | - Patrick Decherchi
- Aix-Marseille Univ, CNRS, ISM, Equipe Plasticité des Systèmes Nerveux et Musculaire, Faculté des Sciences du Sport, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Univ, CNRS, ISM, Equipe Plasticité des Systèmes Nerveux et Musculaire, Faculté des Sciences du Sport, Marseille, France
| |
Collapse
|
19
|
Notarius CF, Millar PJ, Doherty CJ, Incognito AV, Haruki N, O'Donnell E, Floras JS. Microneurographic characterization of sympathetic responses during 1-leg exercise in young and middle-aged humans. Appl Physiol Nutr Metab 2018; 44:194-199. [PMID: 30063163 DOI: 10.1139/apnm-2018-0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Muscle sympathetic nerve activity (MSNA) at rest increases with age. However, the influence of age on MSNA recorded during dynamic leg exercise is unknown. We tested the hypothesis that aging attenuates the sympatho-inhibitory response observed in young subjects performing mild to moderate 1-leg cycling. After predetermining peak oxygen uptake, we compared contra-lateral fibular nerve MSNA during 2 min each of mild (unloaded) and moderate (30%-40% of the work rate at peak oxygen uptake, halved for single leg) 1-leg cycling in 18 young (age, 23 ± 1 years (mean ± SE)) and 18 middle-aged (age, 57 ± 2 years) sex-matched healthy subjects. Mean height, weight, resting heart rate, systolic blood pressure, and percent predicted peak oxygen uptake were similar between groups. Middle-aged subjects had higher resting MSNA burst frequency and incidence (P < 0.001) and diastolic blood pressure (P = 0.04). During moderate 1-leg cycling, older subjects' systolic blood pressure increased more (+21 ± 5 vs. +10 ± 1 mm Hg; P = 0.02) and their fall in MSNA burst incidence was amplified (-19 ± 2 vs. -11 ± 2 bursts/100 heart beats; P = 0.01) but because heart rate rose less (+15 ± 3 vs. +19 ± 2 bpm; P = 0.03), exercise induced similar reductions in burst frequency (P = 0.25). Contrary to our initial hypothesis, with advancing age, mild- to moderate-intensity dynamic leg exercise elicits a greater rise in systolic blood pressure and a larger fall in MSNA.
Collapse
Affiliation(s)
- Catherine F Notarius
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Philip J Millar
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada.,b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Connor J Doherty
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anthony V Incognito
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nobuhiko Haruki
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Emma O'Donnell
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada.,c School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - John S Floras
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto General Hospital, University Health Network, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| |
Collapse
|
20
|
Weavil JC, Hureau TJ, Thurston TS, Sidhu SK, Garten RS, Nelson AD, McNeil CJ, Richardson RS, Amann M. Impact of age on the development of fatigue during large and small muscle mass exercise. Am J Physiol Regul Integr Comp Physiol 2018; 315:R741-R750. [PMID: 29995457 DOI: 10.1152/ajpregu.00156.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To examine the impact of aging on neuromuscular fatigue following cycling (CYC; large active muscle mass) and single-leg knee-extension (KE; small active muscle mass) exercise, 8 young (25 ± 4 years) and older (72 ± 6 years) participants performed CYC and KE to task failure at a given relative intensity (80% of peak power output). The young also matched CYC and KE workload and duration of the old (iso-work comparison). Peripheral and central fatigue were quantified via pre-/postexercise decreases in quadriceps twitch torque (∆Qtw, electrical femoral nerve stimulation) and voluntary activation (∆VA). Although young performed 77% and 33% more work during CYC and KE, respectively, time to task failure in both modalities was similar to the old (~9.5 min; P > 0.2). The resulting ΔQtw was also similar between groups (CYC ~40%, KE ~55%; P > 0.3); however, ∆VA was, in both modalities, approximately double in the young (CYC ~6%, KE ~9%; P < 0.05). While causing substantial peripheral and central fatigue in both exercise modalities in the old, ∆Qtw in the iso-work comparison was not significant (CYC; P = 0.2), or ~50% lower (KE; P < 0.05) in the young, with no central fatigue in either modality ( P > 0.4). Based on iso-work comparisons, healthy aging impairs fatigue resistance during aerobic exercise. Furthermore, comparisons of fatigue following exercise at a given relative intensity mask the age-related difference observed following exercise performed at the same workload. Finally, although active muscle mass has little influence on the age-related difference in the rate of fatigue at a given relative intensity, it substantially impacts the comparison during exercise at a given absolute intensity.
Collapse
Affiliation(s)
- Joshua C Weavil
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Thomas J Hureau
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Taylor S Thurston
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Simranjit K Sidhu
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Ryan S Garten
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Ashley D Nelson
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia , Kelowna , Canada
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Markus Amann
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Anesthesiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
21
|
Broxterman RM, Hureau TJ, Layec G, Morgan DE, Bledsoe AD, Jessop JE, Amann M, Richardson RS. Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. J Physiol 2018; 596:2301-2314. [PMID: 29644702 DOI: 10.1113/jp275817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS This investigation assessed the influence of group III/IV muscle afferents on small muscle mass exercise performance from a skeletal muscle bioenergetics perspective. Group III/IV muscle afferent feedback was attenuated with lumbar intrathecal fentanyl during intermittent isometric single-leg knee-extensor all-out exercise, while 31 P-MRS was used to assess skeletal muscle bioenergetics. Attenuation of group III/IV muscle afferent feedback improved exercise performance during the first minute of exercise, due to an increase in total ATP production with no change in the ATP cost of contraction. However, exercise performance was not altered during the remainder of the protocol, despite a sustained increase in total ATP production, due to an exacerbated ATP cost of contraction. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit of attenuating the muscle afferents is negated. ABSTRACT The direct influence of group III/IV muscle afferents on exercise performance remains equivocal. Therefore, all-out intermittent isometric single-leg knee-extensor exercise and phosphorous magnetic resonance spectroscopy (31 P-MRS) were utilized to provide a high time resolution assessment of exercise performance and skeletal muscle bioenergetics in control conditions (CTRL) and with the attenuation of group III/IV muscle afferent feedback via lumbar intrathecal fentanyl (FENT). In both conditions, seven recreationally active men performed 60 maximal voluntary quadriceps contractions (MVC; 3 s contraction, 2 s relaxation), while knee-extensor force and 31 P-MRS were assessed during each MVC. The cumulative integrated force was significantly greater (8 ± 6%) in FENT than CTRL for the first minute of the all-out protocol, but was not significantly different for the second to fifth minutes. Total ATP production was significantly greater (16 ± 21%) in FENT than CTRL throughout the all-out exercise protocol, due to a significantly greater anaerobic ATP production (11 ± 13%) in FENT than CTRL with no significant difference in oxidative ATP production. The ATP cost of contraction was not significantly different between FENT and CTRL for the first minute of the all-out protocol, but was significantly greater (29 ± 34%) in FENT than in CTRL for the second to fifth minutes. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit from muscle afferent attenuation is negated.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Piil P, Jørgensen TS, Egelund J, Rytter N, Gliemann L, Bangsbo J, Hellsten Y, Nyberg M. Effects of aging and exercise training on leg hemodynamics and oxidative metabolism in the transition from rest to steady-state exercise: role of cGMP signaling. Am J Physiol Regul Integr Comp Physiol 2018; 315:R274-R283. [PMID: 29668326 DOI: 10.1152/ajpregu.00446.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is associated with slower skeletal muscle O2 uptake (V̇o2) kinetics; however, the mechanisms underlying this effect of age are unclear. Also, the effects of exercise training in elderly on the initial vascular and metabolic response to exercise remain to be elucidated. We measured leg hemodynamics and oxidative metabolism in the transition from rest to steady-state exercise engaging the knee-extensor muscles in young ( n = 15, 25 ± 1 yr) and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training. To enhance cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, the older group had a slower ( P <0.05) increase in femoral arterial blood flow and leg vascular conductance in the transition from rest to steady-state exercise at low- and moderate-intensity compared with the young group. The rate of increase in leg V̇o2 was, however, similar in the two groups as a result of higher ( P < 0.05) arteriovenous O2 difference in the older group. Potentiation of cGMP signaling did not affect the rate of increase in blood flow or V̇o2 in either group. Exercise training augmented ( P < 0.05) the increase in leg vascular conductance and blood flow during the onset of moderate-intensity exercise in both groups without altering V̇o2. These findings suggest that an age-related reduction in the initial vascular response to low- and moderate-intensity knee-extensor exercise is not limiting for V̇o2 in older individuals. A lower blood flow response in aging does not appear to be a result of reduced cGMP signaling.
Collapse
Affiliation(s)
- Peter Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Tue Smith Jørgensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark.,Department of Orthopedics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai Rytter
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
23
|
Broxterman RM, Layec G, Hureau TJ, Morgan DE, Bledsoe AD, Jessop JE, Amann M, Richardson RS. Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents. Med Sci Sports Exerc 2018; 49:2404-2413. [PMID: 28767527 DOI: 10.1249/mss.0000000000001391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. METHODS Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). RESULTS The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). CONCLUSION Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.
Collapse
Affiliation(s)
- Ryan M Broxterman
- 1Geriatric Research, Education, and Clinical Center, Salt Lake City Veteran's Affairs Medical Center, Salt Lake City, UT; 2Department of Internal Medicine, University of Utah, Salt Lake City, UT; 3Department of Anesthesiology, University of Utah, Salt Lake City, UT; and 4Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wray DW, Amann M, Richardson RS. Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction. Heart Fail Rev 2018; 22:149-166. [PMID: 27392715 DOI: 10.1007/s10741-016-9573-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aging process appears to be a precursor to many age-related diseases, perhaps the most impactful of which is cardiovascular disease (CVD). Heart disease, a manifestation of CVD, is the leading cause of death in the USA, and heart failure (HF), a syndrome that develops as a consequence of heart disease, now affects almost six million American. Importantly, as this is an age-related disease, this number is likely to grow along with the ever-increasing elderly population. Hallmarks of the aging process and HF patients with a reduced ejection fraction (HFrEF) include exercise intolerance, premature fatigue, and limited oxygen delivery and utilization, perhaps as a consequence of diminished peripheral vascular function. Free radicals and oxidative stress have been implicated in this peripheral vascular dysfunction, as a redox imbalance may directly impact the function of the vascular endothelium. This review aims to bring together studies that have examined the impact of oxidative stress on peripheral vascular function and oxygen delivery and utilization with both healthy aging and HFrEF.
Collapse
Affiliation(s)
- D Walter Wray
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Bldg 2, Rm 1D25, 500 Foothill Drive, Salt Lake City, UT, 84148, USA
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Bldg 2, Rm 1D25, 500 Foothill Drive, Salt Lake City, UT, 84148, USA
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Bldg 2, Rm 1D25, 500 Foothill Drive, Salt Lake City, UT, 84148, USA.
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Mikoƚajec K, Maszczyk A, Chalimoniuk M, Langfort J, Goƚaś A, Zajc A. The influence of strength exercises of the lower limbs on postural stability: A possible role of the autonomic nervous system. ISOKINET EXERC SCI 2017. [DOI: 10.3233/ies-160648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kazimierz Mikoƚajec
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adam Maszczyk
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Maƚgorzata Chalimoniuk
- Department of Tourism and Health in Biala Podlaska, Józef Piƚsudski University of Physical Education, Warsaw, Poland
| | - Józef Langfort
- Department of Nutrition, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Artur Goƚaś
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adam Zajc
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
26
|
Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med Sci Sports Exerc 2016; 48:2294-2306. [PMID: 27003703 PMCID: PMC5033663 DOI: 10.1249/mss.0000000000000923] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
: During exercise, there is a progressive reduction in the ability to produce muscle force. Processes within the nervous system as well as within the muscles contribute to this fatigue. In addition to impaired function of the motor system, sensations associated with fatigue and impairment of homeostasis can contribute to the impairment of performance during exercise. This review discusses some of the neural changes that accompany exercise and the development of fatigue. The role of brain monoaminergic neurotransmitter systems in whole-body endurance performance is discussed, particularly with regard to exercise in hot environments. Next, fatigue-related alterations in the neuromuscular pathway are discussed in terms of changes in motor unit firing, motoneuron excitability, and motor cortical excitability. These changes have mostly been investigated during single-limb isometric contractions. Finally, the small-diameter muscle afferents that increase firing with exercise and fatigue are discussed. These afferents have roles in cardiovascular and respiratory responses to exercise, and in the impairment of exercise performance through interaction with the motor pathway, as well as in providing sensations of muscle discomfort. Thus, changes at all levels of the nervous system, including the brain, spinal cord, motor output, sensory input, and autonomic function, occur during exercise and fatigue. The mix of influences and the importance of their contribution vary with the type of exercise being performed.
Collapse
Affiliation(s)
- Janet L Taylor
- 1Neuroscience Research Australia, Sydney, AUSTRALIA; 2School of Medical Sciences, the University of New South Wales, Sydney, AUSTRALIA; 3Department of Medicine, University of Utah, Salt Lake City, UT; 4Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, BELGIUM; 5Human Physiology Research Group Vrije Universiteit Brussel, Brussels, BELGIUM; 6School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Queensland, AUSTRALIA; and 7School of Kinesiology, and Department of Anatomy and Cell Biology, The University of Western Ontario, London, CANADA
| | | | | | | | | |
Collapse
|
27
|
Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clin Neurophysiol 2016; 128:44-55. [PMID: 27866119 DOI: 10.1016/j.clinph.2016.10.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/17/2016] [Accepted: 10/09/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. METHODS Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. RESULTS While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13±3% higher (P<0.05), resulting in a decrease in MEP/CMEP (P<0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (-53±3% vs. -39±3%; P<0.01), the reduction in voluntary muscle activation was smaller (-2±2% vs. -10±2%; P<0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13±3% and 25±6% in FENT (P<0.05). CONCLUSION During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. SIGNIFICANCE Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans.
Collapse
|
28
|
Roman MA, Rossiter HB, Casaburi R. Exercise, ageing and the lung. Eur Respir J 2016; 48:1471-1486. [PMID: 27799391 DOI: 10.1183/13993003.00347-2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
This review provides a pulmonary-focused description of the age-associated changes in the integrative physiology of exercise, including how declining lung function plays a role in promoting multimorbidity in the elderly through limitation of physical function. We outline the ageing of physiological systems supporting endurance activity: 1) coupling of muscle metabolism to mechanical power output; 2) gas transport between muscle capillary and mitochondria; 3) matching of muscle blood flow to its requirement; 4) oxygen and carbon dioxide carrying capacity of the blood; 5) cardiac output; 6) pulmonary vascular function; 7) pulmonary oxygen transport; 8) control of ventilation; and 9) pulmonary mechanics and respiratory muscle function. Deterioration in function occurs in many of these systems in healthy ageing. Between the ages of 25 and 80 years pulmonary function and aerobic capacity each decline by ∼40%. While the predominant factor limiting exercise in the elderly likely resides within the function of the muscles of ambulation, muscle function is (at least partially) rescued by exercise training. The age-associated decline in pulmonary function, however, is not recovered by training. Thus, loss in pulmonary function may lead to ventilatory limitation in exercise in the active elderly, limiting the ability to accrue the health benefits of physical activity into senescence.
Collapse
Affiliation(s)
- Michael A Roman
- Division of Respiratory Medicine, Rockyview Hospital, University of Calgary, Calgary, AB, Canada
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA.,Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| |
Collapse
|
29
|
Effect of Strength Training on Oxidative Stress and the Correlation of the Same with Forearm Vasodilatation and Blood Pressure of Hypertensive Elderly Women: A Randomized Clinical Trial. PLoS One 2016; 11:e0161178. [PMID: 27529625 PMCID: PMC4986983 DOI: 10.1371/journal.pone.0161178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED The aim of the study was to evaluate the effect of strength training on oxidative stress and the correlation of the same with forearm vasodilatation and mean blood pressure of hypertensive elderly women, at rest (basal) and during a static handgrip exercise. Insufficiently active hypertensive elderly women (N = 25; mean age = 66.1 years) were randomized into a 10 week strength training group (n = 13) or control (n = 12) group. Plasma malondialdehyde (MDA), total antioxidant capacity (TAC), plasma nitrite (NO2-), forearm blood flow (FBF), mean blood pressure (MBP) and vascular conductance ([FBF / MBP] x 100) were evaluated before and after the completion of the interventions. The strength training group increased the TAC (pre: Median = 39.0; Interquartile range = 34.0-41.5% vs post: Median = 44.0; Interquartile range = 38.0-51.5%; p = 0.006) and reduced the MDA (pre: 4.94 ± 1.10 μM vs post: 3.90 ± 1.35 μM; p = 0.025; CI-95%: -1.92 --0.16 μM). The strength training group increased basal vascular conductance (VC) (pre: 3.56 ±0.88 units vs post: 5.21 ±1.28 units; p = 0.001; CI-95%: 0.93-2.38 units) and decreased basal MBP (pre: 93.1 ±6.3 mmHg vs post: 88.9 ±5.4 mmHg; p = 0.035; CI-95%: -8.0 --0.4 mmHg). Such changes were also observed during static handgrip exercise. A moderate correlation was observed between changes in basal VC and MBP with changes in NO2- (ΔVC → r = -0.56, p = 0.047; ΔMBP → r = -0.41, p = 0.168) and MDA (ΔVC → r = 0.64, p = 0.019; ΔMBP → r = 0.31, p = 0.305). The strength training program reduced the oxidative stress of the hypertensive elderly women and this reduction was moderately correlated with their cardiovascular benefits. TRIAL REGISTRATION ensaiosclinicos.gov.br RBR-48c29w.
Collapse
|
30
|
Barbosa TC, Vianna LC, Fernandes IA, Prodel E, Rocha HNM, Garcia VP, Rocha NG, Secher NH, Nobrega ACL. Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men. J Physiol 2016; 594:715-25. [PMID: 26659384 DOI: 10.1113/jp271335] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS The increase in blood pressure observed during physical activities is exaggerated in patients with hypertension, exposing them to a higher cardiovascular risk. Neural signals from the skeletal muscles appear to be overactive, resulting in this abnormal response in hypertensive patients. In the present study, we tested whether the attenuation of these neural signals in hypertensive patients could normalize their abnormal increase in blood pressure during physical activity. Attenuation of the neural signals from the leg muscles with intrathecal fentanyl injection reduced the blood pressure of hypertensive men during cycling exercise to a level comparable to that of normotensive men. Skeletal muscle afferent overactivity causes the abnormal cardiovascular response to exercise and was reverted in this experimental model, appearing as potential target for treatment. Hypertensive patients present an exaggerated increase in blood pressure and an elevated cardiovascular risk during exercise. Although controversial, human studies suggest that group III and IV skeletal muscle afferents might contribute to this abnormal response. In the present study, we investigated whether attenuation of the group III and IV muscle afferent signal of hypertensive men eliminates the exaggerated increase in blood pressure occurring during exercise. Eight hypertensive men performed two sessions of 5 min of cycling exercise at 40 W. Between sessions, the subjects were provided with a lumbar intrathecal injection of fentanyl, a μ-opioid receptor agonist, aiming to attenuate the central projection of opioid-sensitive group III and IV muscle afferent nerves. The cardiovascular response to exercise of these subjects was compared with that of six normotensive men. During cycling, the hypertensive group demonstrated an exaggerated increase in blood pressure compared to the normotensive group (mean ± SEM: +17 ± 3 vs. +8 ± 1 mmHg, respectively; P < 0.05), whereas the increase in heart rate, stroke volume, cardiac output and vascular conductance was similar (P > 0.05). Fentanyl inhibited the blood pressure response to exercise in the hypertensive group (+11 ± 2 mmHg) to a level comparable to that of the normotensive group (P > 0.05). Moreover, fentanyl increased the responses of vascular conductance and stroke volume to exercise (P < 0.05), whereas the heart rate response was attenuated (P < 0.05) and the cardiac output response was maintained (P > 0.05). The results of the present study show that attenuation of the exercise pressor reflex normalizes the blood pressure response to cycling exercise in hypertensive individuals.
Collapse
Affiliation(s)
- Thales C Barbosa
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Lauro C Vianna
- Faculty of Physical Education, University of Brasilia, DF, Brazil
| | - Igor A Fernandes
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Eliza Prodel
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Helena N M Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Vinicius P Garcia
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Natalia G Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Niels H Secher
- Copenhagen Muscle Research Centre, Department of Anaesthesiology, University of Copenhagen, Denmark
| | - Antonio C L Nobrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| |
Collapse
|