1
|
Skaggs C, Nick S, Patricelli C, Bond L, Woods K, Woodbury L, Oxford JT, Pu X. Effects of Doxorubicin on Extracellular Matrix Regulation in Primary Cardiac Fibroblasts from Mice. BMC Res Notes 2023; 16:340. [PMID: 37974221 PMCID: PMC10655342 DOI: 10.1186/s13104-023-06621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity. RESULTS DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, including Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and TGFβ. Quantitative proteomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No significant changes in collagen organization nor glycoprotein production were observed.
Collapse
Affiliation(s)
- Cameron Skaggs
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Steve Nick
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Conner Patricelli
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Laura Bond
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Kali Woods
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
2
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-induced modulation of TGF-β signaling cascade in mouse fibroblasts: insights into cardiotoxicity mechanisms. Sci Rep 2023; 13:18944. [PMID: 37919370 PMCID: PMC10622533 DOI: 10.1038/s41598-023-46216-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs, suggesting an antifibrotic activity by DOX in these fibroblasts. However, DOX only inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells but not in CFs. In addition, we observed that DOX treatment reduced the expression of BMP1 in NIH3T3 but not primary cardiac fibroblasts. No significant changes in SMAD2 protein expression and phosphorylation in either cells were observed after DOX treatment. Finally, DOX inhibited the expression of Atf4 gene and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 genes in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Conner Patricelli
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
| | - Parker Lehmann
- Idaho College of Osteopathic Medicine, Meridian, ID, 83642-8046, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA.
| |
Collapse
|
3
|
Mantakaki A, Fakoya AOJ, Sharifpanah F. Recent advances and challenges on application of tissue engineering for treatment of congenital heart disease. PeerJ 2018; 6:e5805. [PMID: 30386701 PMCID: PMC6204240 DOI: 10.7717/peerj.5805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Congenital heart disease (CHD) affects a considerable number of children and adults worldwide. This implicates not only developmental disorders, high mortality, and reduced quality of life but also, high costs for the healthcare systems. CHD refers to a variety of heart and vascular malformations which could be very challenging to reconstruct the malformed region surgically, especially when the patient is an infant or a child. Advanced technology and research have offered a better mechanistic insight on the impact of CHD in the heart and vascular system of infants, children, and adults and identified potential therapeutic solutions. Many artificial materials and devices have been used for cardiovascular surgery. Surgeons and the medical industry created and evolved the ball valves to the carbon-based leaflet valves and introduced bioprosthesis as an alternative. However, with research further progressing, contracting tissue has been developed in laboratories and tissue engineering (TE) could represent a revolutionary answer for CHD surgery. Development of engineered tissue for cardiac and aortic reconstruction for developing bodies of infants and children can be very challenging. Nevertheless, using acellular scaffolds, allograft, xenografts, and autografts is already very common. Seeding of cells on surface and within scaffold is a key challenging factor for use of the above. The use of different types of stem cells has been investigated and proven to be suitable for tissue engineering. They are the most promising source of cells for heart reconstruction in a developing body, even for adults. Some stem cell types are more effective than others, with some disadvantages which may be eliminated in the future.
Collapse
Affiliation(s)
| | | | - Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
4
|
Zhao RR, Ackers-Johnson M, Stenzig J, Chen C, Ding T, Zhou Y, Wang P, Ng SL, Li PY, Teo G, Rudd PM, Fawcett JW, Foo RS. Targeting Chondroitin Sulfate Glycosaminoglycans to Treat Cardiac Fibrosis in Pathological Remodeling. Circulation 2018; 137:2497-2513. [DOI: 10.1161/circulationaha.117.030353] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
Abstract
Background:
Heart failure is a leading cause of mortality and morbidity, and the search for novel therapeutic approaches continues. In the monogenic disease mucopolysaccharidosis VI, loss-of-function mutations in arylsulfatase B lead to myocardial accumulation of chondroitin sulfate (CS) glycosaminoglycans, manifesting as myriad cardiac symptoms. Here, we studied changes in myocardial CS in nonmucopolysaccharidosis failing hearts and assessed its generic role in pathological cardiac remodeling.
Methods:
Healthy and diseased human and rat left ventricles were subjected to histological and immunostaining methods to analyze glycosaminoglycan distribution. Glycosaminoglycans were extracted and analyzed for quantitative and compositional changes with Alcian blue assay and liquid chromatography–mass spectrometry. Expression changes in 20 CS-related genes were studied in 3 primary human cardiac cell types and THP-1–derived macrophages under each of 9 in vitro stimulatory conditions. In 2 rat models of pathological remodeling induced by transverse aortic constriction or isoprenaline infusion, recombinant human arylsulfatase B (rhASB), clinically used as enzyme replacement therapy in mucopolysaccharidosis VI, was administered intravenously for 7 or 5 weeks, respectively. Cardiac function, myocardial fibrosis, and inflammation were assessed by echocardiography and histology. CS-interacting molecules were assessed with surface plasmon resonance, and a mechanism of action was verified in vitro.
Results:
Failing human hearts displayed significant perivascular and interstitial CS accumulation, particularly in regions of intense fibrosis. Relative composition of CS disaccharides remained unchanged. Transforming growth factor–β induced CS upregulation in cardiac fibroblasts. CS accumulation was also observed in both the pressure-overload and the isoprenaline models of pathological remodeling in rats. Early treatment with rhASB in the transverse aortic constriction model and delayed treatment in the isoprenaline model proved rhASB to be effective at preventing cardiac deterioration and augmenting functional recovery. Functional improvement was accompanied by reduced myocardial inflammation and overall fibrosis. Tumor necrosis factor–α was identified as a direct binding partner of CS glycosaminoglycan chains, and rhASB reduced tumor necrosis factor–α—induced inflammatory gene activation in vitro in endothelial cells and macrophages.
Conclusions:
CS glycosaminoglycans accumulate during cardiac pathological remodeling and mediate myocardial inflammation and fibrosis. rhASB targets CS effectively as a novel therapeutic approach for the treatment of heart failure.
Collapse
Affiliation(s)
- Rong-Rong Zhao
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Justus Stenzig
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.S.)
| | - Chen Chen
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
| | - Tao Ding
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Yue Zhou
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Peipei Wang
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Shi Ling Ng
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
| | - Peter Y. Li
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
| | - Gavin Teo
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
| | - Pauline M. Rudd
- Bioprocessing Technology Institute (C.C., G.T., P.M.R.), Agency for Science, Technology and Research
- Glycoscience Group, National Institute for Bioprocessing, Research and Training, Dublin, Ireland (P.M.R.)
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, United Kingdom (J.W.F.)
| | - Roger S.Y. Foo
- Cardiovascular Research Institute, National University of Singapore (R.R.Z., M.A.-J., T.D., Y.Z., P.W., P.Y.L., R.S.Y.F.)
- Genome Institute of Singapore (J.S., S.L.N., R.S.Y.F.)
| |
Collapse
|
5
|
Fakoya AOJ, Otohinoyi DA, Yusuf J. Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells Int 2018; 2018:3123961. [PMID: 29853910 PMCID: PMC5949153 DOI: 10.1155/2018/3123961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
The cardiopulmonary system is made up of the heart and the lungs, with the core function of one complementing the other. The unimpeded and optimal cycling of blood between these two systems is pivotal to the overall function of the entire human body. Although the function of the cardiopulmonary system appears uncomplicated, the tissues that make up this system are undoubtedly complex. Hence, damage to this system is undesirable as its capacity to self-regenerate is quite limited. The surge in the incidence and prevalence of cardiopulmonary diseases has reached a critical state for a top-notch response as it currently tops the mortality table. Several therapies currently being utilized can only sustain chronically ailing patients for a short period while they are awaiting a possible transplant, which is also not devoid of complications. Regenerative therapeutic techniques now appear to be a potential approach to solve this conundrum posed by these poorly self-regenerating tissues. Stem cell therapy alone appears not to be sufficient to provide the desired tissue regeneration and hence the drive for biomaterials that can support its transplantation and translation, providing not only physical support to seeded cells but also chemical and physiological cues to the cells to facilitate tissue regeneration. The cardiac and pulmonary systems, although literarily seen as just being functionally and spatially cooperative, as shown by their diverse and dissimilar adult cellular and tissue composition has been proven to share some common embryological codevelopment. However, necessitating their consideration for separate review is the immense adult architectural difference in these systems. This review also looks at details on new biological and synthetic biomaterials, tissue engineering, nanotechnology, and organ decellularization for cardiopulmonary regenerative therapies.
Collapse
Affiliation(s)
| | | | - Joshua Yusuf
- All Saints University School of Medicine, Roseau, Dominica
- All Saints University School of Medicine, Kingstown, Saint Vincent and the Grenadines
| |
Collapse
|
6
|
Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering. Biologicals 2018; 53:10-18. [PMID: 29625872 DOI: 10.1016/j.biologicals.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 01/26/2023] Open
Abstract
High rates of mortality and morbidity stemming from cardiovascular diseases unveil extreme limitations in current therapies despite enormous advances in medical and pharmaceutical sciences. Following myocardial infarction (MI), parts of myocardium undergo irreversible remodeling and is substituted by a scar tissue which eventually leads to heart failure (HF). To address this issue, cardiac patches have been utilized to initiate myocardial regeneration. In this study, a porous cardiac patch is fabricated using a mixture of decellularized myocardium extracellular matrix (ECM) and chitosan (CS). Results of rheological measurements, SEM, biodegradation test, and MTT assay showed that the scaffold composed of 3.5% (w/w) CS and 0.5% ECM has the best potential in providing cardiac progenitor cells (CPCs) with a suitable microenvironmental condition for both attachment and growth. This study demonstrates that the fabricated scaffold is capable of transmitting both mechanical and chemical cues that is native to myocardial tissue and supports efficient growth of the CPCs.
Collapse
|
7
|
O'Neill HS, Gallagher LB, O'Sullivan J, Whyte W, Curley C, Dolan E, Hameed A, O'Dwyer J, Payne C, O'Reilly D, Ruiz-Hernandez E, Roche ET, O'Brien FJ, Cryan SA, Kelly H, Murphy B, Duffy GP. Biomaterial-Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5648-5661. [PMID: 26840955 DOI: 10.1002/adma.201505349] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Heart failure is a significant clinical issue. It is the cause of enormous healthcare costs worldwide and results in significant morbidity and mortality. Cardiac regenerative therapy has progressed considerably from clinical and preclinical studies delivering simple suspensions of cells, macromolecule, and small molecules to more advanced delivery methods utilizing biomaterial scaffolds as depots for localized targeted delivery to the damaged and ischemic myocardium. Here, regenerative strategies for cardiac tissue engineering with a focus on advanced delivery strategies and the use of multimodal therapeutic strategies are reviewed.
Collapse
Affiliation(s)
- Hugh S O'Neill
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Laura B Gallagher
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Janice O'Sullivan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - William Whyte
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Clive Curley
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Eimear Dolan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Joanne O'Dwyer
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Christina Payne
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Daniel O'Reilly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Eduardo Ruiz-Hernandez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Ellen T Roche
- Department of Biomedical Engineering, Eng-2053, Engineering Building, National University of Ireland, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally Ann Cryan
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Helena Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Bruce Murphy
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RSCI), 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
- Trinity Center for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Center (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
8
|
Tatman PD, Muhonen EG, Wickers ST, Gee AO, Kim ES, Kim DH. Self-assembling peptides for stem cell and tissue engineering. Biomater Sci 2016; 4:543-54. [PMID: 26878078 PMCID: PMC4803621 DOI: 10.1039/c5bm00550g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regenerative medicine holds great potential to address many shortcomings in current medical therapies. An emerging avenue of regenerative medicine is the use of self-assembling peptides (SAP) in conjunction with stem cells to improve the repair of damaged tissues. The specific peptide sequence, mechanical properties, and nanotopographical cues vary widely between different SAPs, many of which have been used for the regeneration of similar tissues. To evaluate the potential of SAPs to guide stem cell fate, we extensively reviewed the literature for reports of SAPs and stem cell differentiation. To portray the most accurate summary of these studies, we deliberately discuss both the successes and pitfalls, allowing us to make conclusions that span the breadth of this exciting field. We also expand on these conclusions by relating these findings to the fields of nanotopography, mechanotransduction, and the native composition of the extracellular matrix in specific tissues to identify potential directions for future research.
Collapse
Affiliation(s)
- Philip D Tatman
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Ethan G Muhonen
- School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sean T. Wickers
- Department of Chemistry, University of Colorado, Denver, Colorado, USA
| | - Albert O. Gee
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Eung-Sam Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biological Sciences, Chonnam National University, Gwangju, Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
9
|
|
10
|
Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IMC. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 2015; 6:e1696. [PMID: 25789971 PMCID: PMC4385916 DOI: 10.1038/cddis.2015.36] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β1 may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β1-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β1 to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β1 promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β1 in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β1-induced autophagy is required for the fibrogenic response in hATMyofbs.
Collapse
Affiliation(s)
- S Ghavami
- 1] Department of Physiology, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [2] Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [3] Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada [4] Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - R H Cunnington
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Gupta
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - B Yeganeh
- 1] Department of Physiology, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [2] Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [3] Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K L Filomeno
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - D H Freed
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Chen
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - T Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - A J Halayko
- 1] Department of Physiology, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [2] Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [3] Department of Internal Medicine, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - E Ambrose
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - R Singal
- Cardiac Sciences Program, St. Boniface General Hospital, Winnipeg, Manitoba, Canada
| | - I M C Dixon
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Yu J, Lee AR, Lin WH, Lin CW, Wu YK, Tsai WB. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng Part A 2014; 20:1896-907. [PMID: 24471778 PMCID: PMC4086675 DOI: 10.1089/ten.tea.2013.0008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/14/2014] [Indexed: 11/12/2022] Open
Abstract
Structural similarity of electrospun fibers (ESFs) to the native extracellular matrix provides great potential for the application of biofunctional ESFs in tissue engineering. This study aimed to synthesize biofunctionalized poly (L-lactide-co-glycolide) (PLGA) ESFs for investigating the potential for cardiac tissue engineering application. We developed a simple but novel strategy to incorporate adhesive peptides in PLGA ESFs. Two adhesive peptides derived from laminin, YIGSR, and RGD, were covalently conjugated to poly-L-lysine, and then mingled with PLGA solution for electrospinning. Peptides were uniformly distributed on the surface and in the interior of ESFs. PLGA ESFs incorporated with YIGSR or RGD or adsorbed with laminin significantly enhanced the adhesion of cardiomyocytes isolated from neonatal rats. Furthermore, the cells were found to adhere better on ESFs compared with flat substrates after 7 days of culture. Immunofluorescent staining of F-actin, vinculin, a-actinin, and N-cadherin indicated that cardiomyocytes adhered and formed striated α-actinin better on the laminin-coated ESFs and the YIGSR-incorporated ESFs compared with the RGD-incorporated ESFs. The expression of α-myosin heavy chain and β-tubulin on the YIGSR-incorporated ESFs was significantly higher compared with the expression level on PLGA and RGD-incorporated samples. Furthermore, the contraction of cardiomyocytes was faster and lasted longer on the laminin-coated ESFs and YIGSR-incorporated ESFs. The results suggest that aligned YIGSR-incorporated PLGA ESFs is a better candidate for the formation of cardiac patches. This study demonstrated the potential of using peptide-incorporated ESFs as designable-scaffold platform for tissue engineering.
Collapse
Affiliation(s)
- Jiashing Yu
- Department of Chemical Engineering, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Wilson K, Lucchesi PA. Myofilament dysfunction as an emerging mechanism of volume overload heart failure. Pflugers Arch 2014; 466:1065-77. [PMID: 24488008 DOI: 10.1007/s00424-014-1455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
Two main hemodynamic overload mechanisms [i.e., volume and pressure overload (VO and PO, respectively] result in heart failure (HF), and these two mechanisms have divergent pathologic alterations and different pathophysiological mechanisms. Extensive evidence from animal models and human studies of PO demonstrate a clear association with alterations in Ca(2+) homeostasis. By contrast, emerging evidence from animal models and patients with regurgitant valve disease and dilated cardiomyopathy point toward a more prominent role of myofilament dysfunction. With respect to VO HF, key features of excitation-contraction coupling defects, myofilament dysfunction, and extracellular matrix composition will be discussed.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | | |
Collapse
|
13
|
Umar S, Nadadur R, Iorga A, Amjedi M, Matori H, Eghbali M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J Appl Physiol (1985) 2012; 113:1253-9. [PMID: 22923507 DOI: 10.1152/japplphysiol.00549.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pregnancy is associated with ventricular hypertrophy and volume overload. Here we investigated whether late pregnancy is associated with cardiac structural and hemodynamic changes, and if these changes are reversed postpartum. Female mice (C57BL/6) were used in nonpregnant diestrus (NP), late-pregnant (LP), or 7-day postpartum (PP7) stages. Echocardiography and cardiac catheterization were performed to monitor cardiac hemodynamics. Transcript expression of proangiogenic vascular endothelial growth factor, cardiac fetal gene osteopontin, cardiac extracellular matrix-degrading enzymes matrix metalloproteinase-2, and a disintegrin and metalloproteinase-15 and -17 were assessed by RT-PCR. Masson trichrome staining for cardiac fibrosis and endothelial marker CD31 immunostaining for angiogenesis were performed. Heart hypertrophy in LP was fully reversed in PP7 (heart weight: NP = 114 ± 4 mg; LP = 147 ± 2 mg; PP7 = 117 ± 8 mg, P < 0.05 for LP vs. PP7). LP had elevated left ventricular (LV) pressure (119 ± 5 mmHg in LP vs. 92 ± 7 mmHg in NP, P < 0.05) that was restored at PP7 (95 ± 8 mmHg, P < 0.001 vs. LP). LP had increased LV contractility (maximal rate of increase of LV pressure = 6,664 ± 297 mmHg/s in LP vs. 4,294 ± 568 mmHg/s in NP, P < 0.01) that was restored at PP7 (5,313 ± 636 mmHg/s, P < 0.05 vs. LP). LV ejection fraction was reduced in LP (LP = 58 ± 1% vs. NP = 70 ± 4%, P < 0.001) and was already restored at PP1 (77 ± 2%, P < 0.001 vs. LP). Myocardial angiogenesis was significantly increased in LP (capillary density = 1.25 ± 0.02 vs. 0.95 ± 0.01 capillaries/myocyte in NP, P < 0.001) and was fully restored in PP7 (0.98 ± 0.01, P < 0.001 vs. LP). Vascular endothelial growth factor was upregulated in LP (LP = 1.4 ± 0.1 vs. NP = 1 ± 0.1, normalized to NP, P < 0.001) and was restored in PP7 (PP7 = 0.83 ± 0.1, P < 0.001 vs. LP). There was no increase in cardiac fibrosis in LP. Matrix metalloproteinase-2 transcript levels were downregulated in LP (LP = 0.47 ± 0.03 vs. NP = 1 ± 0.01, normalized to NP, P < 0.001) and was restored at PP7 (0.70 ± 0.1, P < 0.001 vs. LP). In conclusion, pregnancy-induced heart hypertrophy is associated with transient cardiac dysfunction, increased cardiac angiogenesis, lack of fibrosis, and decreased expression of remodeling enzymes that are reversed postpartum.
Collapse
Affiliation(s)
- Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine David Geffen School of Medicine at University of California-Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
14
|
Vassiliadis E, Barascuk N, Didangelos A, Karsdal MA. Novel cardiac-specific biomarkers and the cardiovascular continuum. Biomark Insights 2012; 7:45-57. [PMID: 22577298 PMCID: PMC3347891 DOI: 10.4137/bmi.s9536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The concept of the cardiovascular continuum, introduced during the early 1990s, created a holistic view of the chain of events connecting cardiovascular-related risk factors with the progressive development of pathological-related tissue remodelling and ultimately, heart failure and death. Understanding of the tissue-specific changes, and new technologies developed over the last 25-30 years, enabled tissue remodelling events to be monitored in vivo and cardiovascular disease to be diagnosed more reliably than before. The tangible product of this evolution was the introduction of a number of biochemical markers such as troponin I and T, which are now commonly used in clinics to measure myocardial damage. However, biomarkers that can detect specific earlier stages of the cardiovascular continuum have yet to be generated and utilised. The majority of the existing markers are useful only in the end stages of the disease where few successful intervention options exist. Since a large number of patients experience a transient underlying developing pathology long before the signs or symptoms of cardiovascular disease become apparent, the requirement for new markers that can describe the early tissue-specific, matrix remodelling process which ultimately leads to disease is evident. This review highlights the importance of relating cardiac biochemical markers with specific time points along the cardiovascular continuum, especially during the early transient phase of pathology progression where none of the existing markers aid diagnosis.
Collapse
Affiliation(s)
- Efstathios Vassiliadis
- Nordic Bioscience A/S, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | - Natasha Barascuk
- Nordic Bioscience A/S, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
15
|
Johnson TD, Lin SY, Christman KL. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. NANOTECHNOLOGY 2011; 22:494015. [PMID: 22101810 PMCID: PMC3280097 DOI: 10.1088/0957-4484/22/49/494015] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the native tissue, the interaction between cells and the extracellular matrix (ECM) is essential for cell migration, proliferation, differentiation, mechanical stability, and signaling. It has been shown that decellularized ECMs can be processed into injectable formulations, thereby allowing for minimally invasive delivery. Upon injection and increase in temperature, these materials self-assemble into porous gels forming a complex network of fibers with nanoscale structure. In this study we aimed to examine and tailor the material properties of a self-assembling ECM hydrogel derived from porcine myocardial tissue, which was developed as a tissue specific injectable scaffold for cardiac tissue engineering. The impact of gelation parameters on ECM hydrogels has not previously been explored. We examined how modulating pH, temperature, ionic strength, and concentration affected the nanoscale architecture, mechanical properties, and gelation kinetics. These material characteristics were assessed using scanning electron microscopy, rheometry, and spectrophotometry, respectively. Since the main component of the myocardial matrix is collagen, many similarities between the ECM hydrogel and collagen gels were observed in terms of the nanofibrous structure and modulation of properties by altering ionic strength. However, variation from collagen gels was noted for the gelation temperature along with varied times and rates of gelation. These discrepancies when compared to collagen are likely due to the presence of other ECM components in the decellularized ECM based hydrogel. These results demonstrate how the material properties of ECM hydrogels could be tailored for future in vitro and in vivo applications.
Collapse
|
16
|
Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res 2011; 4:605-15. [PMID: 21744185 DOI: 10.1007/s12265-011-9304-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 01/13/2023]
Abstract
Our goal was to assess the ability of native heart extracellular matrix (ECM) to direct cardiac differentiation of human embryonic stem cells (hESCs) in vitro. In order to probe the effects of cardiac matrix on hESC differentiation, a series of hydrogels was prepared from decellularized ECM from porcine hearts by mixing ECM and collagen type I at varying ratios. Maturation of cardiac function in embryoid bodies formed from hESCs was documented in terms of spontaneous contractile behavior and the mRNA and protein expression of cardiac markers. Hydrogel with high ECM content (75% ECM, 25% collagen, no supplemental soluble factors) increased the fraction of cells expressing cardiac marker troponin T, when compared with either hydrogel with low ECM content (25% ECM, 75% collagen, no supplemental soluble factors) or collagen hydrogel (100% collagen, with supplemental soluble factors). Furthermore, cardiac maturation was promoted in high-ECM content hydrogels, as evidenced by the striation patterns of cardiac troponin I and by upregulation of Cx43 gene. Consistently, high-ECM content hydrogels improved the contractile function of cardiac cells, as evidenced by increased numbers of contracting cells and increased contraction amplitudes. The ability of native ECM hydrogel to induce cardiac differentiation of hESCs without the addition of soluble factors makes it an attractive biomaterial system for basic studies of cardiac development and potentially for the delivery of therapeutic cells into the heart.
Collapse
|
17
|
Young DA, Ibrahim DO, Hu D, Christman KL. Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomater 2011; 7:1040-9. [PMID: 20932943 DOI: 10.1016/j.actbio.2010.09.035] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 12/29/2022]
Abstract
Soft tissue fillers are rapidly gaining popularity for aesthetic improvements or repair of adipose tissue deficits. Several injectable biopolymers have been investigated for this purpose, but often show rapid resorption or limited adipogenesis and do not mimic the native adipose extracellular matrix (ECM). We have generated an injectable adipose matrix scaffold by efficiently removing both the cellular and lipid contents of human lipoaspirate. The decellularized material retained the complex composition of peptides and glycosaminoglycans found in native adipose ECM. This matrix can be further processed by solubilizing the extracted ECM to generate a thermally responsive hydrogel that self-assembles upon subcutaneous injection. This hydrogel also supports the growth and survival of patient matched adipose-derived stem cells in vitro. The development of an injectable hydrogel from human lipoaspirate represents a minimally invasive option for adipose tissue engineering in terms of both the collection of source material and delivery of the scaffold.
Collapse
|
18
|
Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP, Christman KL. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng Part A 2010; 16:2017-27. [PMID: 20100033 DOI: 10.1089/ten.tea.2009.0768] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following ischemic injury in the heart, little to no repair occurs, causing a progressive degeneration of cardiac function that leads to congestive heart failure. Cardiac tissue engineering strategies have focused on designing a variety of injectable scaffolds that range in composition from single-component materials to complex extracellular matrix (ECM)-derived materials. In this study, the pericardial ECM, a commonly used biomaterial, was investigated for use as an injectable scaffold for cardiac repair. It was determined that a solubilized form of decellularized porcine pericardium could be injected and induced to gel in vivo, prompting investigation with human pericardium, which has the decided advantage of offering an autologous therapy. Characterization showed that the matrix gels retained components of the native pericardial ECM, with extant protein and glycosaminoglycan content identified. The results of an in vitro migration assay indicate that the porcine pericardial matrix is a stronger chemoattractant for relevant cell types, but in vivo results showed that the two materials caused statistically similar amounts of neovascularization, demonstrating feasibility as injectable treatments. Potential stem cell mobilization was supported by the presence of c-Kit+ cells within the matrix injection regions. With this work, the pericardium is identified as a novel source for an autologous scaffold for treating myocardial infarction.
Collapse
Affiliation(s)
- Sonya B Seif-Naraghi
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA
| | | | | | | | | |
Collapse
|
19
|
Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 2010; 3:478-86. [PMID: 20632221 PMCID: PMC2933811 DOI: 10.1007/s12265-010-9202-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 06/21/2010] [Indexed: 01/24/2023]
Abstract
Cardiovascular disease continues to be the leading cause of death, suggesting that new therapies are needed to treat the progression of heart failure post-myocardial infarction. As cardiac tissue has a limited ability to regenerate itself, experimental biomaterial therapies have focused on the replacement of necrotic cardiomyocytes and repair of the damaged extracellular matrix. While acellular and cellular cardiac patches are applied surgically to the epicardial surface of the heart, injectable materials offer the prospective advantage of minimally invasive delivery directly into the myocardium to either replace the damaged extracellular matrix or to act as a scaffold for cell delivery. Cardiac-specific decellularized matrices offer the further advantage of being biomimetic of the native biochemical and structural matrix composition, as well as the potential to be autologous therapies. This review will focus on the requirements of an ideal scaffold for catheter-based delivery as well as highlight the promise of decellularized matrices as injectable materials for cardiac repair.
Collapse
|
20
|
Espira L, Czubryt MP. Emerging concepts in cardiac matrix biologyThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:996-1008. [DOI: 10.1139/y09-105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac extracellular matrix, far from being merely a static support structure for the heart, is now recognized to play central roles in cardiac development, morphology, and cell signaling. Recent studies have better shaped our understanding of the tremendous complexity of this active and dynamic network. By activating intracellular signal cascades, the matrix transduces myocardial physical forces into responses by myocytes and fibroblasts, affecting their function and behavior. In turn, cardiac fibroblasts and myocytes play active roles in remodeling the matrix. Coupled with the ability of the matrix to act as a dynamic reservoir for growth factors and cytokines, this interplay between the support structure and embedded cells has the potential to exert dramatic effects on cardiac structure and function. One of the clearest examples of this occurs when cell–matrix interactions are altered inappropriately, contributing to pathological fibrosis and heart failure. This review will examine some of the recent concepts that have emerged regarding exactly how the cardiac matrix mediates these effects, how our collective vision of the matrix has changed as a result, and the current state of attempts to pharmacologically treat fibrosis.
Collapse
Affiliation(s)
- Leon Espira
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
21
|
Yang L, Zou XJ, Gao X, Chen H, Luo JL, Wang ZH, Liang QS, Yang GT. Sodium tanshinone IIA sulfonate attenuates angiotensin II-induced collagen type I expression in cardiac fibroblasts in vitro. Exp Mol Med 2009; 41:508-16. [PMID: 19322029 PMCID: PMC2721148 DOI: 10.3858/emm.2009.41.7.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2009] [Indexed: 11/04/2022] Open
Abstract
Cardiac fibrosis occurs after pathological stimuli to the cardiovascular system. One of the most important factors that contribute to cardiac fibrosis is angiotensin II (AngII). Accumulating studies have suggested that reactive oxygen species (ROS) plays an important role in cardiac fibrosis and sodium tanshinone IIA sulfonate (STS) possesses antioxidant action. We therefore examined whether STS depresses Ang II-induced collagen type I expression in cardiac fibroblasts. In this study, Ang II significantly enhanced collagen type I expression and collagen synthesis. Meanwhile, Ang II depressed matrix metalloproteinase-1 (MMP-1) expression and activity. These responses were attenuated by STS. Furthermore, STS depressed the intracellular generation of ROS, NADPH oxidase activity and subunit p47(phox) expression. In addition, N-acetylcysteine the ROS scavenger, depressed effects of Ang II in a manner similar to STS. In conclusion, the current studies demonstrate that anti-fibrotic effects of STS are mediated by interfering with the modulation of ROS.
Collapse
Affiliation(s)
- Le Yang
- Department of Emergency Medicine, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 2009; 30:5409-16. [PMID: 19608268 DOI: 10.1016/j.biomaterials.2009.06.045] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/12/2009] [Indexed: 11/28/2022]
Abstract
Myocardial tissue lacks the ability to significantly regenerate itself following a myocardial infarction, thus tissue engineering strategies are required for repair. Several injectable materials have been examined for cardiac tissue engineering; however, none have been designed specifically to mimic the myocardium. The goal of this study was to investigate the in vitro properties and in vivo potential of an injectable myocardial matrix designed to mimic the natural myocardial extracellular environment. Porcine myocardial tissue was decellularized and processed to form a myocardial matrix with the ability to gel in vitro at 37 degrees C and in vivo upon injection into rat myocardium. The resulting myocardial matrix maintained a complex composition, including glycosaminoglycan content, and was able to self-assemble to form a nanofibrous structure. Endothelial cells and smooth muscle cells were shown to migrate towards the myocardial matrix both in vitro and in vivo, with a significant increase in arteriole formation at 11 days post-injection. The matrix was also successfully pushed through a clinically used catheter, demonstrating its potential for minimally invasive therapy. Thus, we have demonstrated the initial feasibility and potential of a naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering.
Collapse
Affiliation(s)
- Jennifer M Singelyn
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0412, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 2008; 16:927-34. [PMID: 18293891 DOI: 10.3727/096368907783338217] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell transplantation for the regeneration of ischemic myocardium is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy the extracellular matrix is deeply altered; therefore, it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. In 15 patients (aged 54.2 +/- 3.8 years) presenting LV postischemic myocardial scars and with indication for a single OP-CABG, autologous mononuclear bone marrow cells (BMC) were implanted during surgery in the scar. A 3D collagen type I matrix seeded with the same number of BMC was added on top of the scarred area. There was no mortality and no related adverse events (follow-up 15 +/- 4.2 months). NYHA FC improved from 2.3 +/- 0.5 to 1.4 +/- 0.3 (p = 0.005). LV end-diastolic volume evolved from 142 +/- 24 to 117 +/- 21 ml (p = 0.03), and LV filling deceleration time improved from 162 +/- 7 to 196 +/- 8 ms (p = 0.01). Scar area thickness progressed from 6 +/- 1.4 to 9 +/- 1.5 mm (p = 0.005). EF improved from 25 +/- 7% to 33 +/- 5% (p = 0.04). Simultaneous intramyocardial injection of mononuclear bone marrow cells and fixation of a BMC-seeded matrix onto the epicardium is feasible and safe. The cell-seeded collagen matrix seems to increase the thickness of the infarct scar with viable tissues and helps to normalize cardiac wall stress in injured regions, thus limiting ventricular remodeling and improving diastolic function. Patients' improvements cannot be conclusively related to the cells and matrix due to the association of CABG. Cardiac tissue engineering seems to extend the indications and benefits of stem cell therapy in cardiology, becoming a promising way for the creation of a "bioartificial myocardium." Efficacy and safety of this approach should be evaluated in a large randomized controlled trial.
Collapse
Affiliation(s)
- Juan C Chachques
- *Department of Cardiovascular Surgery, Pompidou Hospital, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 2008; 85:901-8. [PMID: 18291168 DOI: 10.1016/j.athoracsur.2007.10.052] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cell transplantation for the regeneration of ischemic myocardium is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy, the extracellular matrix is deeply altered; therefore, it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated the feasibility and safety of intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. METHODS In 20 consecutive patients presenting with left ventricular postischemic myocardial scars and indication for coronary artery bypass graft surgery, bone marrow cells were implanted during surgery. In the last 10 patients, we added a collagen matrix seeded with bone marrow cells, placed onto the scar. RESULTS There was no mortality and any related adverse events (follow-up 10 +/- 3.5 months). New York Heart Association functional class improved in both groups from 2.3 +/- 0.5 to 1.3 +/- 0.5 (matrix, p = 0.0002) versus 2.4 +/- 0.5 to 1.5 +/- 0.5 (no matrix, p = 0.001). Left ventricular end-diastolic volume evolved from 142.4 +/- 24.5 mL to 112.9 +/- 27.3 mL (matrix, p = 0.02) versus 138.9 +/- 36.1 mL to 148.7 +/- 41 mL (no matrix, p = 0.57), left ventricular filling deceleration time improved significantly in the matrix group from 162 +/- 7 ms to 198 +/- 9 ms (p = 0.01) versus the no-matrix group (from 159 +/- 5 ms to 167 +/- 8 ms, p = 0.07). Scar area thickness progressed from 6 +/- 1.4 to 9 mm +/- 1.1 mm (matrix, p = 0.005) versus 5 +/- 1.5 mm to 6 +/- 0.8 mm (no matrix, p = 0.09). Ejection fraction improved in both groups, from 25.3% +/- 7.3% to 32% +/- 5.4% (matrix, p = 0.03) versus 27.2% +/- 6.9% to 34.6% +/- 7.3% (no matrix, p = 0.031). CONCLUSIONS This tissue-engineered approach is feasible and safe and appears to improve the efficiency of cellular cardiomyoplasty. The cell-seeded collagen matrix increases the thickness of the infarct scar with viable tissue and helps to normalize cardiac wall stress in injured regions, thus limiting ventricular remodeling and improving diastolic function.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou Hospital, Paris, France.
| | | | | | | | | | | |
Collapse
|
25
|
Cortes-Morichetti M, Frati G, Schussler O, Duong Van Huyen JP, Lauret E, Genovese JA, Carpentier AF, Chachques JC. Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. ACTA ACUST UNITED AC 2008; 13:2681-7. [PMID: 17691866 DOI: 10.1089/ten.2006.0447] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of cellular cardiomyoplasty is to regenerate the myocardium using implantation of living cells. Because the extracellular myocardial matrix is deeply altered in ischemic cardiomyopathies, it could be important to create a procedure aiming at regenerating both myocardial cells and the extracellular matrix. We evaluated the potential of a collagen matrix seeded with cells and grafted onto infarcted ventricles. A myocardial infarction was created in 45 mice using coronary artery ligation. Animals were randomly assigned to 4 local myocardial treatment groups. Group I underwent sham treatment (injection of cell culture medium). Group II underwent injection of human umbilical cord blood mononuclear cells (HUCBCs). Group III underwent injection of HUCBCs and fixation onto the epicardium of a collagen matrix seeded with HUCBCs. Group IV underwent fixation of collagen matrix (without cells) onto the infarct. Echocardiography was performed on postoperative days 7 and 45, followed by histological studies. Echocardiography showed that the association between the cell-loaded matrix and the intrainfarct cell implants was the most efficient approach to limiting postischemic ventricular dilation and remodeling. Ejection fraction improved in both cell-treated groups. The collagen matrix alone did not improve left ventricular (LV) function and remodeling. Histology in Group III showed fragments of the collagen matrix thickening and protecting the infarct scars. Segments of the matrix were consistently aligned along the LV wall, and cells were assembled within the collagen fibers in large populations. Intramyocardial injection of HUCBCs preserves LV function following infarction. The use of a cell-seeded matrix combined with cell injections prevents ventricular wall thinning and limits postischemic remodeling. This tissue engineering approach seems to improve the efficiency of cellular cardiomyoplasty and could emerge as a new therapeutic tool for the prevention of adverse remodeling and progressive heart failure.
Collapse
|