1
|
Salles ACP, Alexandre-Santos B, de Souza Carvalho T, Proença AB, Sepúlveda-Fragoso V, Fernandes T, Oliveira EM, da Nóbrega ACL, Frantz EDC, Magliano DC. ER stress improvement by aerobic training or enalapril differently ameliorates pathological cardiac remodeling in obese mice. Mol Cell Biochem 2024; 479:3167-3179. [PMID: 38308790 DOI: 10.1007/s11010-024-04925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
Overactivation of the classic arm of the renin-angiotensin system (RAS) is one of the main mechanisms involved in obesity-related cardiac remodeling, and a possible relationship between RAS and ER stress in the cardiovascular system have been described. Thus, the aim of this study is to evaluate if activating the protective arm of the RAS by ACE inhibition or aerobic exercise training could overturn diet-induced pathological cardiac hypertrophy by attenuating ER stress. Male C57BL/6 mice were fed a control (SC) or a high-fat diet (HF) for 16 weeks. In the 8th week, HF-fed animals were randomly divided into HF, enalapril treatment (HF-En), and aerobic exercise training (HF-Ex) groups. Body mass (BM), food and energy intake, plasma analyzes, systolic blood pressure (SBP), physical conditioning, and plasma ACE and ACE2 activity were evaluated. Cardiac morphology, and protein expression of hypertrophy, cardiac metabolism, RAS, and ER stress markers were assessed. Data presented as mean ± standard deviation and analyzed by one-way ANOVA with Holm-Sidak post-hoc. HF group had increased BM and SBP, and developed pathological concentric cardiac hypertrophy, with overactivation of the classic arm of the RAS, and higher ER stress. Both interventions reverted the increase in BM, and SBP, and favored the protective arm of the RAS. Enalapril treatment improved pathological cardiac hypertrophy with partial reversal of the concentric pattern, and slightly attenuated cardiac ER stress. In contrast, aerobic exercise training induced physiological eccentric cardiac hypertrophy, and fully diminished ER stress.
Collapse
Affiliation(s)
- Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Thais de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Antonio Claudio Lucas da Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
- Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
2
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
3
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
4
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
You C, Zhang Z, Ying H, Yang Z, Ma Y, Hong J, Xue M, Li X, Li H, Zhang C, Wang W, Cai X, Li X. Blockage of calcium-sensing receptor improves chronic intermittent hypoxia-induced cognitive impairment by PERK-ATF4-CHOP pathway. Exp Neurol 2023; 368:114500. [PMID: 37553048 DOI: 10.1016/j.expneurol.2023.114500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is involved in cognitive impairment of children. Chronic intermittent hypoxia (CIH) is considered as the critical pathophysiological mechanism of OSAHS. Calcium sensitive receptor (CaSR) mediated apoptosis in many neurological disease models by endoplasmic reticulum stress (ERS)-related pathway. However, little is known about the role of CaSR in OSAHS-induced cognitive dysfunction. In this study, we explored the effect of CaSR on CIH-induced cognitive impairment and possible mechanisms on regulation of PERK-ATF4-CHOP pathway in vivo and in vitro. CIH exposed for 9 h in PC12 cells and resulted in the cell apoptosis, simulating OSAHS-induced neuronal injury. CIH upregulated the level of CaSR, p-PERK, ATF4 and CHOP, contributing to the cell apoptosis. Treated with CaSR inhibitor (NPS-2143) or p-PERK inhibitor (GSK2656157) before CIH exposure, CIH-induced PC12 cell apoptosis was alleviated via inhibition of CaSR by downregulating p-PERK, ATF4 and CHOP. In addition, we established CIH mice model. With CIH exposure for 4 weeks in mice, more spatial memory errors were observed during 8-arm radial maze test. CIH significantly increased apoptotic cells in hippocampus via upregulating cleaved Caspase-3 and downregulating ratio of Bcl-2 to Bax. Besides, treatment of CaSR inhibitor alleviated the hippocampal neuronal apoptosis following CIH with downregulated p-PERK, ATF4 and CHOP, suggesting that CaSR contributed to CIH-induced neuronal apoptosis in hippocampus via ERS pathway. Sum up, our results demonstrated that CaSR accelerated hippocampal apoptosis via PERK-ATF4-CHOP pathway, holding a critical function on CIH-mediated cognitive impairment. Conversely, inhibition of CaSR suppressed PERK-ATF4-CHOP pathway and alleviated cognitive impairment.
Collapse
Affiliation(s)
- Cancan You
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zilong Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huiya Ying
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zijing Yang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yixuan Ma
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jingyi Hong
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Mingjie Xue
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xuan Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huimin Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pediatric, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China
| | - Chengrui Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Wang
- Department of Pediatric Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaohong Cai
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiucui Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
6
|
Dutta B, Loo S, Kam A, Sze SK, Tam JP. Ginsentide TP1 Protects Hypoxia-Induced Dysfunction and ER Stress-Linked Apoptosis. Cells 2023; 12:1401. [PMID: 37408235 PMCID: PMC10216702 DOI: 10.3390/cells12101401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Hypoxia-induced vascular endothelial dysfunction (VED) is a significant contributor to several severe human diseases, including heart disease, stroke, dementia, and cancer. However, current treatment options for VED are limited due to the lack of understanding of the underlying disease mechanisms and therapeutic leads. We recently discovered a heat-stable microprotein in ginseng, called ginsentide TP1, that has been shown to reduce vascular dysfunction in cardiovascular disease models. In this study, we use a combination of functional assays and quantitative pulsed SILAC proteomics to identify new proteins synthesized in hypoxia and to show that ginsentide TP1 provides protection for human endothelial cells against hypoxia and ER stress. Consistent with the reported findings, we also found that hypoxia activates various pathways related to endothelium activation and monocyte adhesion, which in turn, impairs nitric oxide (NO) synthase activity, reduces the bioavailability of NO, and increases the production of reactive oxygen species that contribute to VED. Additionally, hypoxia triggers endoplasmic reticulum stress and initiates apoptotic signaling pathways associated with cardiovascular pathology. Treatment with ginsentide TP1 reduced surface adhesion molecule expression, prevented activation of the endothelium and leukocyte adhesion, restored protein hemostasis, and reduced ER stress to protect against hypoxia-induced cell death. Ginsentide TP1 also restored NO signaling and bioavailability, reduced oxidative stress, and protected endothelial cells from endothelium dysfunction. In conclusion, this study shows that the molecular pathogenesis of VED induced by hypoxia can be mitigated by treatment with ginsentide TP1, which could be one of the key bioactive compounds responsible for the "cure-all" effect of ginseng. This research may lead to the development of new therapies for cardiovascular disorders.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (S.K.S.)
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (S.K.S.)
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (S.K.S.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (S.K.S.)
- Department of Health Sciences, Brock University, Niagara Region, St. Catharines, ON L2S 3A1, Canada
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (B.D.); (S.L.); (A.K.); (S.K.S.)
| |
Collapse
|
7
|
Intermittent Hypoxia-Induced Cardiomyocyte Death Is Mediated by HIF-1 Dependent MAM Disruption. Antioxidants (Basel) 2022; 11:antiox11081462. [PMID: 36009181 PMCID: PMC9405320 DOI: 10.3390/antiox11081462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Rationale: Intermittent hypoxia (IH) is one of the main features of sleep-disordered breathing (SDB). Recent findings indicate that hypoxia inducible factor-1 (HIF-1) promotes cardiomyocytes apoptosis during chronic IH, but the mechanisms involved remain to be elucidated. Here, we hypothesize that IH-induced ER stress is associated with mitochondria-associated ER membrane (MAM) alteration and mitochondrial dysfunction, through HIF-1 activation. Methods: Right atrial appendage biopsies from patients with and without SDB were used to determine HIF-1α, Grp78 and CHOP expressions. Wild-type and HIF-1α+/− mice were exposed to normoxia (N) or IH (21–5% O2, 60 cycles/h, 8 h/day) for 21 days. Expressions of HIF-1α, Grp78 and CHOP, and apoptosis, were measured by Western blot and immunochemistry. In isolated cardiomyocytes, we examined structural integrity of MAM by proximity ligation assay and their function by measuring ER-to-mitochondria Ca2+ transfer by confocal microscopy. Finally, we measured mitochondrial respiration using oxygraphy and calcium retention capacity (CRC) by spectrofluorometry. MAM structure was also investigated in H9C2 cells incubated with 1 mM CoCl2, a potent HIF-1α inducer. Results: In human atrial biopsies and mice, IH induced HIF-1 activation, ER stress and apoptosis. IH disrupted MAM, altered Ca2+ homeostasis, mitochondrial respiration and CRC. Importantly, IH had no effect in HIF-1α+/− mice. Similar to what observed under IH, HIF-1α overexpression was associated with MAM alteration in H9C2. Conclusion: IH-induced ER stress, MAM alterations and mitochondrial dysfunction were mediated by HIF-1; all these intermediate mechanisms ultimately inducing cardiomyocyte apoptosis. This suggests that HIF-1 modulation might limit the deleterious cardiac effects of SDB.
Collapse
|
8
|
Souza-Neto FV, Islas F, Jiménez-González S, Luaces M, Ramchandani B, Romero-Miranda A, Delgado-Valero B, Roldan-Molina E, Saiz-Pardo M, Cerón-Nieto MÁ, Ortega-Medina L, Martínez-Martínez E, Cachofeiro V. Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11071232. [PMID: 35883722 PMCID: PMC9311874 DOI: 10.3390/antiox11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
We have evaluated cardiac function and fibrosis in infarcted male Wistar rats treated with MitoQ (50 mg/kg/day) or vehicle for 4 weeks. A cohort of patients admitted with a first episode of acute MI were also analyzed with cardiac magnetic resonance and T1 mapping during admission and at a 12-month follow-up. Infarcted animals presented cardiac hypertrophy and a reduction in the left ventricular ejection fraction (LVEF) and E- and A-waves (E/A) ratio when compared to controls. Myocardial infarction (MI) rats also showed cardiac fibrosis and endoplasmic reticulum (ER) stress activation. Binding immunoglobulin protein (BiP) levels, a marker of ER stress, were correlated with collagen I levels. MitoQ reduced oxidative stress and prevented all these changes without affecting the infarct size. The LVEF and E/A ratio in patients with MI were 57.6 ± 7.9% and 0.96 ± 0.34, respectively. No major changes in cardiac function, extracellular volume fraction (ECV), or LV mass were observed at follow-up. Interestingly, the myeloperoxidase (MPO) levels were associated with the ECV in basal conditions. BiP staining and collagen content were also higher in cardiac samples from autopsies of patients who had suffered an MI than in those who had died from other causes. These results show the interactions between mitochondrial oxidative stress and ER stress, which can result in the development of diffuse fibrosis in the context of MI.
Collapse
Affiliation(s)
- Francisco V. Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Fabian Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Sara Jiménez-González
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, 28046 Madrid, Spain;
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Elena Roldan-Molina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
| | - Melchor Saiz-Pardo
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mª Ángeles Cerón-Nieto
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
| | - Luis Ortega-Medina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| |
Collapse
|
9
|
Wang Y, Shou X, Wu Y, Fan Z, Cui J, Zhuang R, Luo R. Relationships Between Obstructive Sleep Apnea and Cardiovascular Disease: A Bibliometric Analysis (2010-2021). MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e933448. [PMID: 34975145 PMCID: PMC8739592 DOI: 10.12659/msm.933448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Obstructive sleep apnea (OSA) is a common disease that can lead to intermittent hypoxia, increased sympathetic overdrive, and excessive oxidative stress, and eventually lead to cardiovascular/cerebrovascular diseases and metabolic disorders. The prevalence of OSA is reported to be higher in people with certain cardiovascular diseases (CVD). Therefore, the relationship between OSA and CVD has been gradually favored by researchers. Material/Methods Data were downloaded from the Web of Science Core Collection database. Citespace was used to remove duplicated data and construct knowledge visual maps. Results A total of 7047 publications were obtained. The USA was the largest contributor as well as an important player in the cooperation network between nations. The leading institution was the Mayo Clinic. Our study ultimately identified the top 5 hotspots and 4 research frontiers in this field. Top 5 hotspots were: the specific types of obstructive sleep apnea-related cardiovascular and metabolic co-morbidities, the curative effects of CPAP on these co-morbidities, the specific mechanisms of co-morbidities, the importance of polysomnography on OSA and its co-morbidities with CVD, and the prevalence of OSA and its co-morbidities with CVD in particular populations. The top 4 frontiers were: the relationship between OSA and resistant hypertension, the molecular mechanisms of OSA and its co-morbidities with CVD, specific medications and treatment guidelines for the co-morbidities, and the mainstream research methods in this field. Conclusions This study provides insight and valuable information for researchers and helps to identify new perspectives concerning potential collaborators and cooperative institutions, hot topics, and research frontiers in this field.
Collapse
Affiliation(s)
- Yumeng Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Xintian Shou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China (mainland).,Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Zongjing Fan
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Jie Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China (mainland)
| | - Rui Zhuang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Ruixiang Luo
- Graduate School, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
10
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
11
|
Esfandiarifar A, Azarbayjani MA, Peeri M, Jameie SB. The Effect of Resistance Training and Berberine Chloride on the Apoptosis-related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-poisoned Rats. Basic Clin Neurosci 2021; 12:373-382. [PMID: 34917296 PMCID: PMC8666922 DOI: 10.32598/bcn.2021.2250.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 03/05/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of Unfolded Protein Response (UPR) under oxidative stress is a steady mechanism for maintaining cell function and survival. Therefore, the present study aimed to review the effect of Resistance Training (RT) and Berberine Chloride (BC) on the apoptosis-related UPR signaling pathway in the hippocampus of diazinon-poisoned rats. Methods: In this experimental study, 40 male Wistar rats weighing 250 ±50 g were randomly divided into eight groups of five rats of 1) diazinon + 2 mg/kg BC + RT, 2) diazinon + 15 mg/kg BC + RT, 3) diazinon, 4) diazinon + RT, 5) diazinon + 2 mg/kg BC, 6) diazinon + 15 mg/kg BC, 7) healthy control, and 8) sham. The groups were treated for 5 weeks. At the end of the fifth week, ATF-4, ATF-6, and CHOP gene expression in hippocampus tissue were measured by quantitative real-time RT-PCR. Results: Diazinon significantly increased the expression of ATF-4, ATF-6, and CHOP in the hippocampus tissue of rats. Administrating 15 mg/kg BC with RT significantly decreased these genes, indicating a decrease in the rate of apoptosis in the hippocampus. Conclusion: This study showed that RT and BC have a protective effect against diazinon-induced toxicity in the hippocampus.
Collapse
Affiliation(s)
- Ali Esfandiarifar
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Maghsood Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
12
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Détrait M, Pesse M, Calissi C, Bouyon S, Brocard J, Vial G, Pépin JL, Belaidi E, Arnaud C. Short-term intermittent hypoxia induces simultaneous systemic insulin resistance and higher cardiac contractility in lean mice. Physiol Rep 2021; 9:e14738. [PMID: 33682327 PMCID: PMC7937943 DOI: 10.14814/phy2.14738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intermittent hypoxia (IH) is the major feature of obstructive sleep apnea syndrome, well-known to induce cardiometabolic complications. We previously demonstrated that IH induces hyperinsulinemia and associated altered insulin signaling in adipose tissue, liver, and skeletal muscle, but impact of IH on cardiac insulin signaling and functional/structural consequences remains unknown. Therefore, the aims of this study were to investigate in both lean and obese mice the effects of chronic IH on the following: (1) cardiac insulin signaling and (2) cardiac remodeling and function. METHODS C57BL/6 J male mice were fed low-fat (LFD) or high-fat (HFD) diet for 20 weeks, and exposed to IH (21-5% FiO2, 60 s cycle, 8 h/day) or normoxia (N) for the last 6 weeks. Systemic insulin sensitivity was evaluated by an insulin tolerance test. Cardiac remodeling and contractile function were assessed by cardiac ultrasonography. Ultimately, hearts were withdrawn for biochemical and histological analysis. RESULTS In LFD mice, IH-induced hyperinsulinemia and systemic insulin resistance that were associated with increased phosphorylations of cardiac insulin receptor and Akt on Tyr1150 and Ser473 residues, respectively. In addition, IH significantly increased cardiac interstitial fibrosis and cardiac contractility. In the HFD group, IH did not exert any additional effect, nor on insulin/Akt signaling, nor on cardiac remodeling and function. CONCLUSION Our study suggests that, despite systemic insulin resistance, IH exposure mediates an adaptive cardiac response in lean but not in obese mice. Further studies are needed to investigate which specific mechanisms are involved and to determine the long-term evolution of cardiac responses to IH.
Collapse
Affiliation(s)
- Maximin Détrait
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Mélanie Pesse
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Clément Calissi
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Bouyon
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Jacques Brocard
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France.,University Lyon, ENS de Lyon, Inserm, CNRS SFR Biosciences, UCBL, Lyon, France
| | - Guillaume Vial
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Elise Belaidi
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Claire Arnaud
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 326] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
16
|
Cai M, Xu Z, Bo W, Wu F, Qi W, Tian Z. Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:132-140. [PMID: 35782283 PMCID: PMC9219273 DOI: 10.1016/j.smhs.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Exercise training (ET) has been reported to reduce oxidative stress and endoplasmic reticulum (ER) stress in the heart following myocardial infarction (MI). Thioredoxin 1 (Trx1) plays a protective role in the infarcted heart. However, whether Trx1 regulates ER stress of the infarcted heart and participates in ET-induced cardiac protective effects are still not well known. In this work, H9c2 cells were treated with hydrogen peroxide (H2O2) and recombinant human Trx1 protein (TXN), meanwhile, adult male C57B6L mice were used to establish the MI model, and subjected to a six-week aerobic exercise training (AET) with or without the injection of Trx1 inhibitor, PX-12. Results showed that H2O2 significantly increased reactive oxygen species (ROS) level and the expression of TXNIP, CHOP and cleaved caspase12, induced cell apoptosis; TXN intervention reduced ROS level and the expression of CHOP and cleaved caspase12, and inhibited cell apoptosis in H2O2-treated H9c2 cells. Furthermore, AET up-regulated endogenous Trx1 protein expression and down-regulated TXNIP expression, restored ROS level and the expression of ER stress-related proteins, inhibited cell apoptosis as well as improved cardiac fibrosis and heart function in mice after MI. PX-12 partly inhibited the AET-induced beneficial effects in the infarcted heart. This study demonstrates that Trx1 attenuates ER stress-induced cell apoptosis, and AET reduces MI-induced ROS overproduction, ER stress and cell apoptosis partly through up-regulating of Trx1 expression in mice with MI.
Collapse
|
17
|
Bourdier G, Détrait M, Bouyon S, Lemarié E, Brasseur S, Doutreleau S, Pépin J, Godin‐Ribuot D, Belaidi E, Arnaud C. Intermittent Hypoxia Triggers Early Cardiac Remodeling and Contractile Dysfunction in the Time-Course of Ischemic Cardiomyopathy in Rats. J Am Heart Assoc 2020; 9:e016369. [PMID: 32805159 PMCID: PMC7660805 DOI: 10.1161/jaha.120.016369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sleep-disordered breathing is associated with a poor prognosis (mortality) in patients with ischemic cardiomyopathy. The understanding of mechanisms linking intermittent hypoxia (IH), the key feature of sleep-disordered breathing, to ischemic cardiomyopathy progression is crucial for identifying specific actionable therapeutic targets. The aims of the present study were (1) to evaluate the impact of IH on the time course evolution of cardiac remodeling and contractile dysfunction in a rat model of ischemic cardiomyopathy; and (2) to determine the impact of IH on sympathetic activity, hypoxia inducible factor-1 activation, and endoplasmic reticulum stress in the time course of ischemic cardiomyopathy progression. METHODS AND RESULTS Ischemic cardiomyopathy was induced by a permanent ligature of the left coronary artery in male Wistar rats (rats with myocardial infarction). Rats with myocardial infarction were then exposed to either IH or normoxia for up to 12 weeks. Cardiac remodeling and function were analyzed by Sirius red and wheat germ agglutinin staining, ultrasonography, and cardiac catheterization. Sympathetic activity was evaluated by spectral analysis of blood pressure variability. Hypoxia-inducible factor-1α activation and burden of endoplasmic reticulum stress were characterized by Western blots. Long-term IH exposure precipitated cardiac remodeling (hypertrophy and interstitial fibrosis) and contractile dysfunction during the time course evolution of ischemic cardiomyopathy in rodents. Among associated mechanisms, we identified the early occurrence and persistence of sympathetic activation, associated with sustained hypoxia-inducible factor-1α expression and a delayed pro-apoptotic endoplasmic reticulum stress. CONCLUSIONS Our data provide the demonstration of the deleterious impact of IH on post-myocardial infarction remodeling and contractile dysfunction. Further studies are needed to evaluate whether targeting sympathetic nervous system or HIF-1 overactivities could limit these effects and improve management of coexisting ischemic cardiomyopathy and sleep-disordered breathing.
Collapse
Affiliation(s)
| | - Maximin Détrait
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Sophie Bouyon
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Emeline Lemarié
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | | | | | | | | | - Elise Belaidi
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| | - Claire Arnaud
- Univ. Grenoble AlpesINSERMCHU Grenoble AlpesHP2GrenobleFrance
| |
Collapse
|
18
|
Moulin S, Arnaud C, Bouyon S, Pépin JL, Godin-Ribuot D, Belaidi E. Curcumin prevents chronic intermittent hypoxia-induced myocardial injury. Ther Adv Chronic Dis 2020; 11:2040622320922104. [PMID: 32637058 PMCID: PMC7315663 DOI: 10.1177/2040622320922104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Chronic intermittent hypoxia (IH), the hallmark feature of obstructive sleep apnoea syndrome, contributes to infarct size enhancement after myocardial ischemia–reperfusion (I/R). Curcumin (Curc), the natural pigment of Curcuma longa, has been demonstrated to be beneficial in the context of myocardial injury. In this study, we assessed the effects of Curc on the maladaptive cardiac response to IH, and particularly on IH-induced hypoxia inducible factor-1 (HIF-1) expression, oxidative stress, inflammation, endoplasmic reticulum (ER) stress and apoptosis. Methods: Swiss/SV129 mice were exposed to normoxia or IH (21–5% FiO2, 60 s cycles, 8 h per day, for 21 days) and treated orally with Curc (100 mg kg−1
day−1, oral gavage) or its vehicle. Mice were then either euthanised for heart sampling in order to perform biochemical and histological analysis, or subjected to an in vivo ischemia-reperfusion protocol in order to measure infarct size. Results: IH increased nuclear HIF-1α expression and superoxide anion (O2.–) production as well as nuclear factor kappa B (NF-kB) p65, glucose-regulated protein (Grp78) and C/EBP homologous protein (CHOP) expression. IH also induced apoptosis and increased infarct size after I/R . The IH-induced HIF-1 activation, oxidative stress, inflammation, ER stress and apoptosis were abolished by chronic Curc treatment. Curc also significantly decreased infarct size only in mice exposed to IH. Conclusion: Curc prevents IH-induced myocardial cell death signalling. Curc might be used as a combined therapy with continuous positive airway pressure in sleep apnoea patients with high cardiovascular risk.
Collapse
Affiliation(s)
- Sophie Moulin
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Claire Arnaud
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Sophie Bouyon
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France / Centre Hospitalier Universitaire des Alpes, Grenoble F38042, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes-HP2-Grenoble F-38042, France / INSERM, U1042-Grenoble F38042, France
| | - Elise Belaidi
- University Grenoble Alpes, Grenoble, France INSERM, U1042, Grenoble, France
| |
Collapse
|
19
|
Impact of Endoplasmic Reticulum Stress in Otorhinolaryngologic Diseases. Int J Mol Sci 2020; 21:ijms21114121. [PMID: 32527008 PMCID: PMC7312870 DOI: 10.3390/ijms21114121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important organelle for normal cellular function and homeostasis in most living things. ER stress, which impairs ER function, occurs when the ER is overwhelmed by newly introduced immature proteins or when calcium in the ER is depleted. A number of diseases are associated with ER stress, including otorhinolaryngological diseases. The relationship between ER stress and otorhinolaryngologic conditions has been the subject of investigation over the last decade. Among otologic diseases associated with ER stress are otitis media and hearing loss. In rhinologic diseases, chronic rhinosinusitis, allergic rhinitis, and obstructive sleep apnea are also significantly associated with ER stress. In this review, we provide a comprehensive overview of the relationship between ER stress and otorhinolaryngological diseases, focusing on the current state of knowledge and mechanisms that link ER stress and otorhinolaryngologic diseases.
Collapse
|
20
|
Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis 2020; 113:350-358. [DOI: 10.1016/j.acvd.2020.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
|
21
|
Moulin S, Thomas A, Arnaud C, Arzt M, Wagner S, Maier LS, Pépin JL, Godin-Ribuot D, Gaucher J, Belaidi E. Cooperation Between Hypoxia-Inducible Factor 1α and Activating Transcription Factor 4 in Sleep Apnea-Mediated Myocardial Injury. Can J Cardiol 2020; 36:936-940. [PMID: 32387037 DOI: 10.1016/j.cjca.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/21/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) occurring during sleep apnea amplifies infarct size owing to ischemia-reperfusion. CIH activates hypoxia-inducible factor 1 (HIF-1) and activating transcription factor 4 (ATF4). However, whether HIF-1 and ATF4 interact to promote cardiomyocyte death remains unexplored. For the first time, we observed that in myocardium from apneic patients, CCAAT enhancer-binding protein homologous protein (CHOP) expression is increased and HIF-1α expression is correlated with sleep apnea severity. In mice, single-allele deletion of HIF-1α prevents CIH increase in CHOP expression and infarct size. We uncovered a physical interaction between HIF-1α and ATF4 in CIH that may represent a novel cardiomyocyte death complex.
Collapse
Affiliation(s)
- Sophie Moulin
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Amandine Thomas
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Claire Arnaud
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Jean-Louis Pépin
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France; Centre Hospitalier Universitaire des Alpes, Grenoble, France
| | - Diane Godin-Ribuot
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Jonathan Gaucher
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France
| | - Elise Belaidi
- Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale U1042, Grenoble, France.
| |
Collapse
|
22
|
Jiang H, Jia D, Zhang B, Yang W, Dong Z, Sun X, Cui X, Ma L, Wu J, Hu K, Sun A, Ge J. Exercise improves cardiac function and glucose metabolism in mice with experimental myocardial infarction through inhibiting HDAC4 and upregulating GLUT1 expression. Basic Res Cardiol 2020; 115:28. [PMID: 32236769 DOI: 10.1007/s00395-020-0787-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
This study aims to determine the effect of exercise on the cardiac function, metabolic profiles and related molecular mechanisms in mice with ischemic-induced heart failure (HF). HF was induced by myocardial infarction (MI) in C57BL6/N mice. Cardiac function and physical endurance were improved in HF mice after exercise. Micro-PET/CT scanning revealed enhanced myocardial glucose uptake in vivo in HF mice after exercise. Exercise reduced mitochondrial structural damage in HF mice. Cardiomyocytes isolated from HF + exercise mice showed increased glycolysis capacity, respiratory function and ATP production. Both mRNA and protein expression of glucose transporter 1 (GLUT1) were upregulated after exercise. Results of ChIP-PCR revealed a novel interaction between transcription factor myocyte enhancer factor 2a (MEF2a) and GLUT1 in hearts of HF + exercise mice. Exercise also activated myocardial AMP-activated protein kinase (AMPK), which in turn phosphorylated histone deacetylase 4 (HDAC4), and thereby modulated the GLUT1 expression through reducing its inhibition on MEF2a in HF mice. Inhibition of HDAC4 also improved cardiac function in HF mice. Moreover, knockdown of GLUT1 impaired the systolic and diastolic function of isolated cardiomyocytes. In conclusion, exercise improves cardiac function and glucose metabolism in HF mice through inhibiting HDAC4 and upregulating GLUT1 expression.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaotong Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Institute of Cardiovascular Diseases, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Institute of Cardiovascular Diseases, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
23
|
Boengler K, Schlüter KD, Schermuly RT, Schulz R. Cardioprotection in right heart failure. Br J Pharmacol 2020; 177:5413-5431. [PMID: 31995639 PMCID: PMC7680005 DOI: 10.1111/bph.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic and pharmacological conditioning of the left ventricle is mediated by the activation of signalling cascades, which finally converge at the mitochondria and reduce ischaemia/reperfusion (I/R) injury. Whereas the molecular mechanisms of conditioning in the left ventricle are well characterized, cardioprotection of the right ventricle is principally feasible but less established. Similar to what is known for the left ventricle, a dysregulation in signalling pathways seems to play a role in I/R injury of the healthy and failing right ventricle and in the ability/inability of the right ventricle to respond to a conditioning stimulus. The maintenance of mitochondrial function seems to be crucial in both ventricles to reduce I/R injury. As far as currently known, similar molecular mechanisms mediate ischaemic and pharmacological preconditioning in the left and right ventricles. However, the two ventricles seem to respond differently towards exercise‐induced preconditioning. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | | | | | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
24
|
Sun ZG, Lu G, Zhao LL, Zhang LZ, Li A, Jing J, Xu X. Exercise Preconditioning Protects against Acute Cardiac Injury Induced by Lipopolysaccharide Through General Control Nonderepressible 2 Kinase. Int Heart J 2020; 61:138-144. [DOI: 10.1536/ihj.19-307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhong-Guang Sun
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Guo Lu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Lin-Lin Zhao
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Li-Zhen Zhang
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Ai Li
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Jing Jing
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| |
Collapse
|
25
|
Sun ZM, Guan P, Luo LF, Qin LY, Wang N, Zhao YS, Ji ES. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci 2020; 245:117362. [PMID: 31996295 DOI: 10.1016/j.lfs.2020.117362] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022]
Abstract
The prominent feature of obstructive sleep apnea (OSA) is chronic intermittent hypoxia (CIH). Given the strong antioxidant ability of resveratrol against oxidative stress, we evaluated the potential protective effects of resveratrol on myocardial injury induced by CIH. Twenty-four rats were divided into normal control group, CIH group, CIH plus resveratrol treated (CIH + Res) group, and resveratrol treated control (Res) group. We proved that CIH impaired cardiac structure and function with an increase in oxidative stress, endoplasmic reticulum (ER) stress and NOD-like receptors (NLRP3) inflammasome induction in heart, which was attenuated after resveratrol administration. NLRP3 inflammasome blockade by resveratrol appeared to be mediated by activating AMP-activated Protein Kinase (AMPK), which could restrain mTOR/TTP/NLRP3 mRNA signalling. Furthermore, resveratrol attenuated CIH-induced oxidative stress through elevation antioxidant molecules expression via NF-E2-related factor-2 (Nrf2). Moreover, AMPK may play a role in Nrf2/HO-1 signalling by resveratrol. These results expand our understanding of the myocardial protective mechanism of resveratrol during CIH and suggest that resveratrol treatment may be useful to counteract OSA-associated cardiac injury.
Collapse
Affiliation(s)
- Zhi-Min Sun
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei, People's Republic of China
| | - Li-Fei Luo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Lu-Yun Qin
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ya-Shuo Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
26
|
Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020; 16:264-271. [PMID: 31929754 PMCID: PMC6949148 DOI: 10.7150/ijbs.38143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum is an important organelle responsible for protein synthesis, modification, folding, assembly and transport of new peptide chains. When the endoplasmic reticulum protein folding ability is impaired, the unfolded or misfolded proteins accumulate to lead to endoplasmic reticulum stress. Hydrogen sulfide is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H2S plays an important protective role in many diseases through influencing endoplasmic reticulum stress, but its mechanism is not fully understood. This article reviewed the progress about the effect of H2S on endoplasmic reticulum stress and its mechanisms involved in diseases in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
27
|
Li J, Zhang D, Brundel BJJM, Wiersma M. Imbalance of ER and Mitochondria Interactions: Prelude to Cardiac Ageing and Disease? Cells 2019; 8:cells8121617. [PMID: 31842269 PMCID: PMC6952992 DOI: 10.3390/cells8121617] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac disease is still the leading cause of morbidity and mortality worldwide, despite some exciting and innovative improvements in clinical management. In particular, atrial fibrillation (AF) and heart failure show a steep increase in incidence and healthcare costs due to the ageing population. Although research revealed novel insights in pathways driving cardiac disease, the exact underlying mechanisms have not been uncovered so far. Emerging evidence indicates that derailed proteostasis (i.e., the homeostasis of protein expression, function and clearance) is a central component driving cardiac disease. Within proteostasis derailment, key roles for endoplasmic reticulum (ER) and mitochondrial stress have been uncovered. Here, we describe the concept of ER and mitochondrial stress and the role of interactions between the ER and mitochondria, discuss how imbalance in the interactions fuels cardiac ageing and cardiac disease (including AF), and finally assess the potential of drugs directed at conserving the interaction as an innovative therapeutic target to improve cardiac function.
Collapse
Affiliation(s)
- Jin Li
- Correspondence: (J.L.); (M.W.)
| | | | | | | |
Collapse
|
28
|
Chang JC, Hu WF, Lee WS, Lin JH, Ting PC, Chang HR, Shieh KR, Chen TI, Yang KT. Intermittent Hypoxia Induces Autophagy to Protect Cardiomyocytes From Endoplasmic Reticulum Stress and Apoptosis. Front Physiol 2019; 10:995. [PMID: 31447690 PMCID: PMC6692635 DOI: 10.3389/fphys.2019.00995] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Intermittent hypoxia (IH), characterized as cyclic episodes of short-period hypoxia followed by normoxia, occurs in many physiological and pathophysiological conditions such as pregnancy, athlete, obstructive sleep apnea, and asthma. Hypoxia can induce autophagy, which is activated in response to protein aggregates, in the proteotoxic forms of cardiac diseases. Previous studies suggested that autophagy can protect cells by avoiding accumulation of misfolded proteins, which can be generated in response to ischemia/reperfusion (I/R) injury. The objective of the present study was to determine whether IH-induced autophagy can attenuate endoplasmic reticulum (ER) stress and cell death. In this study, H9c2 cell line, rat primary cultured cardiomyocytes, and C57BL/6 male mice underwent IH with an oscillating O2 concentration between 4 and 20% every 30 min for 1-4 days in an incubator. The levels of LC3, an autophagy indicator protein and CHOP and GRP78 (ER stress-related proteins) were measured by Western blotting analyses. Our data demonstrated that the autophagy-related proteins were upregulated in days 1-3, while the ER stress-related proteins were downregulated on the second day after IH. Treatment with H2O2 (100 μM) for 24 h caused ER stress and increased the level of ER stress-related proteins, and these effects were abolished by pre-treatment with IH condition. In response to the autophagy inhibitor, the level of ER stress-related proteins was upregulated again. Taken together, our data suggested that IH could increase myocardial autophagy as an adaptive response to prevent the ER stress and apoptosis.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Fen Hu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian-Hong Lin
- PhD Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Ching Ting
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huai-Ren Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Cardiology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kun-Ruey Shieh
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-I Chen
- Center for Physical Education, College of Education and Communication, Tzu Chi University, Hualien, Taiwan.,Institute of Education, College of Education and Communication, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
29
|
Ryan S, Arnaud C, Fitzpatrick SF, Gaucher J, Tamisier R, Pépin JL. Adipose tissue as a key player in obstructive sleep apnoea. Eur Respir Rev 2019; 28:28/152/190006. [PMID: 31243096 PMCID: PMC9488701 DOI: 10.1183/16000617.0006-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a major health concern worldwide and adversely affects multiple organs and systems. OSA is associated with obesity in >60% of cases and is independently linked with the development of numerous comorbidities including hypertension, arrhythmia, stroke, coronary heart disease and metabolic dysfunction. The complex interaction between these conditions has a significant impact on patient care and mortality. The pathophysiology of cardiometabolic complications in OSA is still incompletely understood; however, the particular form of intermittent hypoxia (IH) observed in OSA, with repetitive short cycles of desaturation and re-oxygenation, probably plays a pivotal role. There is fast growing evidence that IH mediates some of its detrimental effects through adipose tissue inflammation and dysfunction. This article aims to summarise the effects of IH on adipose tissue in experimental models in a comprehensive way. Data from well-designed controlled trials are also reported with the final goal of proposing new avenues for improving phenotyping and personalised care in OSA. Fast growing evidence strongly suggests that cardiovascular and metabolic alterations induced by intermittent hypoxia in OSA are mediated through adipose tissue inflammation and dysfunction.bit.ly/2W929Pe
Collapse
Affiliation(s)
- Silke Ryan
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland.,Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland.,Joint first authors
| | - Claire Arnaud
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,Joint first authors
| | - Susan F Fitzpatrick
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jonathan Gaucher
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Louis Pépin
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France .,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
30
|
Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7415212. [PMID: 30984338 PMCID: PMC6431505 DOI: 10.1155/2019/7415212] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/11/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Obstructive sleep apnea (OSA) can cause intermittent changes in blood oxygen saturation, resulting in the generation of many reactive oxygen species (ROS). To discover new antioxidants and clarify the endoplasmic reticulum (ER) stress involved in cardiac injury in OSA, we established a chronic intermittent hypoxia (CIH) rat model with a fraction of inspired O2 (FiO2) ranging from 21% to 9%, 20 times/h for 8 h/day, and the rats were treated with H2-O2 mixture (67% hydrogen and 33% oxygen) for 2 h/day for 35 days. Our results showed that H2-O2 mixture remarkably improved cardiac dysfunction and myocardial fibrosis. We found that H2-O2 mixture inhalation declined ER stress-induced apoptosis via three major response pathways: PERK-eIF2α-ATF4, IRE 1-XBP1, and ATF 6. Furthermore, we revealed that H2-O2 mixture blocked c-Jun N-terminal kinase- (JNK-) MAPK activation, increased the ratio of Bcl-2/Bax, and inhibited caspase 3 cleavage to protect against CIH-induced cardiac apoptosis. In addition, H2-O2 mixture considerably decreased ROS levels via upregulating superoxide dismutase (SOD) and glutathione (GSH) as well as downregulating NADPH oxidase (NOX 2) expression in the hearts of CIH rats. All the results demonstrated that H2-O2 mixture significantly reduced ER stress and apoptosis and that H2 might be an efficient antioxidant against the oxidative stress injury induced by CIH.
Collapse
|
31
|
Tao L, Wang L, Yang X, Jiang X, Hua F. Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis. Mol Cell Endocrinol 2019; 481:95-103. [PMID: 30503377 DOI: 10.1016/j.mce.2018.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Obstructive sleep apnea syndrome is a chronic disease associated with intermittent hypoxia (IH) and is an important risk factor for cardiovascular disease. Glucagon-like peptide (GLP-1) is a naturally occurring incretin used as a promising therapeutic agent in the treatment of acute myocardial infarction, dilated cardiomyopathy, and advanced heart failure. However, whether GLP-1 can protect against IH-induced cardiac injury is still unclear. Accordingly, in this study, we evaluated the effects of recombinant human GLP-1 (rhGLP-1) on cardiac health in mice. METHODS Mice were subjected to repetitive 5% O2 for 30 s and 21% O2 for 30 s, for a total of 8 h/day for 4 weeks. Subsequently, mice received subcutaneous injection of saline or rhGLP-1 (100 μg/kg, three times per day). Cardiac function, myocardial apoptosis and fibrosis, energy metabolism, and mitochondrial biogenesis were examined for evaluation of cardiac injury. RESULTS A reduction in diastolic function (E/A ratio) in mice exposed to IH was significantly reversed by rhGLP-1. IH induced marked cardiomyocyte apoptosis and myocardial fibrosis. Additionally, IH resulted in a shift from fatty acid to glucose metabolism in the myocardium with downregulation of peroxisome proliferator-activated receptor (PPAR) α and PPARγ. Moreover, IH caused a reduction in mitochondrial DNA (mtDNA) replication and transcription, together with reduced mtDNA content and impaired mitochondrial ultrastructure. These changes were abolished by rhGLP-1 via activation of PGC-1α and Akt signaling. CONCLUSIONS rhGLP-1 protects against IH-induced cardiac injury by improving myocardial energy metabolism and enhancing the early adaptive changes of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Long Wang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China.
| |
Collapse
|
32
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
33
|
Zhou X, Tang S, Hu K, Zhang Z, Liu P, Luo Y, Kang J, Xu L. dl-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath 2018; 22:853-863. [DOI: 10.1007/s11325-018-1656-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/25/2018] [Accepted: 04/04/2018] [Indexed: 01/30/2023]
|
34
|
Han Q, Li G, Ip MS, Zhang Y, Zhen Z, Mak JC, Zhang N. Haemin attenuates intermittent hypoxia-induced cardiac injury via inhibiting mitochondrial fission. J Cell Mol Med 2018. [PMID: 29512942 PMCID: PMC5908095 DOI: 10.1111/jcmm.13560] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Obstructive sleep apnoea (OSA) characterized by intermittent hypoxia (IH) is closely associated with cardiovascular diseases. IH confers cardiac injury via accelerating cardiomyocyte apoptosis, whereas the underlying mechanism has remained largely enigmatic. This study aimed to explore the potential mechanisms involved in the IH‐induced cardiac damage performed with the IH‐exposed cell and animal models and to investigate the protective effects of haemin, a potent haeme oxygenase‐1 (HO‐1) activator, on the cardiac injury induced by IH. Neonatal rat cardiomyocyte (NRC) was treated with or without haemin before IH exposure. Eighteen male Sprague‐Dawley (SD) rats were randomized into three groups: control group, IH group (PBS, ip) and IH + haemin group (haemin, 4 mg/kg, ip). The cardiac function was determined by echocardiography. Mitochondrial fission was evaluated by Mitotracker staining. The mitochondrial dynamics‐related proteins (mitochondrial fusion protein, Mfn2; mitochondrial fission protein, Drp1) were determined by Western blot. The apoptosis of cardiomyocytes and heart sections was examined by TUNEL. IH regulated mitochondrial dynamics‐related proteins (decreased Mfn2 and increased Drp1 expressions, respectively), thereby leading to mitochondrial fragmentation and cell apoptosis in cardiomyocytes in vitro and in vivo, while haemin‐induced HO‐1 up‐regulation attenuated IH‐induced mitochondrial fragmentation and cell apoptosis. Moreover, IH resulted in left ventricular hypertrophy and impaired contractile function in vivo, while haemin ameliorated IH‐induced cardiac dysfunction. This study demonstrates that pharmacological activation of HO‐1 pathway protects against IH‐induced cardiac dysfunction and myocardial fibrosis through the inhibition of mitochondrial fission and cell apoptosis.
Collapse
Affiliation(s)
- Qian Han
- State Key Laboratory, Guangzhou Institute of Respiratory Health, Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guihua Li
- State Key Laboratory, Guangzhou Institute of Respiratory Health, Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mary SiuMan Ip
- Li Kashing Faculty of Medicine, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuelin Zhang
- Li Kashing Faculty of Medicine, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe Zhen
- Li Kashing Faculty of Medicine, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Judith ChoiWo Mak
- Li Kashing Faculty of Medicine, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nuofu Zhang
- State Key Laboratory, Guangzhou Institute of Respiratory Health, Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun 2017; 493:346-351. [PMID: 28888981 DOI: 10.1016/j.bbrc.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/17/2023]
Abstract
Adiponectin, an adipocytokine produced by adipocytes, functions as an anti-inflammatory and anti-apoptotic substance, while also enhancing insulin sensitivity. Patients or model animals with obesity or diabetes typically present attenuated expression of adiponectin. Moreover, obesity and diabetes are often accompanied with hypoxia in adipose tissue, which may result in endoplasmic reticulum (ER) stress as well as low expression of adiponectin. The purpose of this study was to investigate the specific role of the unfolded protein response (UPR) involved in the low expression of adiponectin induced by hypoxia. Subjecting 3T3-L1 adipocytes to hypoxia significantly reduced adiponectin expression and activated the PERK and IRE1 signaling pathways in a time-dependent manner. The ATF6 signaling pathway showed no obvious changes with hypoxia treatment under a similar time course. Moreover, the down-regulated expression of adiponectin induced by hypoxia was relieved once the PERK and IRE1 signaling pathways were suppressed by the inhibitors GSK2656157 and 4μ8C, respectively. Overall, these data demonstrate that hypoxia can suppress adiponectin expression and activate the PERK and IRE1 signaling pathways in differentiated adipocytes, and this two pathways are involved in the suppression of adiponectin expression induced by hypoxia.
Collapse
|
36
|
The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise. Int J Vasc Med 2017; 2017:2049217. [PMID: 28875043 PMCID: PMC5569752 DOI: 10.1155/2017/2049217] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, which is highly associated with cardiovascular disease, is triggered by a disturbance in ER function because of protein misfolding or an increase in protein secretion. Prolonged disruption of ER causes ER stress and activation of the unfolded protein response (UPR) and leads to various diseases. Eukaryotic cells respond to ER stress via three major sensors that are bound to the ER membrane: activating transcription factor 6 (ATF6), inositol-requiring protein 1α (IRE1α), and protein kinase RNA-like ER kinase (PERK). Chronic activation of ER stress causes damage in endothelial cells (EC) via apoptosis, inflammation, and oxidative stress signaling pathways. The alleviation of ER stress has recently been accepted as a potential therapeutic target to treat cardiovascular diseases such as heart failure, hypertension, and atherosclerosis. Exercise training is an effective nonpharmacological approach for preventing and alleviating cardiovascular disease. We here review the recent viewing of ER stress-mediated apoptosis and inflammation signaling pathways in cardiovascular disease and the role of exercise in ER stress-associated diseases.
Collapse
|
37
|
High intensity aerobic exercise training improves chronic intermittent hypoxia-induced insulin resistance without basal autophagy modulation. Sci Rep 2017; 7:43663. [PMID: 28255159 PMCID: PMC5334652 DOI: 10.1038/srep43663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic intermittent hypoxia (IH) associated with obstructive sleep apnea (OSA) is a major risk factor for cardiovascular and metabolic diseases (insulin resistance: IR). Autophagy is involved in the pathophysiology of IR and high intensity training (HIT) has recently emerged as a potential therapy. We aimed to confirm IH-induced IR in a tissue-dependent way and to explore the preventive effect of HIT on IR-induced by IH. Thirty Swiss 129 male mice were randomly assigned to Normoxia (N), Intermittent Hypoxia (IH: 21-5% FiO2, 30 s cycle, 8 h/day) or IH associated with high intensity training (IH HIT). After 8 days of HIT (2*24 min, 50 to 90% of Maximal Aerobic Speed or MAS on a treadmill) mice underwent 14 days IH or N. We found that IH induced IR, characterized by a greater glycemia, an impaired insulin sensitivity and lower AKT phosphorylation in adipose tissue and liver. Nevertheless, MAS and AKT phosphorylation were greater in muscle after IH. IH associated with HIT induced better systemic insulin sensitivity and AKT phosphorylation in liver. Autophagy markers were not altered in both conditions. These findings suggest that HIT could represent a preventive strategy to limit IH-induced IR without change of basal autophagy.
Collapse
|
38
|
Pinto AP, da Rocha AL, Oliveira LDC, Morais GP, de Vicente LG, Cintra DE, Pauli JR, Moura LP, Ropelle ER, da Silva ASR. Levels of Hepatic Activating Transcription Factor 6 and Caspase-3 Are Downregulated in Mice after Excessive Training. Front Endocrinol (Lausanne) 2017; 8:247. [PMID: 29018408 PMCID: PMC5622940 DOI: 10.3389/fendo.2017.00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Recently, we demonstrated that different running overtraining (OT) protocols with the same external load, but performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR), led to hepatic fat accumulation. As the disruption of endoplasmic reticulum (ER) homeostasis is linked to animal models of fatty liver disease, we investigated the effects of these OT models on the proteins related to ER stress (i.e., BiP, inositol-requiring enzyme 1, protein kinase RNA-like endoplasmic reticulum kinase, eIF2alpha, ATF6beta, and glucose-regulated protein 94) and apoptosis (C/EBP-homologous protein, Caspase-3, 4, and 12, Bax, and tumor necrosis factor receptor-associated factor 2) in livers of C57BL/6 mice. Also, aerobic training can attenuate cardiac ER stress and improve exercise capacity. Therefore, we investigated whether the decrease in performance induced by our OT protocols is linked to ER stress and apoptosis in mouse hearts. The rodents were divided into six groups: naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance evaluations), trained (TR), OTR/down, OTR/up, and OTR groups. Rotarod, incremental load, exhaustive, and grip force tests were used to evaluate performance. After the grip force test, the livers and cardiac muscles (i.e., left ventricle) were removed and used for immunoblotting. All of the OT protocols led to similar responses in the performance parameters and displayed significantly lower hepatic ATF6beta values compared to the N group. The OTR/down group exhibited lower liver cleaved caspase-3 values compared to the CT group. However, the other proteins related to ER stress and apoptosis were not modulated. Also, the cardiac proteins related to ER stress and apoptosis were not modulated in the experimental groups. In conclusion, the OT protocols decreased the levels of hepatic ATF6beta, and the OTR/down group decreased the levels of hepatic cleaved caspase-3. Also, the decrease in performance induced by our OT models is not associated with ER stress and apoptosis in mice hearts.
Collapse
Affiliation(s)
- Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Luciana da C. Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Gustavo P. Morais
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Larissa G. de Vicente
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys E. Cintra
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - José R. Pauli
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Leandro P. Moura
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Eduardo R. Ropelle
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- *Correspondence: Adelino S. R. da Silva,
| |
Collapse
|
39
|
Ding S, Gan T, Song M, Dai Q, Huang H, Xu Y, Zhong C. C/EBPB-CITED4 in Exercised Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:247-259. [PMID: 29098625 DOI: 10.1007/978-981-10-4304-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C/EBPB is a crucial transcription factor, participating in a variety of biological processes including cell proliferation, differentiation and development. In the cardiovascular system, C/EBPB-CITED4 signaling is known as a signaling pathway mediating exercise-induced cardiac growth. After its exact role in exercised heart firstly reported in 2010, more and more evidence confirmed that. MicroRNA (e.g. miR-222) and many molecules (e.g. Alpha-lipoic acid) can regulate this pathway and then involve in the cardiac protection effect induced by endurance exercise training. In addition, in cardiac growth during pregnancy, C/EBPB is also a required regulator. This chapter will give an introduction of the C/EBPB-CITED4 signaling and the regulatory network based on this signaling pathway in exercised heart.
Collapse
Affiliation(s)
- Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Tianyi Gan
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Qiying Dai
- Metrowest Medical Center, Framingham, 01702, MA, USA.,Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yiming Xu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
40
|
Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications. Pharmacol Ther 2016; 168:1-11. [PMID: 27492897 DOI: 10.1016/j.pharmthera.2016.07.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) is now recognized as an independent and important risk factor for cardiovascular diseases such as hypertension, coronary heart disease, heart failure and stroke. Clinical and experimental data have confirmed that intermittent hypoxia is a major contributor to these deleterious consequences. The repetitive occurrence of hypoxia-reoxygenation sequences generates significant amounts of free radicals, particularly in moderate to severe OSA patients. Moreover, in addition to hypoxia, reactive oxygen species (ROS) are potential inducers of the hypoxia inducible transcription factor-1 (HIF-1) that promotes the transcription of numerous adaptive genes some of which being deleterious for the cardiovascular system, such as the endothelin-1 gene. This review will focus on the involvement of the ROS-HIF-1-endothelin signaling pathway in OSA and intermittent hypoxia and discuss current and potential therapeutic approaches targeting this pathway to treat or prevent cardiovascular disease in moderate to severe OSA patients.
Collapse
|
41
|
Wu Y, Adi D, Long M, Wang J, Liu F, Gai MT, Aierken A, Li MY, Li Q, Wu LQ, Ma YT, Hujiaaihemaiti M. 4-Phenylbutyric Acid Induces Protection against Pulmonary Arterial Hypertension in Rats. PLoS One 2016; 11:e0157538. [PMID: 27304885 PMCID: PMC4909300 DOI: 10.1371/journal.pone.0157538] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of various pulmonary diseases via the activation of the unfolded protein response. However, the role of ER stress in pulmonary arterial hypertension (PAH) remains unclear. The well-known chemical chaperone 4-phenylbutyric acid (4-PBA) inhibits ER stress signaling. We hypothesized that known chemical chaperones, including 4-PBA, would inhibit the activation of ER stress and prevent and/or reverse PAH. METHODS AND RESULTS Male Wistar rats were randomly divided into four groups: a normal control group (NORMAL group), a PAH group, and two PAH model plus 4-PBA treatment groups. The latter two groups included rats receiving 4-PBA by gavage each day as a preventive measure (the PRE group, with PBA starting on the day of PAH induction and continuing for 4 weeks) or as a reversal measure (the REV group, with PBA starting on the third week of PAH induction and continuing for 2 weeks). The PAH model was induced by intraperitoneally administering monocrotaline. The mean pulmonary artery pressure and mean right ventricular pressure were lower in the REV and PRE groups than in the NORMAL group. Furthermore, 4-PBA improved pulmonary arterial remodeling and suppressed the expression of ER stress indicators. CONCLUSION Our findings indicate that PAH induces ER stress and provokes pulmonary arterial and right ventricular remodeling. Additionally, we show that attenuation of ER stress has the potential to be an effective therapeutic strategy for protecting pulmonary arteries.
Collapse
Affiliation(s)
- Yun Wu
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Mei Long
- Department of Mechanism and Function, Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Min-Tao Gai
- Xinjiang Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Alidan Aierken
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Ming-Yuan Li
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Qian Li
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Lei-Qi Wu
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Yi-Tong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Minawaer Hujiaaihemaiti
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| |
Collapse
|
42
|
Sforza E, Roche F. Chronic intermittent hypoxia and obstructive sleep apnea: an experimental and clinical approach. HYPOXIA (AUCKLAND, N.Z.) 2016; 4:99-108. [PMID: 27800512 PMCID: PMC5085272 DOI: 10.2147/hp.s103091] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder considered as an independent risk factor for cardiovascular consequences, such as systemic arterial hypertension, ischemic heart disease, cardiac arrhythmias, metabolic disorders, and cognitive dysfunction. The pathogenesis of OSA-related consequence is assumed to be chronic intermittent hypoxia (IH) inducing alterations at the molecular level, oxidative stress, persistent systemic inflammation, oxygen sensor activation, and increase of sympathetic activity. Overall, these mechanisms have an effect on vessel permeability and are considered to be important factors for explaining vascular, metabolic, and cognitive OSA-related consequences. The present review attempts to examine together the research paradigms and clinical studies on the effect of acute and chronic IH and the potential link with OSA. We firstly describe the literature data on the mechanisms activated by acute and chronic IH at the experimental level, which are very helpful and beneficial to explaining OSA consequences. Then, we describe in detail the effect of IH in patients with OSA that we can consider "the human model" of chronic IH. In this way, we can better understand the specific pathophysiological mechanisms proposed to explain the consequences of IH in OSA.
Collapse
Affiliation(s)
- Emilia Sforza
- Service de Physiologie Clinique et de l’Exercice, Pole NOL, CHU, EA SNA-EPIS 4607, Faculté de Médecine J. Lisfranc, UJM Saint-Etienne, Université de Lyon, Saint-Etienne, France
| | - Fréderic Roche
- Service de Physiologie Clinique et de l’Exercice, Pole NOL, CHU, EA SNA-EPIS 4607, Faculté de Médecine J. Lisfranc, UJM Saint-Etienne, Université de Lyon, Saint-Etienne, France
| |
Collapse
|
43
|
Belaidi E, Thomas A, Bourdier G, Moulin S, Lemarié E, Levy P, Pépin JL, Korichneva I, Godin-Ribuot D, Arnaud C. Endoplasmic reticulum stress as a novel inducer of hypoxia inducible factor-1 activity: its role in the susceptibility to myocardial ischemia-reperfusion induced by chronic intermittent hypoxia. Int J Cardiol 2016; 210:45-53. [PMID: 26922713 DOI: 10.1016/j.ijcard.2016.02.096] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a highly prevalent disease and a risk factor for myocardial infarction expansion in humans. Intermittent hypoxia (IH) is known to be the most important OSA feature in terms of cardiovascular morbi-mortality. Since ER stress and HIF-1 are known to be involved in cardiomyocyte life or death, this study investigates the role of ER stress on HIF-1 activation in myocardial susceptibility to ischemia-reperfusion (I/R) induced by IH. METHODS C57Bl6J, HIF-1α(+/-) and their respective control mice were exposed to 14 days of IH (21-5% FiO2, 60 scycle, 8h/day). Myocardial inter-organelle calcium exchanges, ER stress and HIF-1 activity were investigated and in vivo I/R was performed to measure infarct size. In additional groups, tauroursodeoxycholic acid (TUDCA, 75 mg·kg(-1)), an ER stress inhibitor, was administered daily during exposure. RESULTS In C57Bl6J mice, chronic IH induced an increase in ER-Ca(2+) content, ER stress markers and HIF-1 activity, associated with an enhanced infarct size (33.7 ± 9.4 vs. 61.0 ± 5.6% in N and IH, respectively, p<0.05). IH failed to increase infarct size in HIF-1α deficient mice (42.4 ± 2.7 and 24.7 ± 3.4% N and IH, respectively). Finally, TUDCA totally abolished the IH-induced increase in HIF-1 activity (1.3 ± 0.04 vs. 0.14 ± 0.02 fold increase in IH vs. IH-TUDCA respectively, p<0.0001) and in infarct size (55.5 ± 7.6 vs. 49.9 ± 3.0 in N-TUDCA and IH-TUDCA, respectively). CONCLUSION This novel regulatory mechanism of HIF-1 activity by ER stress should be considered as a potential diagnostic tool for cardiovascular complications in OSA patients as well as a therapeutic target to limit myocardial ischemic damage.
Collapse
Affiliation(s)
- Elise Belaidi
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France.
| | - Amandine Thomas
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Guillaume Bourdier
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Sophie Moulin
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Emeline Lemarié
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Patrick Levy
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Irina Korichneva
- Université Picardie, Laboratoire de biologie cellulaire moléculaire, Amiens 80000, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Claire Arnaud
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| |
Collapse
|