1
|
Kabedev A, Lobaskin V. Endothelial glycocalyx permeability for nanoscale solutes. Nanomedicine (Lond) 2022; 17:979-996. [PMID: 35815713 DOI: 10.2217/nnm-2021-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycocalyx has a great impact on the accessibility of the endothelial cell membranes. Although the specific interactions play a crucial role in cross-membrane solute transport, nonspecific interactions cannot be neglected. In this work, we used computational modeling to quantify the nonspecific interactions that control the distribution of nanosized solutes across the endothelial glycocalyx. We evaluated the probabilities of various nanoparticles' passage through the luminal layer to the membrane. The calculations demonstrate that excluded volume and electrostatic interactions are decisive for the solute transport as compared with van der Waals and hydrodynamic interactions. Damaged glycocalyx models showed a relatively weak efficiency in sieving plasma solutes. We estimated the energy barriers and corresponding mean first passage times for nanoscale solute transport through the model glycocalyx.
Collapse
Affiliation(s)
- Aleksei Kabedev
- School of Physics, University College Dublin, Dublin 4, Ireland.,Department of Pharmacy, Uppsala University, Husargatan 3, Uppsala, 75 123, Sweden
| | | |
Collapse
|
2
|
Cross talk between endothelial and red blood cell glycocalyces via near-field flow. Biophys J 2021; 120:3180-3191. [PMID: 34197803 PMCID: PMC8392098 DOI: 10.1016/j.bpj.2021.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cells and circulating red blood cell (RBC) surfaces are both covered by a layer of bushy glycocalyx. The interplay between these glycocalyx layers is hardly measurable and insufficiently understood. This study aims to investigate and qualify the possible interactions between the glycocalyces of RBCs and endothelial cells using mathematical modeling and numerical simulation. Dissipative particle dynamics (DPD) simulations are conducted to investigate the response of the endothelial glycocalyx (EG) to varying ambient conditions. A two-compartment model including EG and flow and a three-compartment model comprising EG, RBC glycocalyx, and flow are established. The two-compartment analysis shows that a relatively fast flow is associated with a predominantly bending motion of the EG, whereas oscillatory motions are predominant in a relatively slow flow. Results show that circulating RBCs cause the contactless deformation of EG. Its deformation is dependent on the chain layout, chain length, bending stiffness, RBC-to-EG distance, and RBC velocities. Specifically, shorter EG chains or RBC-to-EG distance leads to greater relative deflections of EG. Deformation of EG is enhanced when the EG chains are rarefied or RBCs move faster. The bending stiffness maintains stretching conformation of EG. Moreover, a compact EG chain layout and shedding EG chains disturb the neighboring flow field, causing disordered flow velocity distributions. In contrast, the movement of EG chains on RBC surfaces exerts a marginal driving force on RBCs. The DPD method is used for the first time, to our knowledge, in the three-compartment system to explore the cross talk between EG and RBC glycocalyx. This study suggests that RBCs drive the EG deformation via the near-field flow, whereas marginal propulsion of RBCs by the EG is observed. These new, to our knowledge, findings provide a new angle to understand the roles of glycocalyx in mechanotransduction and microvascular permeability and their perturbations under idealized pathophysiologic conditions associated with EG degradation.
Collapse
|
3
|
Zhang L, Fan J, Li G, Yin Z, Fu BM. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood-Brain Barrier. Cardiovasc Eng Technol 2020; 11:607-620. [PMID: 33113565 PMCID: PMC7592456 DOI: 10.1007/s13239-020-00496-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The therapeutic drug-loaded nanoparticles (NPs, 20-100 nm) have been widely used to treat brain disorders. To improve systemic brain delivery efficacy of these NPs, it is necessary to quantify their transport parameters across the blood-brain barrier (BBB) and understand the underlying transport mechanism. METHODS Permeability of an in vitro BBB, bEnd3 (mouse brain microvascular endothelial cells) monolayer, to three neutral NPs with the representative diameters was measured using an automated fluorometer system. To elucidate the transport mechanism of the neutral NPs across the in vitro BBB, and that of positively charged NPs whose BBB permeability was measured in a previous study, we developed a novel transcellular model, which incorporates the charge of the in vitro BBB, the mechanical property of the cell membrane, the ion concentrations of the surrounding salt solution and the size and charge of the NPs. RESULTS Our model indicates that the negative charge of the surface glycocalyx and basement membrane of the BBB plays a pivotal role in the transcelluar transport of NPs with diameter 20-100 nm across the BBB. The electrostatic force between the negative charge at the in vitro BBB and the positive charge at NPs greatly enhances NP permeability. The predictions from our transcellular model fit very well with the measured BBB permeability for both neutral and charged NPs. CONCLUSION Our model can be used to predict the optimal size and charge of the NPs and the optimal charge of the BBB for an optimal systemic drug delivery strategy to the brain.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Jie Fan
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Zhaokai Yin
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
4
|
Yooprasertchuti K, Dechadilok P. Effect of molecular shape of suspended colloids on an osmotic flow across a fibrous membrane. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Cruz-Chu ER, Malafeev A, Pajarskas T, Pivkin IV, Koumoutsakos P. Structure and response to flow of the glycocalyx layer. Biophys J 2014; 106:232-43. [PMID: 24411255 DOI: 10.1016/j.bpj.2013.09.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/03/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022] Open
Abstract
The glycocalyx is a sugar-rich layer located at the luminal part of the endothelial cells. It is involved in key metabolic processes and its malfunction is related to several diseases. To understand the function of the glycocalyx, a molecular level characterization is necessary. In this article, we present large-scale molecular-dynamics simulations that provide a comprehensive description of the structure and dynamics of the glycocalyx. We introduce the most detailed, to-date, all-atom glycocalyx model, composed of lipid bilayer, proteoglycan dimers, and heparan sulfate chains with realistic sequences. Our results reveal the folding of proteoglycan ectodomain and the extended conformation of heparan sulfate chains. Furthermore, we study the glycocalyx response under shear flow and its role as a flypaper for binding fibroblast growth factors (FGFs), which are involved in diverse functions related to cellular differentiation, including angiogenesis, morphogenesis, and wound healing. The simulations show that the glycocalyx increases the effective concentration of FGFs, leading to FGF oligomerization, and acts as a lever to transfer mechanical stimulus into the cytoplasmic side of endothelial cells.
Collapse
Affiliation(s)
- Eduardo R Cruz-Chu
- Computational Science and Engineering Laboratory, ETH, Zurich, Switzerland
| | - Alexander Malafeev
- Scientific Computing Group, Institute of Computational Science, University of Lugano, Lugano, Switzerland
| | | | - Igor V Pivkin
- Scientific Computing Group, Institute of Computational Science, University of Lugano, Lugano, Switzerland
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, ETH, Zurich, Switzerland; Scientific Computing Group, Institute of Computational Science, University of Lugano, Lugano, Switzerland.
| |
Collapse
|
6
|
Shaw S, Ganguly S, Sibanda P, Chakraborty S. Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a permeable microvessel. Microvasc Res 2014; 92:25-33. [PMID: 24406843 DOI: 10.1016/j.mvr.2013.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/17/2013] [Accepted: 12/26/2013] [Indexed: 12/19/2022]
Abstract
Nanoparticle assisted drug delivery holds considerable promise as a means of next generation of medicine that allows for the intravascular delivery of drugs and contrast agents. We analyze the dispersion characteristics of blood during a nanoparticle-assisted drug delivery process through a permeable microvessel. The contribution of molecular and convective diffusion is based on Taylor's theory of shear dispersion. The aggregation of red blood cells in blood flowing through small tubes (less than 40 μm) leads to the two-phase flow with a core of rouleaux surrounded by a cell-depleted peripheral layer. The core region models as a non-Newtonian Casson fluid and the peripheral region acts as a Newtonian fluid. We investigate the influence of the nanoparticle volume fraction, the permeability of the blood vessel, pressure distribution, yield stress and the radius of the nanoparticle on the effective dispersion. We show that the effective diffusion of the nanoparticles reduces with an increase in nanoparticle volume fraction. The permeability of the blood vessels increases the effective dispersion at the inlet. The present study contributes to the fundamental understanding on how the particulate nature of blood influences nanoparticle delivery, and is of particular significance in nanomedicine design for targeted drug delivery applications.
Collapse
Affiliation(s)
- Sachin Shaw
- Department of Mathematics, Statistics and Computer Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | | | - Precious Sibanda
- Department of Mathematics, Statistics and Computer Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
7
|
Vincent PE, Weinberg PD. Flow-dependent concentration polarization and the endothelial glycocalyx layer: multi-scale aspects of arterial mass transport and their implications for atherosclerosis. Biomech Model Mechanobiol 2013; 13:313-26. [DOI: 10.1007/s10237-013-0512-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
8
|
Cai B, Fan J, Zeng M, Zhang L, Fu BM. Adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx. J Appl Physiol (1985) 2012; 113:1141-53. [PMID: 22858626 DOI: 10.1152/japplphysiol.00479.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the effect of tumor cell adhesion on microvascular permeability (P) in intact microvessels, we measured the adhesion rate of human mammary carcinoma MDA-MB-231, the hydraulic conductivity (L(p)), the P, and reflection coefficient (σ) to albumin of the microvessels at the initial tumor cell adhesion and after ∼45 min cell perfusion in the postcapillary venules of rat mesentery in vivo. Rats (Sprague-Dawley, 250-300 g) were anesthetized with pentobarbital sodium given subcutaneously. A midline incision was made in the abdominal wall, and the mesentery was gently taken out and arranged on the surface of a glass coverslip for the measurement. An individual postcapillary venule was perfused with cells at a rate of ∼1 mm/s, which is the mean blood flow velocity in this type of microvessels. At the initial tumor cell adhesion, which was defined as one adherent cell in ∼100- to 145-μm vessel segment, L(p) was 1.5-fold and P was 2.3-fold of their controls, and σ decreased from 0.92 to 0.64; after ∼45-min perfusion, the adhesion increased to ∼5 adherent cells in ∼100- to 145-μm vessel segment, while L(p) increased to 2.8-fold, P to 5.7-fold of their controls, and σ decreased from 0.92 to 0.42. Combining these measured data with the predictions from a mathematical model for the interendothelial transport suggests that tumor cell adhesion to the microvessel wall degrades the endothelial surface glycocalyx (ESG) layer. This suggestion was confirmed by immunostaining of heparan sulfate of the ESG on the microvessel wall. Preserving of the ESG by a plasma glycoprotein orosomucoid decreased the P to albumin and reduced the tumor cell adhesion.
Collapse
Affiliation(s)
- Bin Cai
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave., New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
9
|
Fu BM, Liu Y. Microvascular transport and tumor cell adhesion in the microcirculation. Ann Biomed Eng 2012; 40:2442-55. [PMID: 22476895 DOI: 10.1007/s10439-012-0561-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/22/2012] [Indexed: 01/01/2023]
Abstract
One critical step in tumor metastasis is tumor cell adhesion to the endothelium forming the microvessel wall. Understanding this step may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to, and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent ECs (interendothelial cleft) is the principal pathway for water and solutes transport through the microvessel wall in health. It is also suggested to be the pathway for high molecular weight plasma proteins, leukocytes and tumor cells across microvessel walls in disease. Thus the first part of the review introduced the mathematical models for water and solutes transport through the interendothelial cleft. These models, combined with the experimental results from in vivo animal studies and electron microscopic observations, are used to evaluate the role of the endothelial surface glycocalyx, the junction strand geometry in the interendothelial cleft, and the surrounding extracellular matrix and tissue cells, as the determinants of microvascular transport. The second part of the review demonstrated how the microvascular permeability, hydrodynamic factors, microvascular geometry and cell adhesion molecules affect tumor cell adhesion in the microcirculation.
Collapse
Affiliation(s)
- Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA,
| | | |
Collapse
|
10
|
Li G, Fu BM. An electrodiffusion model for the blood-brain barrier permeability to charged molecules. J Biomech Eng 2011; 133:021002. [PMID: 21280874 DOI: 10.1115/1.4003309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endothelial surface glycocalyx layer (SGL) and the basement membrane (BM) are two important components of the blood-brain barrier (BBB). They provide large resistance to solute transport across the BBB in addition to the tight junctions in the cleft between adjacent endothelial cells. Due to their glycosaminoglycan compositions, they carry negative charge under physiological conditions. To investigate the charge effect of the SGL and BM on the BBB permeability to charged solutes, we developed an electrodiffusion model for the transport of charged molecules across the BBB. In this model, constant charge densities were assumed in the SGL and in the BM. Both electrostatic and steric interaction and exclusion to charged molecules were considered within the SGL and the BM and at their interfaces with noncharged regions of the BBB. On the basis of permeability data for the positively charged ribonuclease (+4,radius=2.01 nm) and negatively charged α-lactalbumin (-10,radius=2.08 nm) measured in intact rat mesenteric and pial microvessels, our model predicted that the charge density in both SGL and BM would be ∼30 mEq/L, which is comparable to that in the SGL of mesenteric microvessels. Interestingly, our model also revealed that due to the largest concentration drop in the BM, there is a region with a higher concentration of negatively charged α-lactalbumin in the uncharged inter-endothelial cleft, although the concentration of α-lactalbumin is always lower than that of positively charged ribonuclease and that of a neutral solute in the charged SGL and BM.
Collapse
Affiliation(s)
- Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
11
|
Weinbaum S, Duan Y, Thi MM, You L. An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes). Cell Mol Bioeng 2011; 4:510-537. [PMID: 23976901 DOI: 10.1007/s12195-011-0179-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review we will examine from a biomechanical and ultrastructural viewpoint how the cytoskeletal specialization of three basic cell types, endothelial cells (ECs), epithelial cells (renal tubule) and dendritic cells (osteocytes), enables the mechano-sensing of fluid flow in both their native in vivo environment and in culture, and the downstream signaling that is initiated at the molecular level in response to fluid flow. These cellular responses will be discussed in terms of basic mysteries and paradoxes encountered by each cell type. In ECs fluid shear stress (FSS) is nearly entirely attenuated by the endothelial glycocalyx that covers their apical membrane and yet FSS is communicated to both intracellular and junctional molecular components in activating a wide variety of signaling pathways. The same is true in proximal tubule (PT) cells where a dense brush border of microvilli covers the apical surface and the flow at the apical membrane is negligible. A four decade old unexplained mystery is the ability of PT epithelia to reliably reabsorb 60% of the flow entering the tubule regardless of the glomerular filtration rate. In the cortical collecting duct (CCD) the flow rates are so low that a special sensing apparatus, a primary cilia is needed to detect very small variations in tubular flow. In bone it has been a century old mystery as to how osteocytes embedded in a stiff mineralized tissue are able to sense miniscule whole tissue strains that are far smaller than the cellular level strains required to activate osteocytes in vitro.
Collapse
Affiliation(s)
- Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
12
|
Modulation of the blood–brain barrier permeability by plasma glycoprotein orosomucoid. Microvasc Res 2010; 80:148-57. [DOI: 10.1016/j.mvr.2010.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 03/07/2010] [Accepted: 03/19/2010] [Indexed: 12/11/2022]
|
13
|
Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann Biomed Eng 2010; 38:1463-72. [PMID: 20087768 DOI: 10.1007/s10439-010-9920-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 01/07/2010] [Indexed: 12/12/2022]
Abstract
Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.
Collapse
|
14
|
A Time-Dependent Electrodiffusion-Convection Model for Charged Macromolecule Transport Across the Microvessel Wall and in the Interstitial Space. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Abstract
Over the past decade, since it was first observed in vivo, there has been an explosion in interest in the thin (approximately 500 nm), gel-like endothelial glycocalyx layer (EGL) that coats the luminal surface of blood vessels. In this review, we examine the mechanical and biochemical properties of the EGL and the latest studies on the interactions of this layer with red and white blood cells. This includes its deformation owing to fluid shear stress, its penetration by leukocyte microvilli, and its restorative response after the passage of a white cell in a tightly fitting capillary. We also examine recently discovered functions of the EGL in modulating the oncotic forces that regulate the exchange of water in microvessels and the role of the EGL in transducing fluid shear stress into the intracellular cytoskeleton of endothelial cells, in the initiation of intracellular signaling, and in the inflammatory response.
Collapse
Affiliation(s)
- Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA.
| | | | | |
Collapse
|
16
|
Litster A, Atwell R. Physiological and haematological findings and clinical observations in a model of acute systemic anaphylaxis in Dirofilaria immitis-sensitised cats. Aust Vet J 2006; 84:151-7. [PMID: 16739523 DOI: 10.1111/j.1751-0813.2006.tb12768.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aims to understand the pathophysiology of anaphylaxis in Dirofilaria immitis-sensitised cats by analysing objective physiological and haematological measurements after challenge. DESIGN Nineteen healthy D immitis-naive cats were sensitised using weekly injections of aluminium hydroxide-adjuvanted D immitis antigen, administered subcutaneously over 6 weeks. After sensitisation, cats (n = 16) were anaesthetised and challenged with intravenous D immitis antigen. A control group (n = 3) was sham-challenged using intravenous sterile 0.9% saline. Systolic blood pressure (measured non-invasively/indirectly), respiratory rate, degree of dyspnoea, blood O2 saturation, expired CO2, and heart rate and were measured immediately before and at 10 to 15 min intervals after challenge until terminal apnoea occurred or euthanasia at 140 mins post-challenge. Blood was collected for complete blood count immediately before and at 10, 20 and 35 mins after challenge. Clinical observations were recorded as they occurred. RESULTS Antigen-challenged cats were divided into two groups: acute (apnoea occurred within 25 mins of challenge) and subacute (breathing at 25 mins after challenge). In both groups, the degree of dyspnoea increased and blood O2 saturation and blood pressure decreased. Respiratory rate increased in the subacute group. Expired CO2 decreased in both Ag-challenged and control groups. Haematocrit increased in the subacute group. Neutrophil count decreased in the acute group and platelet count decreased in the subacute group. Eosinophil count decreased in the subacute and control groups. Sustained dyspnoea and gastrointestinal signs were the most common clinical manifestations of anaphylaxis in the antigen-challenged cats. CONCLUSIONS Intravenous challenge with D immitis antigen in sensitised cats results in dyspnoea, hypoxaemia and systemic hypotension accompanied by haemoconcentration.
Collapse
Affiliation(s)
- A Litster
- School of Veterinary Science, University of Queensland, St. Lucia, Queensland, 4072
| | | |
Collapse
|
17
|
Golovanov MV, Bauer J. Electron microscopic characterization of gels formed by blood cells of leukemia patients at hypertonicity. Colloids Surf B Biointerfaces 2005; 44:167-71. [PMID: 16081258 DOI: 10.1016/j.colsurfb.2005.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 05/31/2005] [Indexed: 11/19/2022]
Abstract
At hypertonicity some blood cells of patients suffering chronic leukemia can form gel like layers around themselves. These gels, which are sensitive to hyaluronidase, but not to trypsin are investigated by electron microscopy. The study revealed that the gels comprise a network of nanoparticles, which have diameters between 50 and 150 nm, are regularly ordered and linked to each other.
Collapse
MESH Headings
- Erythrocyte Membrane/drug effects
- Erythrocyte Membrane/physiology
- Erythrocyte Membrane/ultrastructure
- Erythrocytes/physiology
- Erythrocytes/ultrastructure
- Gels
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Microscopy, Electron, Scanning
- Nanostructures/ultrastructure
- Saline Solution, Hypertonic/pharmacology
Collapse
|
18
|
Chen B, Fu BM. An electrodiffusion-filtration model for effects of endothelial surface glycocalyx on microvessel permeability to macromolecules. J Biomech Eng 2005; 126:614-24. [PMID: 15648814 DOI: 10.1115/1.1800571] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endothelial surface glycocalyx plays an important role in the regulation of microvessel permeability by possibly changing its charge and configuration. To investigate the mechanisms by which surface properties of the endothelial cells control the changes in microvessel permeability, we extended the electrodiffusion model developed by Fu et al. [Am. J. Physiol. 284, H1240-1250 (2003)], which is for the interendothelial cleft with a negatively charged surface glycocalyx layer, to include the filtration due to hydrostatic and oncotic pressures across the microvessel wall as well as the electrical potential across the glycocalyx layer On the basis of the hypotheses proposed by Curry [Microcirculation 1(1): 11-26 (1994)], the predictions from this electrodiffusion-filtration model provide a good agreement with experimental data for permeability of negatively charged a-lactalbumin summarized in Curry [Microcirculation 1(1), 11-26 (1994)] under various conditions. In addition, we applied this new model to describe the transport of negatively charged macromolecules, bovine serum albumin (BSA), across venular microvessels in frog mesentery. According to the model, the convective component of the albumin transport is greatly diminished by the presence of a negatively charged glycocalyx under both normal and increased permeability conditions.
Collapse
Affiliation(s)
- Bin Chen
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
| | | |
Collapse
|
19
|
Guo P, Hillyard SD, Fu BM. A two-barrier compartment model for volume flow across amphibian skin. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1384-94. [PMID: 12920058 DOI: 10.1152/ajpregu.00168.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amphibian skin has long been used as a model tissue for the study of ion transport and osmotic water movement across tight epithelia. To understand the mechanism of water uptake across amphibian skin, we model the skin as a well-stirred compartment bounded by an apical barrier and a tissue barrier. The compartment represents the lateral intercellular space between cells in the stratum granulosum. The apical barrier represents the stratum corneum, the principal/mitochondria-rich cells, and the junctional area between cells. This barrier is hypothesized to have the ability to actively transport solutes through Na+-K+-ATPase. The actively transported solute flux is assumed to satisfy the Michaelis-Menten relationship. The tissue barrier represents a composite barrier comprising the stratum spinosum, the stratum germinativum, the basal lamina, and the dermis. Our model shows that 1) the predicted rehydration rates from apical bathing solutions are in good agreement with the experiment results in Hillyard and Larsen (J Comp Physiol 171: 283-292, 2001); 2) under their experimental conditions, there is a substantial volume flux coupled to the active solute flux and this coupled volume flux is nearly constant when the osmolality of the apical bathing solution is >100 mosmol/kgH2O; 3) the molar ratio of the actively transported solute flux to the coupled water flux is about 1:160, which is the same as that reported in Nielsen (J Membr Biol 159: 61-69, 1997).
Collapse
Affiliation(s)
- Peng Guo
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | | | | |
Collapse
|