1
|
Song Q, Alvarez-Laviada A, Schrup SE, Reilly-O'Donnell B, Entcheva E, Gorelik J. Opto-SICM framework combines optogenetics with scanning ion conductance microscopy for probing cell-to-cell contacts. Commun Biol 2023; 6:1131. [PMID: 37938652 PMCID: PMC10632396 DOI: 10.1038/s42003-023-05509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
We present a novel framework, Opto-SICM, for studies of cellular interactions in live cells with high spatiotemporal resolution. The approach combines scanning ion conductance microscopy, SICM, and cell-type-specific optogenetic interrogation. Light-excitable cardiac fibroblasts (FB) and myofibroblasts (myoFB) were plated together with non-modified cardiomyocytes (CM) and then paced with periodic illumination. Opto-SICM reveals the extent of FB/myoFB-CM cell-cell contacts and the dynamic changes over time not visible by optical microscopy. FB-CM pairs have lower gap junctional expression of connexin-43 and higher contact dynamism compared to myoFB-CM pairs. The responsiveness of CM to pacing via FB/myoFB depends on the dynamics of the contact but not on the area. The non-responding pairs have higher net cell-cell movement at the contact. These findings are relevant to cardiac disease states, where adverse remodeling leads to abnormal electrical excitation of CM. The Opto-SICM framework can be deployed to offer new insights on cellular and subcellular interactions in various cell types, in real-time.
Collapse
Affiliation(s)
- Qianqian Song
- Imperial College London, Du Cane road, W12 0NN, London, UK
| | | | - Sarah E Schrup
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA.
| | - Julia Gorelik
- Imperial College London, Du Cane road, W12 0NN, London, UK.
| |
Collapse
|
2
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
3
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|
5
|
Blandin CE, Gravez BJ, Hatem SN, Balse E. Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells 2021; 10:cells10092417. [PMID: 34572065 PMCID: PMC8468138 DOI: 10.3390/cells10092417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023] Open
Abstract
Both inherited and acquired cardiac arrhythmias are often associated with the abnormal functional expression of ion channels at the cellular level. The complex machinery that continuously traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been well established with the discovery of mutations in the genes encoding several ion channels and ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and post-transcriptional protein changes are common factors that disorganize normal channel trafficking during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5 channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on cardiac arrhythmias will emerge novel antiarrhythmic strategies.
Collapse
Affiliation(s)
- Camille E. Blandin
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Basile J. Gravez
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Stéphane N. Hatem
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- ICAN—Institute of Cardiometabolism and Nutrition, Institute of Cardiology, Pitié-Salpêtrière Hospital, Sorbonne University, F-75013 Paris, France
| | - Elise Balse
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- Correspondence:
| |
Collapse
|
6
|
Vermij SH, Rougier JS, Agulló-Pascual E, Rothenberg E, Delmar M, Abriel H. Single-Molecule Localization of the Cardiac Voltage-Gated Sodium Channel Reveals Different Modes of Reorganization at Cardiomyocyte Membrane Domains. Circ Arrhythm Electrophysiol 2020; 13:e008241. [PMID: 32536203 PMCID: PMC7368852 DOI: 10.1161/circep.119.008241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mutations in the gene encoding the cardiac voltage-gated sodium channel Nav1.5 cause various cardiac arrhythmias. This variety may arise from different determinants of Nav1.5 expression between cardiomyocyte domains. At the lateral membrane and T-tubules, Nav1.5 localization and function remain insufficiently characterized. METHODS We used novel single-molecule localization microscopy and computational modeling to define nanoscale features of Nav1.5 localization and distribution at the lateral membrane, the lateral membrane groove, and T-tubules in cardiomyocytes from wild-type (N=3), dystrophin-deficient (mdx; N=3) mice, and mice expressing C-terminally truncated Nav1.5 (ΔSIV; N=3). We moreover assessed T-tubules sodium current by recording whole-cell sodium currents in control (N=5) and detubulated (N=5) wild-type cardiomyocytes. RESULTS We show that Nav1.5 organizes as distinct clusters in the groove and T-tubules which density, distribution, and organization partially depend on SIV and dystrophin. We found that overall reduction in Nav1.5 expression in mdx and ΔSIV cells results in a nonuniform redistribution with Nav1.5 being specifically reduced at the groove of ΔSIV and increased in T-tubules of mdx cardiomyocytes. A T-tubules sodium current could, however, not be demonstrated. CONCLUSIONS Nav1.5 mutations may site-specifically affect Nav1.5 localization and distribution at the lateral membrane and T-tubules, depending on site-specific interacting proteins. Future research efforts should elucidate the functional consequences of this redistribution.
Collapse
Affiliation(s)
- Sarah H Vermij
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.H.V., J.-S.R., H.A.)
| | - Jean-Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.H.V., J.-S.R., H.A.)
| | | | - Eli Rothenberg
- Department of Biochemistry and Pharmacology (E.R.), New York University School of Medicine, NY
| | - Mario Delmar
- Department of Cardiology (M.D.), New York University School of Medicine, NY
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.H.V., J.-S.R., H.A.)
| |
Collapse
|
7
|
Rougier JS, Essers MC, Gillet L, Guichard S, Sonntag S, Shmerling D, Abriel H. A Distinct Pool of Na v1.5 Channels at the Lateral Membrane of Murine Ventricular Cardiomyocytes. Front Physiol 2019; 10:834. [PMID: 31333492 PMCID: PMC6619393 DOI: 10.3389/fphys.2019.00834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 01/22/2023] Open
Abstract
Background: In cardiac ventricular muscle cells, the presence of voltage-gated sodium channels Nav1.5 at the lateral membrane depends in part on the interaction between the dystrophin–syntrophin complex and the Nav1.5 C-terminal PDZ-domain-binding sequence Ser-Ile-Val (SIV motif). α1-Syntrophin, a PDZ-domain adaptor protein, mediates the interaction between Nav1.5 and dystrophin at the lateral membrane of cardiac cells. Using the cell-attached patch-clamp approach on cardiomyocytes expressing Nav1.5 in which the SIV motif is deleted (ΔSIV), sodium current (INa) recordings from the lateral membrane revealed a SIV-motif-independent INa. Since immunostaining has suggested that Nav1.5 is expressed in transverse (T-) tubules, this remaining INa might be carried by channels in the T-tubules. Of note, a recent study using heterologous expression systems showed that α1-syntrophin also interacts with the Nav1.5 N-terminus, which may explain the SIV-motif independent INa at the lateral membrane of cardiomyocytes. Aim: To address the role of α1-syntrophin in regulating the INa at the lateral membrane of cardiac cells. Methods and Results: Patch-clamp experiments in cell-attached configuration were performed on the lateral membranes of wild-type, α1-syntrophin knockdown, and ΔSIV ventricular mouse cardiomyocytes. Compared to wild-type, a reduction of the lateral INa was observed in myocytes from α1-syntrophin knockdown hearts. Similar to ΔSIV myocytes, a remaining INa was still recorded. In addition, cell-attached INa recordings from lateral membrane did not differ significantly between non-detubulated and detubulated ΔSIV cardiomyocytes. Lastly, we obtained evidence suggesting that cell-attached patch-clamp experiments on the lateral membrane cannot record currents carried by channels in T-tubules such as calcium channels. Conclusion: Altogether, these results suggest the presence of a sub-pool of sodium channels at the lateral membrane of cardiomyocytes that is independent of α1-syntrophin and the PDZ-binding motif of Nav1.5, located in membrane domains outside of T-tubules. The question of a T-tubular pool of Nav1.5 channels, however, remains open.
Collapse
Affiliation(s)
| | - Maria C Essers
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Ludovic Gillet
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Pain Center, Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | | | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Simeonov S, Schäffer TE. Ultrafast Imaging of Cardiomyocyte Contractions by Combining Scanning Ion Conductance Microscopy with a Microelectrode Array. Anal Chem 2019; 91:9648-9655. [PMID: 31247725 DOI: 10.1021/acs.analchem.9b01092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Beating cardiomyocytes undergo fast morphodynamics during the contraction-relaxation cycle. However, imaging these morphodynamics with a high spatial and temporal resolution is difficult, owing to a lack of suitable techniques. Here, we combine scanning ion conductance microscopy (SICM) with a microelectrode array (MEA) to image the three-dimensional (3D) topography of cardiomyocytes during a contraction-relaxation cycle with 1 μm spatial and 1 ms time resolution. We record the vertical motion of cardiomyocytes at many locations across a cell by SICM and synchronize these data using the simultaneously recorded action potential by the MEA as a time reference. This allows us to reconstruct the time-resolved 3D morphology of cardiomyocytes during a full contraction-relaxation cycle with a raw data rate of 200 μs/frame and to generate spatially resolved images of contractile parameters (maximum displacement, time delay, asymmetry factor). We use the MEA-SICM setup to visualize the effect of blebbistatin, a myosin II inhibitor, on the morphodynamics of contractions. Further, we find an upper limit of 0.02% for cell volume changes during an action potential. The results show that MEA-SICM provides an ultrafast imaging platform for investigating the functional interplay of cardiomyocyte electrophysiology and mechanics.
Collapse
Affiliation(s)
- Stefan Simeonov
- Institute of Applied Physics , University of Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Tilman E Schäffer
- Institute of Applied Physics , University of Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| |
Collapse
|
9
|
Abstract
Activation of the electrical signal and its transmission as a depolarizing wave in the whole heart requires highly organized myocyte architecture and cell-cell contacts. In addition, complex trafficking and anchoring intracellular machineries regulate the proper surface expression of channels and their targeting to distinct membrane domains. An increasing list of proteins, lipids, and second messengers can contribute to the normal targeting of ion channels in cardiac myocytes. However, their precise roles in the electrophysiology of the heart are far from been extensively understood. Nowadays, much effort in the field focuses on understanding the mechanisms that regulate ion channel targeting to sarcolemma microdomains and their organization into macromolecular complexes. The purpose of the present section is to provide an overview of the characterized partners of the main cardiac sodium channel, NaV1.5, involved in regulating the functional expression of this channel both in terms of trafficking and targeting into microdomains.
Collapse
|
10
|
Morris CE. Cytotoxic Swelling of Sick Excitable Cells - Impaired Ion Homeostasis and Membrane Tension Homeostasis in Muscle and Neuron. CURRENT TOPICS IN MEMBRANES 2018; 81:457-496. [PMID: 30243439 DOI: 10.1016/bs.ctm.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
When they become simultaneously leaky to both Na+ and Cl-, excitable cells are vulnerable to potentially lethal cytotoxic swelling. Swelling ensues in spite of an isosmotic milieu because the entering ions add osmolytes to the cytoplasm's high concentration of impermeant anionic osmolytes. An influx of osmotically-obliged water is unavoidable. A cell that cannot stanch at least one the leaks will succumb to death by Donnan effect. "Sick excitable cells" are those injured through ischemia, trauma, inflammation, hyperactivity, genetically-impaired membrane skeletons and other insults, all of which foster bleb-damage to regions of the plasma membrane. Nav channels resident in damaged membrane exhibit left-shifted kinetics; the corresponding Nav window conductance constitutes a Na+-leak. In cortical neurons, sustained depolarization to ∼-20mV elicits a sustained lethal gCl. Underlying Vrest in skeletal muscle is a constitutively active gCl; not surprisingly therefore, dystrophic muscle fibers, which are prone to bleb damage and which exhibit Nav-leak and Na+-overload, are prone to cytotoxic swelling. To restore viability in cytotoxically swelling neurons and muscle, the imperative of fully functional ion homeostasis is well-recognized. However, as emphasized here, in a healthy excitable cell, fully functional membrane tension homeostasis is also imperative. ATPase-pumps keep plasma membrane batteries charged, and ATPase-motor proteins maintain membrane tone. In sick excitable cells, neither condition prevails.
Collapse
Affiliation(s)
- Catherine E Morris
- Senior Scientist Emeritus, Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
Schierbaum N, Hack M, Betz O, Schäffer TE. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging. Anal Chem 2018; 90:5048-5054. [PMID: 29569436 DOI: 10.1021/acs.analchem.7b04764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.
Collapse
|
12
|
Vélez-Ortega AC, Frolenkov GI. Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy. Methods Mol Biol 2017; 1427:203-21. [PMID: 27259929 DOI: 10.1007/978-1-4939-3615-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3-4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette-which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier-is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface.Here, we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, College of Medicine, Chandler Medical Center, University of Kentucky, MS508, 800 Rose Street, Lexington, KY, 40536, USA
| | - Gregory I Frolenkov
- Department of Physiology, College of Medicine, Chandler Medical Center, University of Kentucky, MS508, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
13
|
Rivaud MR, Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Rothenberg E, Bezzina CR, Delmar M, Remme CA. Sodium Channel Remodeling in Subcellular Microdomains of Murine Failing Cardiomyocytes. J Am Heart Assoc 2017; 6:e007622. [PMID: 29222390 PMCID: PMC5779058 DOI: 10.1161/jaha.117.007622] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/13/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cardiac sodium channel (NaV1.5) dysfunction contributes to arrhythmogenesis during pathophysiological conditions. Nav1.5 localizes to distinct subcellular microdomains within the cardiomyocyte, where it associates with region-specific proteins, yielding complexes whose function is location specific. We herein investigated sodium channel remodeling within distinct cardiomyocyte microdomains during heart failure. METHODS AND RESULTS Mice were subjected to 6 weeks of transverse aortic constriction (TAC; n=32) to induce heart failure. Sham-operated on mice were used as controls (n=20). TAC led to reduced left ventricular ejection fraction, QRS prolongation, increased heart mass, and upregulation of prohypertrophic genes. Whole-cell sodium current (INa) density was decreased by 30% in TAC versus sham-operated on cardiomyocytes. On macropatch analysis, INa in TAC cardiomyocytes was reduced by 50% at the lateral membrane (LM) and by 40% at the intercalated disc. Electron microscopy and scanning ion conductance microscopy revealed remodeling of the intercalated disc (replacement of [inter-]plicate regions by large foldings) and LM (less identifiable T tubules and reduced Z-groove ratios). Using scanning ion conductance microscopy, cell-attached recordings in LM subdomains revealed decreased INa and increased late openings specifically at the crest of TAC cardiomyocytes, but not in groove/T tubules. Failing cardiomyocytes displayed a denser, but more stable, microtubule network (demonstrated by increased α-tubulin and Glu-tubulin expression). Superresolution microscopy showed reduced average NaV1.5 cluster size at the LM of TAC cells, in line with reduced INa. CONCLUSIONS Heart failure induces structural remodeling of the intercalated disc, LM, and microtubule network in cardiomyocytes. These adaptations are accompanied by alterations in NaV1.5 clustering and INa within distinct subcellular microdomains of failing cardiomyocytes.
Collapse
Affiliation(s)
- Mathilde R Rivaud
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands
- Division of Cardiology, New York University Medical Center, New York, NY
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Xianming Lin
- Division of Cardiology, New York University Medical Center, New York, NY
| | | | - Mingliang Zhang
- Division of Cardiology, New York University Medical Center, New York, NY
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU-School of Medicine, New York, NY
| | - Connie R Bezzina
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Mario Delmar
- Division of Cardiology, New York University Medical Center, New York, NY
| | - Carol Ann Remme
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
14
|
Rheinlaender J, Vogel S, Seifert J, Schächtele M, Borst O, Lang F, Gawaz M, Schäffer TE. Imaging the elastic modulus of human platelets during thrombininduced activation using scanning ion conductance microscopy. Thromb Haemost 2017; 113:305-11. [DOI: 10.1160/th14-05-0414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/28/2014] [Indexed: 01/19/2023]
Abstract
SummaryPlatelet activation plays a critical role in haemostasis and thrombosis. It is well-known that platelets generate contractile forces during activation. However, their mechanical material properties have rarely been investigated. Here, we use scanning ion conductance microscopy (SICM) to visualise morphological and mechanical properties of live human platelets at high spatial resolution. We found that their mean elastic modulus decreases during thrombin-induced activation by about a factor of two. We observed a similar softening of platelets during cytochalasin D-induced cytoskeleton depolymerisation. However, thrombin-induced temporal and spatial modulations of the elastic modulus were substantially different from cytochalasin D-mediated changes. We thereby provide new insights into the mechanics of haemostasis and establish SICM as a novel imaging platform for the ex vivo investigation of the mechanical properties of live platelets.
Collapse
|
15
|
Eichel CA, Beuriot A, Chevalier MYE, Rougier JS, Louault F, Dilanian G, Amour J, Coulombe A, Abriel H, Hatem SN, Balse E. Lateral Membrane-Specific MAGUK CASK Down-Regulates NaV1.5 Channel in Cardiac Myocytes. Circ Res 2016; 119:544-56. [PMID: 27364017 DOI: 10.1161/circresaha.116.309254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 12/24/2022]
Abstract
RATIONALE Mechanisms underlying membrane protein localization are crucial in the proper function of cardiac myocytes. The main cardiac sodium channel, NaV1.5, carries the sodium current (INa) that provides a rapid depolarizing current during the upstroke of the action potential. Although enriched in the intercalated disc, NaV1.5 is present in different membrane domains in myocytes and interacts with several partners. OBJECTIVE To test the hypothesis that the MAGUK (membrane-associated guanylate kinase) protein CASK (calcium/calmodulin-dependent serine protein kinase) interacts with and regulates NaV1.5 in cardiac myocytes. METHODS AND RESULTS Immunostaining experiments showed that CASK localizes at lateral membranes of cardiac myocytes, in association with dystrophin. Whole-cell patch clamp showed that CASK-silencing increases INa in vitro. In vivo CASK knockdown similarly increased INa recorded in freshly isolated myocytes. Pull-down experiments revealed that CASK directly interacts with the C-terminus of NaV1.5. CASK silencing reduces syntrophin expression without affecting NaV1.5 and dystrophin expression levels. Total Internal Reflection Fluorescence microscopy and biotinylation assays showed that CASK silencing increased the surface expression of NaV1.5 without changing mRNA levels. Quantification of NaV1.5 expression at the lateral membrane and intercalated disc revealed that the lateral membrane pool only was increased upon CASK silencing. The protein transport inhibitor brefeldin-A prevented INa increase in CASK-silenced myocytes. During atrial dilation/remodeling, CASK expression was reduced but its localization remained unchanged. CONCLUSION This study constitutes the first description of an unconventional MAGUK protein, CASK, which directly interacts with NaV1.5 channel and controls its surface expression at the lateral membrane by regulating ion channel trafficking.
Collapse
Affiliation(s)
- Catherine A Eichel
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Adeline Beuriot
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Morgan Y E Chevalier
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Jean-Sébastien Rougier
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Florent Louault
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Gilles Dilanian
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Julien Amour
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Alain Coulombe
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Hugues Abriel
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Stéphane N Hatem
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.)
| | - Elise Balse
- From the Sorbonne Universités, UPMC University Paris 06, Inserm, UMR_S 1166, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, France (C.A.E., A.B., F.L., G.D., J.A., A.C., S.N.H., E.B.); Département de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, France (J.A., S.N.H.); and Department of Clinical Research, University of Bern, Switzerland (M.Y.E.C., J.-S.R., H.A.).
| |
Collapse
|
16
|
Characterization of tip size and geometry of the pipettes used in scanning ion conductance microscopy. Micron 2016; 83:11-8. [DOI: 10.1016/j.micron.2016.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 11/20/2022]
|
17
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
18
|
Gesper A, Thatenhorst D, Wiese S, Tsai T, Dietzel ID, Happel P. Long-term, long-distance recording of a living migrating neuron by scanning ion conductance microscopy. SCANNING 2015; 37:226-231. [PMID: 25728639 DOI: 10.1002/sca.21200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Bias-free, three-dimensional imaging of entire living cellular specimen is required for investigating shape and volume changes that occur during cellular growth or migration. Here we present fifty consecutive recordings of a living cultured neuron from a mouse dorsal root ganglion obtained by Scanning ion conductance microscopy (SICM). We observed a saltatory migration of the neuron with a mean velocity of approximately 20 μm/h. These results demonstrate the non-invasiveness of SICM, which makes it unique among the scanning probe microscopes. In contrast to SICM, most scanning probe techniques require a usually denaturating preparation of the cells, or they exert a non-negligible force on the cellular membrane, impeding passive observation. Moreover, the present series of recordings demonstrates the potential use of SICM for the detailed investigation of cellular migration and membrane surface dynamics even of such delicate samples as living neurons.
Collapse
Affiliation(s)
- Astrid Gesper
- Department of Biochemisty II, Electrobiochemistry of Neural Cells, Ruhr University Bochum, Bochum, Germany
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr University Bochum, Bochum, Germany
| | - Denis Thatenhorst
- Department of Biochemisty II, Electrobiochemistry of Neural Cells, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr University Bochum, Bochum, Germany
| | - Stefan Wiese
- Department of Cell Morphology and Molecular Neurobiology, Molecular Cell Biology, Ruhr-University Bochum, Bochum, Germany
| | - Teresa Tsai
- Department of Cell Morphology and Molecular Neurobiology, Molecular Cell Biology, Ruhr-University Bochum, Bochum, Germany
| | - Irmgard D Dietzel
- Department of Biochemisty II, Electrobiochemistry of Neural Cells, Ruhr University Bochum, Bochum, Germany
| | - Patrick Happel
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Thatenhorst D, Rheinlaender J, Schäffer TE, Dietzel ID, Happel P. Effect of Sample Slope on Image Formation in Scanning Ion Conductance Microscopy. Anal Chem 2014; 86:9838-45. [DOI: 10.1021/ac5024414] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Denis Thatenhorst
- Department
of Biochemistry II, Electrobiochemistry of Neural Cells, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
- International
Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Johannes Rheinlaender
- Institute
of Applied Physics and LISA+, University of Tübingen, Auf
der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilman E. Schäffer
- Institute
of Applied Physics and LISA+, University of Tübingen, Auf
der Morgenstelle 10, 72076 Tübingen, Germany
| | - Irmgard D. Dietzel
- Department
of Biochemistry II, Electrobiochemistry of Neural Cells, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Patrick Happel
- Central
Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
20
|
Cardiac mechano-electric coupling research: Fifty years of progress and scientific innovation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:71-5. [DOI: 10.1016/j.pbiomolbio.2014.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
|
21
|
Reed A, Kohl P, Peyronnet R. Molecular candidates for cardiac stretch-activated ion channels. Glob Cardiol Sci Pract 2014; 2014:9-25. [PMID: 25405172 PMCID: PMC4220428 DOI: 10.5339/gcsp.2014.19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/08/2014] [Indexed: 01/20/2023] Open
Abstract
The heart is a mechanically-active organ that dynamically senses its own mechanical environment. This environment is constantly changing, on a beat-by-beat basis, with additional modulation by respiratory activity and changes in posture or physical activity, and further overlaid with more slowly occurring physiological (e.g. pregnancy, endurance training) or pathological challenges (e.g. pressure or volume overload). Far from being a simple pump, the heart detects changes in mechanical demand and adjusts its performance accordingly, both via heart rate and stroke volume alteration. Many of the underlying regulatory processes are encoded intracardially, and are thus maintained even in heart transplant recipients. Over the last three decades, molecular substrates of cardiac mechanosensitivity have gained increasing recognition in the scientific and clinical communities. Nonetheless, the processes underlying this phenomenon are still poorly understood. Stretch-activated ion channels (SAC) have been identified as one contributor to mechanosensitive autoregulation of the heartbeat. They also appear to play important roles in the development of cardiac pathologies – most notably stretch-induced arrhythmias. As recently discovered, some established cardiac drugs act, in part at least, via mechanotransduction pathways suggesting SAC as potential therapeutic targets. Clearly, identification of the molecular substrate of cardiac SAC is of clinical importance and a number of candidate proteins have been identified. At the same time, experimental studies have revealed variable–and at times contrasting–results regarding their function. Further complication arises from the fact that many ion channels that are not classically defined as SAC, including voltage and ligand-gated ion channels, can respond to mechanical stimulation. Here, we summarise what is known about the molecular substrate of the main candidates for cardiac SAC, before identifying potential further developments in this area of translational research.
Collapse
Affiliation(s)
- Alistair Reed
- Medical Sciences Division, University of Oxford, United Kingdom
| | | | | |
Collapse
|
22
|
Dague E, Genet G, Lachaize V, Guilbeau-Frugier C, Fauconnier J, Mias C, Payré B, Chopinet L, Alsteens D, Kasas S, Severac C, Thireau J, Heymes C, Honton B, Lacampagne A, Pathak A, Sénard JM, Galés C. Atomic force and electron microscopic-based study of sarcolemmal surface of living cardiomyocytes unveils unexpected mitochondrial shift in heart failure. J Mol Cell Cardiol 2014; 74:162-72. [PMID: 24839910 DOI: 10.1016/j.yjmcc.2014.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.
Collapse
Affiliation(s)
- Etienne Dague
- CNRS, LAAS, F-31400 Toulouse, France; CNRS, ITAV-USR3505, Toulouse, France; Université de Toulouse, ITAV, LAAS, F-31400 Toulouse France.
| | - Gaël Genet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | | | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France; Department of Histopathology, Centre Hospitalier Universitaire de Toulouse, 31432 Toulouse, France
| | - Jérémy Fauconnier
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Céline Mias
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | - Bruno Payré
- Centre de Microscopie Électronique Appliquée à la Biologie, Faculté de Médecine Rangueil, 31062 Toulouse, France
| | - Louise Chopinet
- CNRS, LAAS, F-31400 Toulouse, France; CNRS, IPBS-UMR5089, F-31077 Toulouse, France
| | - David Alsteens
- Institute of Life Sciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Sandor Kasas
- Department of Cellular Biology and Morphology, Université de Lausanne, Institut de Physique des Systèmes Biologiques, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Childerick Severac
- CNRS, ITAV-USR3505, Toulouse, France; Université de Toulouse, ITAV, LAAS, F-31400 Toulouse France
| | - Jérôme Thireau
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | - Benjamin Honton
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | - Alain Lacampagne
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Atul Pathak
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France; Department of Clinical Pharmacology, Centre Hospitalier Universitaire de Toulouse, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France; Department of Clinical Pharmacology, Centre Hospitalier Universitaire de Toulouse, F-31432 Toulouse, France
| | - Céline Galés
- CNRS, ITAV-USR3505, Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France.
| |
Collapse
|
23
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
24
|
Schäffer TE. Nanomechanics of molecules and living cells with scanning ion conductance microscopy. Anal Chem 2013; 85:6988-94. [PMID: 23692368 DOI: 10.1021/ac400686k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hydrodynamic flow through a nanopipet in a scanning ion conductance microscope (SICM) can exert localized forces on a sample surface. These forces can be used for trapping of molecules in lipid bilayers and for mapping the mechanical properties of living cells.
Collapse
Affiliation(s)
- Tilman E Schäffer
- University of Tübingen, Department of Physics and LISA+, Tübingen, Germany
| |
Collapse
|
25
|
Dufrêne YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. NANOSCALE 2013; 5:4094-4104. [PMID: 23535827 DOI: 10.1039/c3nr00340j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
26
|
Stanley WC, Keehan KH. Update on innovative initiatives for the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2013; 304:H1045-9. [PMID: 23457015 DOI: 10.1152/ajpheart.00082.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|