1
|
Sharma G, Chaurasia SS, Carlson MA, Mishra PK. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Am J Physiol Heart Circ Physiol 2024; 327:H1327-H1342. [PMID: 39453429 DOI: 10.1152/ajpheart.00539.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department Ophthalmology & Visual Sciences, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
2
|
Claycombe-Larson KJ, Alvine T, Wu D, Kalupahana NS, Moustaid-Moussa N, Roemmich JN. Nutrients and Immunometabolism: Role of Macrophage NLRP3. J Nutr 2020; 150:1693-1704. [PMID: 32271912 DOI: 10.1093/jn/nxaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation is largely mediated by immune cells responding to invading pathogens, whereas metabolism is oriented toward producing usable energy for vital cell functions. Immunometabolic alterations are considered key determinants of chronic inflammation, which leads to the development of chronic diseases. Studies have demonstrated that macrophages and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome are activated in key metabolic tissues to contribute to increased risk for type 2 diabetes mellitus, Alzheimer disease, and liver diseases. Thus, understanding the tissue-/cell-type-specific regulation of the NLRP3 inflammasome is crucial for developing intervention strategies. Currently, most of the nutrients and bioactive compounds tested to determine their inflammation-reducing effects are limited to animal models. Future studies need to address how dietary compounds regulate immune and metabolic cell reprograming in humans.
Collapse
Affiliation(s)
- Kate J Claycombe-Larson
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Travis Alvine
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Dayong Wu
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | - Naima Moustaid-Moussa
- Nutritional Science Department and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - James N Roemmich
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| |
Collapse
|
3
|
Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1535-43. [PMID: 26923433 DOI: 10.1016/j.bbalip.2016.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide non-invasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
4
|
Ojaimi C, Kinugawa S, Recchia FA, Hintze TH. Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism. Cardiovasc Diabetol 2010; 9:43. [PMID: 20735837 PMCID: PMC2936363 DOI: 10.1186/1475-2840-9-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022] Open
Abstract
Background The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: 1) baseline coronary blood flow (CBF) was significantly decreased, 2) endothelium-dependent (ACh) coronary vasodilation was impaired, and 3) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes. Methods Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4). Results The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca2+ cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated. Conclusion our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.
Collapse
Affiliation(s)
- Caroline Ojaimi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
5
|
Williams JG, Ojaimi C, Qanud K, Zhang S, Xu X, Recchia FA, Hintze TH. Coronary nitric oxide production controls cardiac substrate metabolism during pregnancy in the dog. Am J Physiol Heart Circ Physiol 2008; 294:H2516-23. [PMID: 18424630 DOI: 10.1152/ajpheart.01196.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to examine the role of nitric oxide (NO) in the control of cardiac metabolism at 60 days of pregnancy (P60) in the dog. There was a basal increase in diastolic coronary blood flow during pregnancy and a statistically significant increase in cardiac output (55 +/- 4%) and in cardiac NOx production (44 +/- 4 to 59 +/- 3 nmol/min, P < 0.05). Immunohistochemistry of the left ventricle showed an increase in endothelial nitric oxide synthase staining in the endothelial cells at P60. NO-dependent coronary vasodilation (Bezold-Jarisch reflex) was increased by 20% and blocked by N(G)-nitro-l-arginine methyl ester (l-NAME). Isotopically labeled substrates were infused to measure oleate, glucose uptake, and oxidation. Glucose oxidation was not significantly different in P60 hearts (5.4 +/- 0.5 vs. 6.2 +/- 0.4 micromol/min) but greatly increased in response to l-NAME injection (to 19.9 +/- 0.9 micromol/min, P < 0.05). Free fatty acid (FFA) oxidation was increased in P60 (from 5.3 +/- 0.6 to 10.4 +/- 0.5 micromol/min, P < 0.05) and decreased in response to l-NAME (to 4.5 +/- 0.5 micromol/min, P < 0.05). There was an increased oxidation of FFA for ATP production but no change in the respiratory quotient during pregnancy. Genes associated with glucose and glycogen metabolism were downregulated, whereas genes involved in FFA oxidation were elevated. The acute inhibition of NO shifts the heart away from FFA and toward glucose metabolism despite the downregulation of the carbohydrate oxidative pathway. The increase in endothelium-derived NO during pregnancy results in a tonic inhibition of glucose oxidation and reliance on FFA uptake and oxidation to support ATP synthesis in conjunction with upregulation of FFA metabolic enzymes.
Collapse
Affiliation(s)
- Jeffrey G Williams
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhang HX, Zang YM, Huo JH, Liang SJ, Zhang HF, Wang YM, Fan Q, Guo WY, Wang HC, Gao F. Physiologically tolerable insulin reduces myocardial injury and improves cardiac functional recovery in myocardial ischemic/reperfused dogs. J Cardiovasc Pharmacol 2007; 48:306-13. [PMID: 17204910 DOI: 10.1097/01.fjc.0000249873.73197.c3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was designed to examine whether physiologically tolerable insulin, which maintains lower blood glucose, can protect the myocardium against ischemia/reperfusion (I/R) injury in a preclinical large animal model. Adult dogs were subjected to 50 minutes of myocardial ischemia (80% reduction in coronary blood flow) followed by 4 hours of reperfusion and treated with vehicle, glucose-insulin-potassium (GIK; glucose, 250 g/L; insulin, 60 U/L; potassium, 80 mmol/L), GK, or low-dose insulin (30 U/L) 10 minutes before reperfusion. Treatment with GIK exerted significant cardioprotective effects as evidenced by improved cardiac function, improved coronary blood flow, reduced infarct size, and myocardial apoptosis. In contrast, treatment with GK increased blood glucose level and aggravated myocardial I/R injury. It is interesting that treatment with insulin alone at the dose that reduced blood glucose to a clinically tolerable level exerted significant cardioprotective effects that were comparable to that seen in the GIK-treated group. This low-dose insulin had no effect on coronary blood flow after reperfusion but markedly reduced coronary reactive hyperemia and switched myocardial substrate uptake from fat to carbohydrate. Our results suggest that lower glucose supply to the ischemic myocardium at early reperfusion may create a "metabolic postconditioning" and thus reduce myocardial ischemia/reperfusion injury after prolonged reperfusion.
Collapse
Affiliation(s)
- Hang-Xiang Zhang
- Department of Physiology and Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ma G, Al-Shabrawey M, Johnson JA, Datar R, Tawfik HE, Guo D, Caldwell RB, Caldwell RW. Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:415-27. [PMID: 16955284 DOI: 10.1007/s00210-006-0102-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 08/01/2006] [Indexed: 12/31/2022]
Abstract
The aims of this study were to determine effects of diabetes duration on myocardial ischemia/reperfusion (I/R) injury and test whether time-dependent differences in sensitivity of the streptozotocin diabetic rat heart to I/R are related to differences in vascular density, levels of vascular endothelial growth factor (VEGF) or endothelial nitric oxide synthase (eNOS) expression, NO formation, activation of Akt, and/or oxidative stress. After 2 or 6 weeks of streptozotocin-induced diabetes, I/R injury was induced by occlusion (30 min) and reperfusion of the left descending coronary artery. After 2 weeks of diabetes, infarct size and cleavage of caspase-3, a proapoptosis signal, were decreased as compared with normoglycemic controls or rats that had been diabetic for 6 weeks, whereas capillary density and levels of VEGF and eNOS protein and cardiac NO(x) levels were all increased. Phosphorylation of Akt, a prosurvival signal, was also significantly increased after 2 weeks of diabetes. Cardiac lipid peroxidation was comparable to controls after 2 weeks of diabetes, whereas levels of nitrotyrosine, a peroxynitrite biomarker, were reduced. After 6 weeks of diabetes, lipid peroxidation was increased and levels of VEGF and plasma NO were reduced as compared with controls or rats diabetic for 2 weeks. Our results indicate endogenous cardioprotective mechanisms become transiently activated in this early stage of diabetes and that this may protect the heart from I/R injury through enhancement of VEGF and eNOS expression, NO formation, activation of cell survival signals, and decreased oxidative stress.
Collapse
Affiliation(s)
- Guochuan Ma
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta, GA, 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 2005; 108:225-56. [PMID: 15949847 DOI: 10.1016/j.pharmthera.2005.04.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 02/04/2023]
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. To date, 3 distinct NOS isoforms have been identified: neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3). Biochemically, NOS consists of a flavin-containing reductase domain, a heme-containing oxygenase domain, and regulatory sites. NOS catalyse an overall 5-electron oxidation of one Nomega-atom of the guanidino group of L-arginine to form NO and L-citrulline. NO exerts a plethora of biological effects in the cardiovascular system. The basal formation of NO in mitochondria by a mitochondrial NOS seems to be one of the main regulators of cellular respiration, mitochondrial transmembrane potential, and transmembrane proton gradient. This review focuses on recent advances in the understanding of the role of enzyme and enzyme-independent NO formation, regulation of NO bioactivity, new aspects of NO on cardiac function and morphology, and the clinical impact and perspectives of these recent advances in our knowledge on NO-related pathways.
Collapse
Affiliation(s)
- R Schulz
- Institut für Pathophysiologie, Zentrum für Innere Medizin des Universitätsklinikums Essen, Germany.
| | | | | | | | | |
Collapse
|
9
|
Walsh EK, Huang H, Wang Z, Williams J, de Crom R, van Haperen R, Thompson CI, Lefer DJ, Hintze TH. Control of myocardial oxygen consumption in transgenic mice overexpressing vascular eNOS. Am J Physiol Heart Circ Physiol 2004; 287:H2115-21. [PMID: 15284070 DOI: 10.1152/ajpheart.00267.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVo2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) ( n = 22) and wild-type (WT) mice ( n = 24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 ± 2.3 to 109 ± 2.3 mmHg; P < 0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 ± 0.8 to 7.6 ± 0.4 4 mmHg·ml−1·min; P < 0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 ± 0.4 mmHg·ml−1·min) compared with male eNOS mice (8.6 ± 0.5, mmHg·ml·min−1; P < 0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVo2was determined as the percent decrease during increasing doses (10−10to 10−4mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10−12to 10−6mol/l), or S-nitroso- N-acetyl penicillamine (SNAP; 10−7to 10−4mol/l). Baseline MVo2was not different between WT (181 ± 13 nmol·g−1·min−1) and eNOS Tg (188 ± 14 nmol·g−1·min−1). BK decreased MVo2(10−4mol/l) in WT by 17% ± 1.1 and 33% ± 2.7 in eNOS Tg ( P < 0.05). CCh also decreased MVo2, 10−4mol/l, in WT by 20% ± 1.7 and 31% ± 2.0 in eNOS Tg ( P < 0.05). Forskolin (10−6mol/l) or SNAP (10−4mol/l) also decreased MVo2in WT by 24% ± 2.8 and 36% ± 1.8 versus eNOS 31% ± 1.8 and 37% ± 3.5, respectively. N-nitro-l-arginine methyl ester (10−3mol/l) inhibited the MVo2reduction to BK, CCh, and forskolin by a similar degree ( P < 0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVo2by eNOS-derived NO.
Collapse
Affiliation(s)
- E K Walsh
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|