1
|
Nelapudi N, Boskind M, Hu XQ, Mallari D, Chan M, Wilson D, Romero M, Albert-Minckler E, Zhang L, Blood AB, Wilson CG, Puglisi JL, Wilson SM. Long-term hypoxia modulates depolarization activation of BK Ca currents in fetal sheep middle cerebral arterial myocytes. Front Physiol 2024; 15:1479882. [PMID: 39563935 PMCID: PMC11573761 DOI: 10.3389/fphys.2024.1479882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Previous evidence indicates that gestational hypoxia disrupts cerebrovascular development, increasing the risk of intracranial hemorrhage and stroke in the newborn. Due to the role of cytosolic Ca2+ in regulating vascular smooth muscle (VSM) tone and fetal cerebrovascular blood flow, understanding Ca2+ signals can offer insight into the pathophysiological disruptions taking place in hypoxia-related perinatal cerebrovascular disease. This study aimed to determine the extent to which gestational hypoxia disrupts local Ca2+ sparks and whole-cell Ca2+ signals and coupling with BKCa channel activity. Methods Confocal imaging of cytosolic Ca2+ and recording BKCa currents of fetal sheep middle cerebral arterial (MCA) myocytes was performed. MCAs were isolated from term fetal sheep (∼140 days of gestation) from ewes held at low- (700 m) and high-altitude (3,801 m) hypoxia (LTH) for 100+ days of gestation. Arteries were depolarized with 30 mM KCl (30K), in the presence or absence of 10 μM ryanodine (Ry), to block RyR mediated Ca2+ release. Results Membrane depolarization increased Ry-sensitive Ca2+ spark frequency in normoxic and LTH groups along with BKCa activity. LTH reduced Ca2+ spark and whole-cell Ca2+ activity and induced a large leftward shift in the voltage-dependence of BKCa current activation. The influence of LTH on the spatial and temporal aspects of Ca2+ sparks and whole-cell Ca2+ responses varied. Discussion Overall, LTH attenuates Ca2+ signaling while increasing the coupling of Ca2+ sparks to BKCa activity; a process that potentially helps maintain oxygen delivery to the developing brain.
Collapse
Affiliation(s)
- Nikitha Nelapudi
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Madison Boskind
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Xiang-Qun Hu
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - David Mallari
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Michelle Chan
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Devin Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Eris Albert-Minckler
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Christopher G Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose Luis Puglisi
- Department of Biostatistics, California Northstate University School of Medicine, Elk Grove, CA, United States
| | - Sean M Wilson
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
2
|
Lu A, Kimble M, Justinen S, Morris DP, Wang C, Martinez DE, Hessinger DA. BK Channels Function in Nematocyst Discharge from Vibration-Sensitive Cnidocyte Supporting Cell Complexes of the Sea Anemone Diadumene lineata. THE BIOLOGICAL BULLETIN 2023; 245:88-102. [PMID: 38976849 DOI: 10.1086/730702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractIntegrated chemo- and mechanosensory pathways, along with activated calcium influxes, regulate nematocyst discharge from sea anemone tentacles. Discharge from vibration-sensitive Type A cnidocyte supporting cell complexes use calcium-conducting transient receptor potential V4-like channels. Because calcium influxes often couple with calcium-activated, large-conductance potassium (BK) channels, we hypothesized that BK channels function in nematocyst discharge. To verify this hypothesis, we first tested five selective BK channel blockers on nematocyst-mediated prey killing in Diadumene lineata (aka Haliplanella luciae). All tested BK channel blockers inhibited prey killing at concentrations comparable to their inhibition of vertebrate BK channels. In addition, the BK channel blocker paxilline selectively inhibited prey killing mediated by vibration-sensitive Type A cnidocyte supporting cell complexes. We queried a mammalian BKα amino acid sequence to the Exaiptasia diaphena database, from which we identified a putative anemone, pore-forming BKα subunit sequence. Using the E. diaphena BKα sequence as a template, we assembled a BKα transcript from our assembled D. lineata transcriptome. In addition, the hydra homolog of D. lineata BKα localizes to nematocytes on the hydra single-cell RNA sequencing map. Our findings suggest that D. lineata expresses BK channels that play a role in vibration-sensitive nematocyst discharge from Type A cnidocyte supporting cell complexes. We believe this is the first functional demonstration of BK channels in nonbilaterians. Because stimulated chemoreceptors frequency tune Type A cnidocyte supporting cell complexes to frequencies matching swimming movements of prey via a protein kinase A signaling pathway and protein kinase A generally activates BK channels, we suggest that D. lineata BK channels may participate in protein kinase A-mediated frequency tuning.
Collapse
|
3
|
Wang YX, Reyes-García J, Di Mise A, Zheng YM. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension. J Gen Physiol 2023; 155:e202213100. [PMID: 36625865 PMCID: PMC9836826 DOI: 10.1085/jgp.202213100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH. More specifically, dissociation of the RyR2-FKBP12.6 complex is a consequence of increased mitochondrial ROS generation mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6 dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad de México, México
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Reid C, Romero M, Chang SB, Osman N, Puglisi JL, Wilson CG, Blood AB, Zhang L, Wilson SM. Long-Term Hypoxia Negatively Influences Ca2+ Signaling in Basilar Arterial Myocytes of Fetal and Adult Sheep. Front Physiol 2022; 12:760176. [PMID: 35115953 PMCID: PMC8804533 DOI: 10.3389/fphys.2021.760176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Cerebral arterial vasoreactivity is vital to the regulation of cerebral blood flow. Depolarization of arterial myocytes elicits whole-cell Ca2+ oscillations as well as subcellular Ca2+ sparks due to activation of ryanodine receptors on the sarcoplasmic reticulum. Previous evidence illustrates that contraction of cerebral arteries from sheep and underlying Ca2+ signaling pathways are modified by age and that long-term hypoxia (LTH) causes aberrations in Ca2+ signaling pathways and downstream effectors impacting vasoregulation. We hypothesize that age and LTH affect the influence of membrane depolarization on whole-cell intracellular Ca2+ oscillations and sub-cellular Ca2+ spark activity in cerebral arteries. To test this hypothesis, we examined Ca2+ oscillatory and spark activities using confocal fluorescence imaging techniques of Fluo-4 loaded basilar arterial myocytes of low- and high-altitude term fetal (∼145 days of gestation) and adult sheep, where high-altitude pregnant and non-pregnant sheep were placed at 3,801 m for >100 days. Ca2+ oscillations and sparks were recorded using an in situ preparation evaluated in the absence or presence of 30 mM K+ (30K) to depolarize myocytes. Myocytes from adult animals tended to have a lower basal rate of whole-cell Ca2+ oscillatory activity and 30K increased the activity within cells. LTH decreased the ability of myocytes to respond to depolarization independent of age. These observations illustrate that both altitude and age play a role in affecting whole-cell and localized Ca2+ signaling, which are important to arterial vasoreactivity and cerebral blood flow.
Collapse
Affiliation(s)
- Casey Reid
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Stephanie B. Chang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Noah Osman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose L. Puglisi
- Department of Biostatistics, School of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Christopher G. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B. Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
- *Correspondence: Sean M. Wilson,
| |
Collapse
|
5
|
Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP. Hypoxic Regulation of the Large-Conductance, Calcium and Voltage-Activated Potassium Channel, BK. Front Physiol 2022; 12:780206. [PMID: 35002762 PMCID: PMC8727448 DOI: 10.3389/fphys.2021.780206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits β (β1–β4), γ (γ1–γ4), and LINGO1. The modification of biophysical properties of BK channels by β subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and β subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+]i), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-β1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated β1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
Collapse
Affiliation(s)
- Sara V Ochoa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Liliana Otero
- Center of Dental Research Dentistry Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Fernando Hinostroza
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Facultad de Ciencias de la Salud, Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
6
|
Sancho M, Kyle BD. The Large-Conductance, Calcium-Activated Potassium Channel: A Big Key Regulator of Cell Physiology. Front Physiol 2021; 12:750615. [PMID: 34744788 PMCID: PMC8567177 DOI: 10.3389/fphys.2021.750615] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Large-conductance Ca2+-activated K+ channels facilitate the efflux of K+ ions from a variety of cells and tissues following channel activation. It is now recognized that BK channels undergo a wide range of pre- and post-translational modifications that can dramatically alter their properties and function. This has downstream consequences in affecting cell and tissue excitability, and therefore, function. While finding the “silver bullet” in terms of clinical therapy has remained elusive, ongoing research is providing an impressive range of viable candidate proteins and mechanisms that associate with and modulate BK channel activity, respectively. Here, we provide the hallmarks of BK channel structure and function generally, and discuss important milestones in the efforts to further elucidate the diverse properties of BK channels in its many forms.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Barry D Kyle
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, Chirinos JA. Systemic Hypertension at High Altitude. Hypertension 2019; 72:567-578. [PMID: 30354760 DOI: 10.1161/hypertensionaha.118.11140] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Offdan Narvaez-Guerra
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Karela Herrera-Enriquez
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Josefina Medina-Lezama
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia (J.A.C.)
| |
Collapse
|
8
|
Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R. Negative feedback regulation of vasocontraction by potassium channels in 10- to 15-day-old rats: Dominating role of K v 7 channels. Acta Physiol (Oxf) 2019; 225:e13176. [PMID: 30136434 DOI: 10.1111/apha.13176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
AIM Potassium channels are key regulators of smooth muscle membrane potential and arterial tone. However, the roles of potassium channels in vascular tone regulation in the systemic circulation during early postnatal development are poorly understood. Therefore, this study tested the hypothesis that the negative feedback regulation of vasocontraction by potassium channels changes during maturation. METHODS Experiments were performed on endothelium-denuded saphenous arteries from 10- to 15-day-old and 2- to 3-month-old male rats. Isometric force and membrane potential were recorded using wire myography and the sharp microelectrode technique respectively; mRNA and protein contents were determined by qPCR and Western blotting. RESULTS The effects of Kv 1, Kir and Kv 7 channel blockers (DPO-1, BaCl2 , XE991) on methoxamine-induced contraction were larger in arteries of 10- to 15-day-old compared to 2- to 3-month-old animals. In contrast, the BKC a channel blocker iberiotoxin had a stronger influence in 2- to 3- month-old rats. The effects of KATP and Kv 2 channel blockers (glibenclamide, stromatoxin) were not pronounced at both ages. The larger influence of Kv 7 and Kir channel blockade on arterial contraction in 10- to 15-day-old rats was associated with more prominent smooth muscle depolarization. The developmental alterations in potassium channel functioning were generally consistent with their mRNA and protein expression levels in arterial smooth muscle. CONCLUSION The negative feedback regulation of vasocontraction by potassium channels varies during maturation depending on the channel type. A dominating contribution of Kv 7 channels to the regulation of basal tone and agonist-induced contraction was observed in arteries of 10- to 15-day-old animals.
Collapse
Affiliation(s)
- Anastasia A. Shvetsova
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Heidelberg Germany
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - Dina K. Gaynullina
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
- Department of Physiology; Russian National Research Medical University; Moscow Russia
| | - Olga S. Tarasova
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Heidelberg Germany
| |
Collapse
|
9
|
Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch 2018; 470:1271-1289. [PMID: 29748711 DOI: 10.1007/s00424-018-2151-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Ion channels in vascular smooth muscle regulate myogenic tone and vessel contractility. In particular, activation of calcium- and voltage-gated potassium channels of large conductance (BK channels) results in outward current that shifts the membrane potential toward more negative values, triggering a negative feed-back loop on depolarization-induced calcium influx and SM contraction. In this short review, we first present the molecular basis of vascular smooth muscle BK channels and the role of subunit composition and trafficking in the regulation of myogenic tone and vascular contractility. BK channel modulation by endogenous signaling molecules, and paracrine and endocrine mediators follows. Lastly, we describe the functional changes in smooth muscle BK channels that contribute to, or are triggered by, common physiological conditions and pathologies, including obesity, diabetes, and systemic hypertension.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA.
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Rosa P, Catacuzzeno L, Sforna L, Mangino G, Carlomagno S, Mincione G, Petrozza V, Ragona G, Franciolini F, Calogero A. BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells. J Cell Physiol 2018; 233:6866-6877. [PMID: 29319175 DOI: 10.1002/jcp.26448] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) cells express large-conductance, calcium-activated potassium (BK) channels, whose activity is important for several critical aspects of the tumor, such as migration/invasion and cell death. GBMs are also characterized by a heavy hypoxic microenvironment that exacerbates tumor aggressiveness. Since hypoxia modulates the activity of BK channels in many tissues, we hypothesized that a hypoxia-induced modulation of these channels may contribute to the hypoxia-induced GBM aggressiveness. In U87-MG cells, hypoxia induced a functional upregulation of BK channel activity, without interfering with their plasma membrane expression. Wound healing and transwell migration assays showed that hypoxia increased the migratory ability of U87-MG cells, an effect that could be prevented by BK channel inhibition. Toxicological experiments showed that hypoxia was able to induce chemoresistance to cisplatin in U87-MG cells and that the inhibition of BK channels prevented the hypoxia-induced chemoresistance. Clonogenic assays showed that BK channels are also used to increase the clonogenic ability of U87-MG GBM cells in presence, but not in absence, of cisplatin. BK channels were also found to be essential for the hypoxia-induced de-differentiation of GBM cells. Finally, using immunohistochemical analysis, we highlighted the presence of BK channels in hypoxic areas of human GBM tissues, suggesting that our findings may have physiopathological relevance in vivo. In conclusion, our data show that BK channels promote several aspects of the aggressive potential of GBM cells induced by hypoxia, such as migration and chemoresistance to cisplatin, suggesting it as a potential therapeutic target in the treatment of GBM.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Silvia Carlomagno
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Gabriella Mincione
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| | - Giuseppe Ragona
- Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy.,Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| |
Collapse
|
11
|
Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:51-90. [PMID: 27238261 DOI: 10.1016/bs.irn.2016.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The large-conductance, Ca(2+)- and voltage-activated K(+) (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1-β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings.
Collapse
|
12
|
Yap FC, Weber DS, Taylor MS, Townsley MI, Comer BS, Maylie J, Adelman JP, Lin MT. Endothelial SK3 channel-associated Ca2+ microdomains modulate blood pressure. Am J Physiol Heart Circ Physiol 2016; 310:H1151-63. [PMID: 26945080 DOI: 10.1152/ajpheart.00787.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
Activation of vascular endothelial small- (KCa2.3, SK3) or intermediate- (KCa3.1, IK1) conductance Ca(2+)-activated potassium channels induces vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. Although the activation of SK3 and IK1 channels converges on EDH, their subcellular effects on signal transduction are different and not completely clear. In this study, a novel endothelium-specific SK3 knockout (SK3(-/-)) mouse model was utilized to specifically examine the contribution of SK3 channels to mesenteric artery vasorelaxation, endothelial Ca(2+) dynamics, and blood pressure. The absence of SK3 expression was confirmed using real-time quantitative PCR and Western blot analysis. Functional studies showed impaired EDH-mediated vasorelaxation in SK3(-/-) small mesenteric arteries. Immunostaining results from SK3(-/-) vessels confirmed the absence of SK3 and further showed altered distribution of transient receptor potential channels, type 4 (TRPV4). Electrophysiological recordings showed a lack of SK3 channel activity, while TRPV4-IK1 channel coupling remained intact in SK3(-/-) endothelial cells. Moreover, Ca(2+) imaging studies in SK3(-/-) endothelium showed increased Ca(2+) transients with reduced amplitude and duration under basal conditions. Importantly, SK3(-/-) endothelium lacked a distinct type of Ca(2+) dynamic that is sensitive to TRPV4 activation. Blood pressure measurements showed that the SK3(-/-) mice were hypertensive, and the blood pressure increase was further enhanced during the 12-h dark cycle when animals are most active. Taken together, our results reveal a previously unappreciated SK3 signaling microdomain that modulates endothelial Ca(2+) dynamics, vascular tone, and blood pressure.
Collapse
Affiliation(s)
- Fui C Yap
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - David S Weber
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Mary I Townsley
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Brian S Comer
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana
| | - James Maylie
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon; and
| | - John P Adelman
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama;
| |
Collapse
|