1
|
Furst B, González-Alonso J. The heart, a secondary organ in the control of blood circulation. Exp Physiol 2023. [PMID: 38126953 DOI: 10.1113/ep091387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Circulation of the blood is a fundamental physiological function traditionally ascribed to the pressure-generating function of the heart. However, over the past century the 'cardiocentric' view has been challenged by August Krogh, Ernst Starling, Arthur Guyton and others, based on haemodynamic data obtained from isolated heart preparations and organ perfusion. Their research brought forth experimental evidence and phenomenological observations supporting the concept that cardiac output occurs primarily in response to the metabolic demands of the tissues. The basic tenets of Guyton's venous return model are presented and juxtaposed with their critiques. Developmental biology of the cardiovascular system shows that the blood circulates before the heart has achieved functional integrity and that its movement is intricately connected with the metabolic demands of the tissues. Long discovered, but as yet overlooked, negative interstitial pressure may play a role in assisting the flow returning to the heart. Based on these phenomena, an alternative circulation model has been proposed in which the heart functions like a hydraulic ram and maintains a dynamic equilibrium between the arterial (centrifugal) and venous (centripetal) forces which define the blood's circular movement. In this focused review we introduce some of the salient arguments in support of the proposed circulation model. Finally, we present evidence that exercising muscle blood flow is subject to local metabolic control which upholds optimal perfusion in the face of a substantive rise in muscle vascular conductance, thus lending further support to the permissive role of the heart in the overall control of blood circulation.
Collapse
Affiliation(s)
- Branko Furst
- Department of Anesthesiology, Albany Medical Center, Albany, New York, USA
| | - José González-Alonso
- Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
2
|
(Physiology of Continuous-flow Left Ventricular Assist Device Therapy. Translation of the document prepared by the Czech Society of Cardiology). COR ET VASA 2022. [DOI: 10.33678/cor.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Rosenbaum AN, Antaki JF, Behfar A, Villavicencio MA, Stulak J, Kushwaha SS. Physiology of Continuous-Flow Left Ventricular Assist Device Therapy. Compr Physiol 2021; 12:2731-2767. [PMID: 34964115 DOI: 10.1002/cphy.c210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Stiles TW, Morfin Rodriguez AE, Mohiuddin HS, Lee H, Dalal FA, Fuertes WW, Adams TH, Stewart RH, Quick CM. Algebraic formulas characterizing an alternative to Guyton's graphical analysis relevant for heart failure. Am J Physiol Regul Integr Comp Physiol 2021; 320:R851-R870. [PMID: 33596744 DOI: 10.1152/ajpregu.00260.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Guyton's graphical analysis of cardiac output-venous return has become a ubiquitous tool for explaining how circulatory equilibrium emerges from heart-vascular interactions, this classical model relies on a formula for venous return that contains unphysiological assumptions. Furthermore, Guyton's graphical analysis does not predict pulmonary venous pressure, which is a critical variable for evaluating heart failure patients' risk of pulmonary edema. Therefore, the purpose of the present work was to use a minimal closed-loop mathematical model to develop an alternative to Guyton's analysis. Limitations inherent in Guyton's model were addressed by 1) partitioning the cardiovascular system differently to isolate left ventricular function and lump all blood volumes together, 2) linearizing end-diastolic pressure-volume relationships to obtain algebraic solutions, and 3) treating arterial pressures as constants. This approach yielded three advances. First, variables related to morbidities associated with left ventricular failure were predicted. Second, an algebraic formula predicting left ventricular function was derived in terms of ventricular properties. Third, an algebraic formula predicting flow through the portion of the system isolated from the left ventricle was derived in terms of mechanical properties without neglecting redistribution of blood between systemic and pulmonary circulations. Although complexities were neglected, approximations necessary to obtain algebraic formulas resulted in minimal error, and predicted variables were consistent with reported values.
Collapse
Affiliation(s)
- Thomas W Stiles
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | | | - Hanifa S Mohiuddin
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - Hyunjin Lee
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - Fazal A Dalal
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - Wesley W Fuertes
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - Thaddeus H Adams
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | - Randolph H Stewart
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| | | |
Collapse
|
5
|
Uike K, Saku K, Nishikawa T, Yamamura K, Nagata H, Muraoka M, Ohga S, Tsutsui H, Sunagawa K. Prediction of hemodynamics after atrial septal defect closure using a framework of circulatory equilibrium in dogs. Am J Physiol Heart Circ Physiol 2020; 319:H938-H947. [PMID: 32886004 DOI: 10.1152/ajpheart.00098.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In patients with heart failure, atrial septal defect (ASD) closure has a risk of inducing life-threatening acute pulmonary edema. The objective of this study was to develop a novel framework for quantitative prediction of hemodynamics after ASD closure. The generalized circulatory equilibrium comprises right and left cardiac output (CO) curves and pulmonary and systemic venous return surfaces. We incorporated ASD into the framework of circulatory equilibrium by representing ASD shunt flow (QASD) by the difference between pulmonary flow (QP) and systemic flow (QS). To examine the accuracy of prediction, we created ASD in six dogs. Four weeks after ASD creation, we measured left atrial pressure (PLA), right atrial pressure (PRA), QP, and Qs before and after ASD balloon occlusion. We then predicted postocclusion hemodynamics from measured preocclusion hemodynamics. Finally, we numerically simulated hemodynamics under various ASD diameters while changing left and right ventricular function. Predicted postocclusion PLA, PRA, and QS from preocclusion hemodynamics matched well with those measured [PLA: coefficient of determination (r2) = 0.96, standard error of estimate (SEE) = 0.89 mmHg, PRA: r2 = 0.98, SEE = 0.26 mmHg, QS: r2 = 0.97, SEE = 5.6 mL·min-1·kg-1]. A simulation study demonstrated that ASD closure increases the risk of pulmonary edema in patients with impaired left ventricular function and normal right ventricular function, indicating the importance of evaluation for the balance between right and left ventricular function. ASD shunt incorporated into the generalized circulatory equilibrium accurately predicted hemodynamics after ASD closure, which would facilitate safety management of ASD closure.NEW & NOTEWORTHY We developed a framework to predict the impact of atrial septal defect (ASD) closure on hemodynamics by incorporating ASD shunt flow into the framework of circulatory equilibrium. The proposed framework accurately predicted hemodynamics after ASD closure. Patient-specific prediction of hemodynamics may be useful for safety management of ASD closure.
Collapse
Affiliation(s)
- Kiyoshi Uike
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Saku
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hazumu Nagata
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mamoru Muraoka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Kakino T, Saku K, Nishikawa T, Sunagawa K. The Partial Support of the Left Ventricular Assist Device Shifts the Systemic Cardiac Output Curve Upward in Proportion to the Effective Left Ventricular Ejection Fraction in Pressure-Volume Loop. Front Cardiovasc Med 2020; 7:163. [PMID: 33102535 PMCID: PMC7522370 DOI: 10.3389/fcvm.2020.00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Left ventricular assist device (LVAD) has been saving many lives in patients with severe left ventricular (LV) failure. Recently, a minimally invasive transvascular LVAD such as Impella enables us to support unstable hemodynamics in severely ill patients. Although LVAD support increases total LV cardiac output (COTLV) at the expense of decreases in the native LV cardiac output (CONLV), the underlying mechanism determining COTLV remains unestablished. This study aims to clarify the mechanism and develop a framework to predict COTLV under known LVAD flow (COLVAD). We previously developed a generalized framework of circulatory equilibrium that consists of the integrated CO curve and the VR surface as common functions of right atrial pressure (PRA) and left atrial pressure (PLA). The intersection between the integrated CO curve and the VR surface defines circulatory equilibrium. Incorporating LVAD into this framework indicated that LVAD increases afterload, which in turn decreases CONLV. The total LV cardiac output (COTLV) under LVAD support becomes COTLV = CONLV+EFe · COLVAD, where EFe is effective ejection fraction, i.e., Ees/(Ees+Ea). Ees and Ea represent LV end-systolic elastance (Ees) and effective arterial elastance (Ea), respectively. In other words, LVAD shifts the total LV cardiac output curve upward by EFe · COLVAD. In contrast, LVAD does not change the VR surface or the right ventricular CO curve. In six anesthetized dogs, we created LV failure by the coronary ligation of the left anterior descending artery and inserted LVAD by withdrawing blood from LV and pumping out to the femoral artery. We determined the parameters of the CO curve with a volume-change technique. We then changed the COLVAD stepwise from 0 to 70–100 ml/kg/min and predicted hemodynamics by using the proposed circulatory equilibrium. Predicted COTLV, PRA, and PLA for each step correlated well with those measured (SEE; 2.8 ml/kg/min 0.17 mmHg, and 0.65 mmHg, respectively, r2; 0.993, 0.993, and 0.965, respectively). The proposed framework quantitatively predicted the upward-shift of the total CO curve resulting from the synergistic effect of LV systolic function and LVAD support. The proposed framework can contribute to the safe management of patients with LVAD.
Collapse
Affiliation(s)
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | | |
Collapse
|
7
|
Nishikawa T, Saku K, Uike K, Uemura K, Sunagawa G, Tohyama T, Yoshida K, Kishi T, Sunagawa K, Tsutsui H. Prediction of haemodynamics after interatrial shunt for heart failure using the generalized circulatory equilibrium. ESC Heart Fail 2020; 7:3075-3085. [PMID: 32750231 PMCID: PMC7524226 DOI: 10.1002/ehf2.12935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 02/02/2023] Open
Abstract
Aims Interatrial shunting (IAS) reduces left atrial pressure in patients with heart failure. Several clinical trials reported that IAS improved the New York Heart Association score and exercise capacity. However, its effects on haemodynamics vary depending on shunt size, cardiovascular properties, and stressed blood volume. To maximize the benefit of IAS, quantitative prediction of haemodynamics under IAS in individual patients is essential. The generalized circulatory equilibrium framework determines circulatory equilibrium as the intersection of the cardiac output curve and the venous return surface. By incorporating IAS into the framework, we predict the impact of IAS on haemodynamics. Methods and results In seven mongrel dogs, we ligated the left anterior descending artery and created impaired cardiac function with elevated left atrial pressure (baseline: 7.8 ± 1.0 vs. impaired: 11.9 ± 3.2 mmHg). We established extracorporeal left‐to‐right atrial shunting with a centrifugal pump. After recording pre‐IAS haemodynamics, we changed IAS flow stepwise to various levels and measured haemodynamics under IAS. To predict the impact of IAS on haemodynamics, we modelled the fluid mechanics of IAS by Newton's second law and incorporated IAS into the generalized circulatory equilibrium framework. Using pre‐IAS haemodynamic data obtained from the dogs, we predicted the impact of IAS flow on haemodynamics under IAS condition using a set of equations. We compared the predicted haemodynamic data with those measured. The predicted pulmonary flow [r2 = 0.88, root mean squared error (RMSE) 11.4 mL/min/kg, P < 0.001), systemic flow (r2 = 0.92, RMSE 11.2 mL/min/kg, P < 0.001), right atrial pressure (r2 = 0.92, RMSE 0.71 mmHg, P < 0.001), and left atrial pressure (r2 = 0.83, RMSE 0.95 mmHg, P < 0.001) matched well with those measured under normal and impaired cardiac function. Using this framework, we further performed a simulation study to examine the haemodynamic benefit of IAS in heart failure with preserved ejection fraction. We simulated the IAS haemodynamics under volume loading and exercise conditions. Volume loading and exercise markedly increased left atrial pressure. IAS size‐dependently attenuated the increase in left atrial pressure in both volume loading and exercise. These results indicate that IAS improves volume and exercise intolerance. Conclusions The framework developed in this study quantitatively predicts the haemodynamic impact of IAS. Simulation study elucidates how IAS improve haemodynamics under volume loading and exercise conditions. Quantitative prediction of IAS haemodynamics would contribute to maximizing the benefit of IAS in patients with heart failure.
Collapse
Affiliation(s)
- Takuya Nishikawa
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Uike
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Genya Sunagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keimei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Kishi
- Department of Fukuoka Health and Welfare Sciences, International University of Health and Welfare, Okawa, Japan
| | | | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Bautista-Rodriguez C, Sanchez-de-Toledo J, Da Cruz EM. The Role of Echocardiography in Neonates and Pediatric Patients on Extracorporeal Membrane Oxygenation. Front Pediatr 2018; 6:297. [PMID: 30416991 PMCID: PMC6212474 DOI: 10.3389/fped.2018.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Indications for extracorporeal membrane oxygenation (ECMO) and extracorporeal cardiopulmonary resuscitation (ECPR) are expanding, and echocardiography is a tool of utmost importance to assess safety, effectiveness and readiness for circuit initiation and separation. Echocardiography is key to anticipating complications and improving outcomes. Understanding the patient's as well as the ECMO circuit's anatomy and physiology is crucial prior to any ECMO echocardiographic evaluation. It is also vital to acknowledge that the utility of echocardiography in ECMO patients is not limited to the evaluation of cardiac function, and that clinical decisions should not be made exclusively upon echocardiographic findings. Though echocardiography has specific indications and applications, it also has limitations, characterized as: prior to and during cannulation, throughout the ECMO run, upon separation and after separation from the circuit. The use of specific and consistent echocardiographic protocols for patients on ECMO is recommended.
Collapse
Affiliation(s)
- Carles Bautista-Rodriguez
- Pediatric Cardiology Department, Hospital Sant Joan de Deu Barcelona, Universitat de Barcelona, Barcelona, Spain
- Department of Paediatric Cardiology, Royal Brompton Hospital, London, United Kingdom
| | - Joan Sanchez-de-Toledo
- Pediatric Cardiology Department, Hospital Sant Joan de Deu Barcelona, Universitat de Barcelona, Barcelona, Spain
- Division of Cardiac Intensive Care, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eduardo M. Da Cruz
- Department of Pediatrics, Heart Institute, Children's Hospital Colorado, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
9
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
10
|
Moller PW, Winkler B, Hurni S, Heinisch PP, Bloch A, Sondergaard S, Jakob SM, Takala J, Berger D. Right atrial pressure and venous return during cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2017; 313:H408-H420. [DOI: 10.1152/ajpheart.00081.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022]
Abstract
The relevance of right atrial pressure (RAP) as the backpressure for venous return (QVR) and mean systemic filling pressure as upstream pressure is controversial during dynamic changes of circulation. To examine the immediate response of QVR (sum of caval vein flows) to changes in RAP and pump function, we used a closed-chest, central cannulation, heart bypass porcine preparation ( n = 10) with venoarterial extracorporeal membrane oxygenation. Mean systemic filling pressure was determined by clamping extracorporeal membrane oxygenation tubing with open or closed arteriovenous shunt at euvolemia, volume expansion (9.75 ml/kg hydroxyethyl starch), and hypovolemia (bleeding 19.5 ml/kg after volume expansion). The responses of RAP and QVR were studied using variable pump speed at constant airway pressure (PAW) and constant pump speed at variable PAW. Within each volume state, the immediate changes in QVR and RAP could be described with a single linear regression, regardless of whether RAP was altered by pump speed or PAW ( r2 = 0.586–0.984). RAP was inversely proportional to pump speed from zero to maximum flow ( r2 = 0.859–0.999). Changing PAW caused immediate, transient, directionally opposite changes in RAP and QVR (RAP: P ≤ 0.002 and QVR: P ≤ 0.001), where the initial response was proportional to the change in QVR driving pressure. Changes in PAW generated volume shifts into and out of the right atrium, but their effect on upstream pressure was negligible. Our findings support the concept that RAP acts as backpressure to QVR and that Guyton’s model of circulatory equilibrium qualitatively predicts the dynamic response from changing RAP. NEW & NOTEWORTHY Venous return responds immediately to changes in right atrial pressure. Concomitant volume shifts within the systemic circulation due to an imbalance between cardiac output and venous return have negligible effects on mean systemic filling pressure. Guyton’s model of circulatory equilibrium can qualitatively predict the resulting changes in dynamic conditions with right atrial pressure as backpressure to venous return.
Collapse
Affiliation(s)
- Per W. Moller
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - Samuel Hurni
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - Paul Philipp Heinisch
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - Andreas Bloch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|