1
|
Krishnan V, Atanasova N, Aujla PK, Hupka D, Owen CA, Kassiri Z. Loss of ADAM15 in female mice does not worsen pressure overload cardiomyopathy, independent of ovarian hormones. Am J Physiol Heart Circ Physiol 2024; 327:H409-H416. [PMID: 38607341 DOI: 10.1152/ajpheart.00116.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Cardiac hypertrophy is a common feature in several cardiomyopathies. We previously reported that loss of ADAM15 (disintegrin and metalloproteinase 15) worsened cardiac hypertrophy and dilated cardiomyopathy following cardiac pressure overload. Here, we investigated the impact of ADAM15 loss in female mice following cardiac pressure overload induced by transverse aortic constriction (TAC). Female Adam15-/- mice developed the same degree of cardiac hypertrophy, dilation, and dysfunction as the parallel female wild-type (WT) mice at 6 wk post-TAC. To determine if this is due to the protective effects of estrogen, which could mask the negative impact of Adam15 loss, WT and Adam15-/- mice underwent ovariectomy (OVx) 2 wk before TAC. Cardiac structure and function analyses were performed at 6 wk post-TAC. OVx similarly impacted females of both genotypes post-TAC. Calcineurin (Cn) activity was increased post-OVx-TAC, and more in Adam15-/- mice; however, this increase was not reflected in the total-to-phospho-NFAT levels. Integrin-α7 expression, which was upstream of Cn activation in male Adam15-/- -TAC mice, remained unchanged in female mice. However, activation of the mitogen-activated protein kinases (ERK, JNK, P38) was greater in Adam15-/--OVx-TAC than in WT-OVx-TAC mice. In addition, ADAM15 protein levels were significantly increased post-TAC in male but not in female WT mice. Myocardial fibrosis was comparable in non-OVx WT-TAC and Adam15-/- -TAC mice. OVx increased the perivascular fibrosis more in Adam15-/- compared with WT mice post-TAC. Our data demonstrate that loss of ovarian hormones did not fully replicate the male phenotype in the female Adam15-/- mice post-TAC. As ADAM15 levels were increased in males but not in females post-TAC, it is plausible that ADAM15 does not play a prominent role in post-TAC events in female mice. Our findings highlight the significance of factors other than sex hormones in mediating cardiomyopathies in females, which require a more thorough understanding.NEW & NOTEWORTHY Loss of ADAM15 in female mice, unlike the male mice, does not worsen the cardiomyopathy following cardiac pressure overload. Ovariectomy does not worsen the post-TAC cardiomyopathy in female Adam15-/- mice compared with female WT mice. Lack of deleterious impact of Adam15 deficiency in female mice is not because of the protective effects of ovarian hormones but could be due to a less prominent role of ADAM15 in cardiac response to post-TAC remodeling in female mice.
Collapse
Affiliation(s)
- Vidhya Krishnan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nikki Atanasova
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Preetinder K Aujla
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Devon Hupka
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline A Owen
- Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Akumwami S, Kitada K, Fujisawa Y, Kundo NK, Rahman MM, Morishita A, Kitamura H, Rahman A, Ogino Y, Nishiyama A. Chronic activation of β-adrenergic receptors leads to tissue water and electrolyte retention. J Pharmacol Exp Ther 2024; 392:JPET-AR-2024-002185. [PMID: 38849140 DOI: 10.1124/jpet.124.002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Beta-adrenergic receptors (β-AR) are expressed on the membranes of various cell types and their activation affects body water balance by modulating renal sodium and water excretion, cardiovascular function and metabolic processes. However, β-AR-associated body fluid imbalance has not been well characterised. In the present study, we hypothesized that chronic β-AR stimulation increases electrolyte and water content at the tissue level. We evaluated the effects of isoproterenol, a non-selective β-AR agonist, on electrolyte and water balance at the tissue level. Continuous isoproterenol administration for 14 days induced cardiac hypertrophy, associated with sodium-driven water retention in the heart, increased the total body sodium, potassium and water contents at the tissue level, and increased the water intake and blood pressure of the mice. There was greater urine output in response to the isoproterenol-induced body water retention. These isoproterenol-induced changes were reduced by propranolol, a non-selective beta-receptor inhibitor. Isoproterenol-treated mice even without excessive water intake had higher total body electrolyte and water contents, and this tissue water retention was associated with lower dry body mass, suggesting that β-AR stimulation in the absence of excess water intake induces catabolism and water retention. These findings suggest that β-AR activation induces tissue sodium and potassium retention, leading to body fluid retention, with or without excess water intake. This characterisation of β-AR-induced electrolyte and fluid abnormalities improves our understanding of the pharmacological effects of β-AR inhibitors. Significance Statement We have shown that chronic β-AR stimulation causes cardiac hypertrophy associated with sodium-driven water retention in the heart and increases the accumulation of body sodium, potassium and water at the tissue level. This characterisation of the β-AR-induced abnormalities in electrolyte and water balance at the tissue level improves our understanding of the roles of β-AR in physiology and pathophysiology and the pharmacological effects of β-AR inhibitors.
Collapse
|
3
|
Lindsey ML, Usselman CW, Ripplinger CM, Carter JR, DeLeon-Pennell KY. Sex as a biological variable for cardiovascular physiology. Am J Physiol Heart Circ Physiol 2024; 326:H459-H469. [PMID: 38099847 PMCID: PMC11219053 DOI: 10.1152/ajpheart.00727.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 02/03/2024]
Abstract
There have been ongoing efforts by federal agencies and scientific communities since the early 1990s to incorporate sex and/or gender in all aspects of cardiovascular research. Scientific journals provide a critical function as change agents to influence transformation by encouraging submissions for topic areas, and by setting standards and expectations for articles submitted to the journal. As part of ongoing efforts to advance sex and gender in cardiovascular physiology research, the American Journal of Physiology-Heart and Circulatory Physiology recently launched a call for papers on Considering Sex as a Biological Variable. This call was an overwhelming success, resulting in 78 articles published in this collection. This review summarizes the major themes of the collection, including Sex as a Biological Variable Within: Endothelial Cell and Vascular Physiology, Cardiovascular Immunity and Inflammation, Metabolism and Mitochondrial Energy, Extracellular Matrix Turnover and Fibrosis, Neurohormonal Signaling, and Cardiovascular Clinical and Epidemiology Assessments. Several articles also focused on establishing rigor and reproducibility of key physiological measurements involved in cardiovascular health and disease, as well as recommendations and considerations for study design. Combined, these articles summarize our current understanding of sex and gender influences on cardiovascular physiology and pathophysiology and provide insight into future directions needed to further expand our knowledge.
Collapse
Affiliation(s)
- Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, Davis, California, United States
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
4
|
Martin TG, Hunt DR, Langer SJ, Tan Y, Ebmeier CC, Crocini C, Chung E, Leinwand LA. A Conserved Mechanism of Cardiac Hypertrophy Regression through FoxO1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577585. [PMID: 38328143 PMCID: PMC10849654 DOI: 10.1101/2024.01.27.577585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The heart is a highly plastic organ that responds to diverse stimuli to modify form and function. The molecular mechanisms of adaptive physiological cardiac hypertrophy are well-established; however, the regulation of hypertrophy regression is poorly understood. To identify molecular features of regression, we studied Burmese pythons which experience reversible cardiac hypertrophy following large, infrequent meals. Using multi-omics screens followed by targeted analyses, we found forkhead box protein O1 (FoxO1) transcription factor signaling, and downstream autophagy activity, were downregulated during hypertrophy, but re-activated with regression. To determine whether these events were mechanistically related to regression, we established an in vitro platform of cardiomyocyte hypertrophy and regression from treatment with fed python plasma. FoxO1 inhibition prevented regression in this system, while FoxO1 activation reversed fed python plasma-induced hypertrophy in an autophagy-dependent manner. We next examined whether FoxO1 was implicated in mammalian models of reversible hypertrophy from exercise and pregnancy and found that in both cases FoxO1 was activated during regression. In these models, as in pythons, activation of FoxO1 was associated with increased expression FoxO1 target genes involved in autophagy. Taken together, our findings suggest FoxO1-dependent autophagy is a conserved mechanism for regression of physiological cardiac hypertrophy across species.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Dakota R. Hunt
- Department of Biochemistry, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Stephen J. Langer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Christopher C. Ebmeier
- Department of Biochemistry, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| | - Eunhee Chung
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO
| |
Collapse
|
5
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
6
|
Sy MR, Keefe JA, Sutton JP, Wehrens XHT. Cardiac function, structural, and electrical remodeling by microgravity exposure. Am J Physiol Heart Circ Physiol 2023; 324:H1-H13. [PMID: 36399385 PMCID: PMC9762974 DOI: 10.1152/ajpheart.00611.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Space medicine is key to the human exploration of outer space and pushes the boundaries of science, technology, and medicine. Because of harsh environmental conditions related to microgravity and other factors and hazards in outer space, astronauts and spaceflight participants face unique health and medical challenges, including those related to the heart. In this review, we summarize the literature regarding the effects of spaceflight on cardiac structure and function. We also provide an in-depth review of the literature regarding the effects of microgravity on cardiac calcium handling. Our review can inform future mechanistic and therapeutic studies and is applicable to other physiological states similar to microgravity such as prolonged horizontal bed rest and immobilization.
Collapse
Affiliation(s)
- Mary R Sy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Jeffrey P Sutton
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
8
|
Zile MR, Bradshaw AD. And the band played on: persistent fibrosis after unbanding reveals sex-dependent differences in rats. Am J Physiol Heart Circ Physiol 2022; 323:H358-H359. [PMID: 35839155 PMCID: PMC9342134 DOI: 10.1152/ajpheart.00327.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- The Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina
| | - Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- The Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
9
|
Gerdes AM, Ojamaa K. Reverse is a complicated direction. Am J Physiol Heart Circ Physiol 2022; 322:H842-H843. [PMID: 35394856 DOI: 10.1152/ajpheart.00162.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Martin Gerdes
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Kaie Ojamaa
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| |
Collapse
|