1
|
Voronkov NS, Maslov LN, Vyshlov EV, Mukhomedzyanov AV, Ryabov VV, Derkachev IA, Kan A, Gusakova SV, Gombozhapova AE, Panteleev OO. Do platelets protect the heart against ischemia/reperfusion injury or exacerbate cardiac ischemia/reperfusion injury? The role of PDGF, VEGF, and PAF. Life Sci 2024; 347:122617. [PMID: 38608835 DOI: 10.1016/j.lfs.2024.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS It was performed a search of topical articles using PubMed databases. FINDINGS Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION Platelets play an important role in the regulation of cardiac tolerance to I/R.
Collapse
Affiliation(s)
- Nikita S Voronkov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N Maslov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia.
| | - Evgeniy V Vyshlov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V Mukhomedzyanov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Vyacheslav V Ryabov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Ivan A Derkachev
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Artur Kan
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, 634050 Tomsk, Russia
| | - Alexandra E Gombozhapova
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Oleg O Panteleev
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| |
Collapse
|
2
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Wo D, Chen J, Li Q, Ma E, Yan H, Peng J, Zhu W, Fang Y, Ren DN. IGFBP-4 enhances VEGF-induced angiogenesis in a mouse model of myocardial infarction. J Cell Mol Med 2020; 24:9466-9471. [PMID: 32597006 PMCID: PMC7417680 DOI: 10.1111/jcmm.15516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a well‐known angiogenic factor, however its ability in promoting therapeutic angiogenesis following myocardial infarction (MI) is limited. Here, we aimed to investigate whether dual treatment with insulin‐like growth factor binding protein‐4 (IGFBP‐4), an agent that protects against early oxidative damage, can be effective in enhancing the therapeutic effect of VEGF following MI. Combined treatment with IGFBP‐4 enhanced VEGF‐induced angiogenesis and prevented cell damage via enhancing the expression of a key angiogenic factor angiopoietin‐1. Dual treatment with the two agents synergistically decreased cardiac fibrosis markers collagen‐I and collagen‐III following MI. Importantly, while the protective action of IGFBP‐4 occurs at an early stage of ischemic injury, the action of VEGF occurs at a later stage, at the onset angiogenesis. Our findings demonstrate that VEGF treatment alone is often not enough to protect against oxidative stress and promote post‐ischemic angiogenesis, whereas the combined treatment with IGFBP4 and VEGF can utilize the dual roles of these agents to effectively protect against ischemic and oxidative injury, and promote angiogenesis. These findings provide important insights into the roles of these agents in the clinical setting, and suggest new strategies in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Da Wo
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinxiao Chen
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiongyu Li
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - En Ma
- Key Laboratory of Arrhythmias of Ministry of Education, Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongwei Yan
- Key Laboratory of Arrhythmias of Ministry of Education, Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weidong Zhu
- Key Laboratory of Arrhythmias of Ministry of Education, Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Fang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. NATURE REVIEWS. MATERIALS 2020; 5:20-43. [PMID: 34123409 PMCID: PMC8191408 DOI: 10.1038/s41578-019-0148-6] [Citation(s) in RCA: 524] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Hydrogel microparticles (HMPs) are promising for biomedical applications, ranging from the therapeutic delivery of cells and drugs to the production of scaffolds for tissue repair and bioinks for 3D printing. Biologics (cells and drugs) can be encapsulated into HMPs of predefined shapes and sizes using a variety of fabrication techniques (batch emulsion, microfluidics, lithography, electrohydrodynamic (EHD) spraying and mechanical fragmentation). HMPs can be formulated in suspensions to deliver therapeutics, as aggregates of particles (granular hydrogels) to form microporous scaffolds that promote cell infiltration or embedded within a bulk hydrogel to obtain multiscale behaviours. HMP suspensions and granular hydrogels can be injected for minimally invasive delivery of biologics, and they exhibit modular properties when comprised of mixtures of distinct HMP populations. In this Review, we discuss the fabrication techniques that are available for fabricating HMPs, as well as the multiscale behaviours of HMP systems and their functional properties, highlighting their advantages over traditional bulk hydrogels. Furthermore, we discuss applications of HMPs in the fields of cell delivery, drug delivery, scaffold design and biofabrication.
Collapse
Affiliation(s)
- Andrew C Daly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally: Andrew C. Daly, Lindsay Riley
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- These authors contributed equally: Andrew C. Daly, Lindsay Riley
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Departments of Dermatology and Neurology, Duke University, Durham, NC, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
6
|
Validation of 4D flow CMR against simultaneous invasive hemodynamic measurements: a swine study. Int J Cardiovasc Imaging 2019; 35:1111-1118. [PMID: 30963352 PMCID: PMC6534524 DOI: 10.1007/s10554-019-01593-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to compare invasively measured aorta flow with 2D phase contrast flow and 4D flow measurements by cardiovascular magnetic resonance (CMR) imaging in a large animal model. Nine swine (mean weight 63 ± 4 kg) were included in the study. 4D flow CMR exams were performed on a 1.5T MRI scanner. Flow measurements were performed on 4D flow images at the aortic valve level, in the ascending aorta, and main pulmonary artery. Simultaneously, flow was measured using an invasive flow probe, placed around the ascending aorta. Additionally, standard 2D phase contrast flow and 2D left ventricular (LV) volumetric data were used for comparison. The correlations of cardiac output (CO) between the invasive flow probe, and CMR modalities were strong to very strong. CO measured by 4D flow CMR correlated better with the CO measured by the invasive flow probe than 2D flow CMR flow and volumetric LV data (4D flow CMR: Spearman’s rho = 0.86 at the aortic valve level and 0.90 at the ascending aorta level; 2D flow CMR: 0.67 at aortic valve level; LV measurements: 0.77). In addition, there tended to be a correlation between mean pulmonary artery flow and aorta flow with 4D flow (Spearman’s rho = 0.65, P = 0.07), which was absent in measurements obtained with 2D flow CMR (Spearman’s rho = 0.40, P = 0.33). This study shows that aorta flow can be accurately measured by 4D flow CMR compared to simultaneously measured invasive flow. This helps to further validate the quantitative reliability of this technique.
Collapse
|
7
|
Guyader JM, Huizinga W, Poot DHJ, van Kranenburg M, Uitterdijk A, Niessen WJ, Klein S. Groupwise image registration based on a total correlation dissimilarity measure for quantitative MRI and dynamic imaging data. Sci Rep 2018; 8:13112. [PMID: 30166626 PMCID: PMC6117310 DOI: 10.1038/s41598-018-31474-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
The most widespread technique used to register sets of medical images consists of selecting one image as fixed reference, to which all remaining images are successively registered. This pairwise scheme requires one optimization procedure per pair of images to register. Pairwise mutual information is a common dissimilarity measure applied to a large variety of datasets. Alternative methods, called groupwise registrations, have been presented to register two or more images in a single optimization procedure, without the need of a reference image. Given the success of mutual information in pairwise registration, we adapt one of its multivariate versions, called total correlation, in a groupwise context. We justify the choice of total correlation among other multivariate versions of mutual information, and provide full implementation details. The resulting total correlation measure is remarkably close to measures previously proposed by Huizinga et al. based on principal component analysis. Our experiments, performed on five quantitative imaging datasets and on a dynamic CT imaging dataset, show that total correlation yields registration results that are comparable to Huizinga's methods. Total correlation has the advantage of being theoretically justified, while the measures of Huizinga et al. were designed empirically. Additionally, total correlation offers an alternative to pairwise mutual information on quantitative imaging datasets.
Collapse
Affiliation(s)
- Jean-Marie Guyader
- Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Wyke Huizinga
- Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Matthijs van Kranenburg
- Departments of Radiology, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - André Uitterdijk
- Department of Cardiology, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Stefan Klein
- Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Uitterdijk A, Groenendijk BCW, Gorsse-Bakker C, Panasewicz A, Sneep S, Tempel D, van de Kamp EH, Merkus D, van der Giessen WJ, Duncker DJ. Time course of VCAM-1 expression in reperfused myocardial infarction in swine and its relation to retention of intracoronary administered bone marrow-derived mononuclear cells. PLoS One 2017. [PMID: 28628621 PMCID: PMC5476248 DOI: 10.1371/journal.pone.0178779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Intracoronary infusion of autologous bone marrow-derived mononuclear cells (BMMNC), after acute myocardial infarction (AMI), has been shown to improve myocardial function. However, therapeutic efficacy is limited, possibly because cell retention rates are low, suggesting that optimization of cell retention might increase therapeutic efficacy. Since retention of injected BMMNC is observed only within infarcted, but not remote, myocardium, we hypothesized that adhesion molecules on activated endothelium following reperfusion are essential. Consequently, we investigated the role of vascular cell adhesion molecule 1 (VCAM-1) in BMMNC retention in swine undergoing reperfused AMI produced by 120 min of percutaneous left circumflex coronary occlusion. Methods and results VCAM-1 expression in the infarct and remote region was quantified at 1, 3, 7, 14, and 35 days, post-reperfusion (n≥6 swine per group). Since expression levels were significantly higher at 3 days (2.41±0.62%) than at 7 days (0.98±0.28%; p<0.05), we compared the degree of cell retention at those time points in a follow-up study, in which an average of 43·106 autologous BMMNCs were infused intracoronary at 3, or 7 days, post-reperfusion (n = 6 swine per group) and retention was histologically quantified one hour after intracoronary infusion of autologous BMMNCs. Although VCAM-1 expression correlated with retention of BMMNC within each time point, overall BMMNC retention was similar at day 3 and day 7 (2.3±1.3% vs. 3.1±1.4%, p = 0.72). This was not due to the composition of infused bone marrow cell fractions (analyzed with flow cytometry; n = 5 per group), as cell composition of the infused BMMNC fractions was similar. Conclusion These findings suggest that VCAM-1 expression influences to a small degree, but is not the principal determinant of, BMMNC retention.
Collapse
Affiliation(s)
- André Uitterdijk
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Anna Panasewicz
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Stefan Sneep
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dennie Tempel
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Dirk J. Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Bailey SR. Acute equine laminitis: Exciting prospects afoot. Vet J 2015; 206:121-2. [DOI: 10.1016/j.tvjl.2015.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
|