1
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
2
|
Phillygenin, a lignan compound, inhibits hypertension by reducing PLCβ3-dependent Ca2+ oscillation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
3
|
Jackson R, Brennan S, Fielding P, Sims MW, Challiss RAJ, Adlam D, Squire IB, Rainbow RD. Distinct and complementary roles for α and β isoenzymes of PKC in mediating vasoconstrictor responses to acutely elevated glucose. Br J Pharmacol 2016; 173:870-87. [PMID: 26660275 DOI: 10.1111/bph.13399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the hypothesis that elevated glucose increases contractile responses in vascular smooth muscle and that this enhanced constriction occurs due to the glucose-induced PKC-dependent inhibition of voltage-gated potassium channels. EXPERIMENTAL APPROACH Patch-clamp electrophysiology in rat isolated mesenteric arterial myocytes was performed to investigate the glucose-induced inhibition of voltage-gated potassium (Kv ) current. To determine the effects of glucose in whole vessel, wire myography was performed in rat mesenteric, porcine coronary and human internal mammary arteries. KEY RESULTS Glucose-induced inhibition of Kv was PKC-dependent and could be pharmacologically dissected using PKC isoenzyme-specific inhibitors to reveal a PKCβ-dependent component of Kv inhibition dominating between 0 and 10 mM glucose with an additional PKCα-dependent component becoming evident at concentrations greater than 10 mM. These findings were supported using wire myography in all artery types used, where contractile responses to vessel depolarization and vasoconstrictors were enhanced by increasing bathing glucose concentration, again with evidence for distinct and complementary PKCα/PKCβ-mediated components. CONCLUSIONS AND IMPLICATIONS Our results provide compelling evidence that glucose-induced PKCα/PKCβ-mediated inhibition of Kv current in vascular smooth muscle causes an enhanced constrictor response. Inhibition of Kv current causes a significant depolarization of vascular myocytes leading to marked vasoconstriction. The PKC dependence of this enhanced constrictor response may present a potential therapeutic target for improving microvascular perfusion following percutaneous coronary intervention after myocardial infarction in hyperglycaemic patients.
Collapse
Affiliation(s)
- Robert Jackson
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Sean Brennan
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Peter Fielding
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - R A John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Iain B Squire
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| |
Collapse
|
4
|
Klenke S, Rump K, Buschkamp K, Engler A, Peters J, Siffert W, Frey UH. Characterization of the PLCB1 promoter and regulation by early growth response transcription factor EGR-1. Eur J Pharmacol 2014; 742:8-14. [PMID: 25192965 DOI: 10.1016/j.ejphar.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The Gαq/-Gα11-PLCβ1 pathway is important for intracellular signalling and associated with pathological conditions, such as cardiac hypertrophy. The GNAQ and GNA11 promoters (encoding for Gαq and Gα11) have already been characterized and are both regulated by the transcription factor early growth response 1 (Egr-1). In contrast, the PLCB1 promoter (encoding for the direct downstream effector PLCβ1) has neither been cloned nor characterized. Therefore, the purpose of this study was to 1) characterize the PLCB1 promoter, and 2) assess its potential regulation by Egr-1. By means of 5'- Rapid Amplification of 5'-cDNA ends analysis in human heart tissue we found an initiation of transcription from multiple starting points, the main transcription starting point being located at nt-235 relative to the translation start point. The PLCB1 promoter was cloned and deletion constructs were generated. Luciferase assays were performed in three different cell lines and regulatory regions were identified between nt-595/nt-313 (Hek293: P=0.013; HASMC: P=0.019; H9c2: P=0.005). In electrophoretic mobility shift assays one specific Egr-1 binding site was identified at nt-451/-419 and PLCB1 promoter activity was increased more than 5-fold (Hek293: P=0.0008) and 1,6- fold (H9c2: P=0.0499) following overexpression of Egr-1. Thus, the PLCB1 promoter was characterized for the first time and a specific interaction with the transcription factor Egr-1 was shown. Our data provide a potential molecular mechanism relating to pathophysiological conditions such as cardiac hypertrophy where activation by Egr-1 of Gαq/Gα11-PLCβ1 plays an important role.
Collapse
Affiliation(s)
- Stefanie Klenke
- Institut für Pharmakogenetik, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany; Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany.
| | - Katharina Rump
- Institut für Pharmakogenetik, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany; Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Kai Buschkamp
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Andrea Engler
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie & Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany
| |
Collapse
|
5
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
6
|
Atef ME, Anand-Srivastava MB. Enhanced expression of Gqα and PLC-β1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1. Am J Physiol Cell Physiol 2014; 307:C97-106. [DOI: 10.1152/ajpcell.00337.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [3H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy.
Collapse
Affiliation(s)
- Mohammed Emehdi Atef
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Madhu B. Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Full-length Gα(q)-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain. Nat Struct Mol Biol 2013; 20:355-62. [PMID: 23377541 PMCID: PMC3594540 DOI: 10.1038/nsmb.2497] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 12/18/2012] [Indexed: 01/18/2023]
Abstract
Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM 3D reconstructions of human full-length PLCβ3 in complex with murine Gαq. The distal CTD forms an extended, monomeric helical bundle consisting of three anti-parallel segments with structural similarity to membrane-binding bin–amphiphysin–Rvs (BAR) domains. Sequence conservation of the distal CTD identifies putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests the distal CTD plays roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis.
Collapse
|
8
|
Descorbeth M, Anand-Srivastava MB. Role of vasoactive peptides in high glucose-induced increased expression of Gαq/11 proteins and associated signaling in vascular smooth muscle cells. Can J Physiol Pharmacol 2011; 88:331-40. [PMID: 20393598 DOI: 10.1139/y09-132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have recently shown that A10 vascular smooth muscle cells (VSMCs) exposed to high glucose exhibited enhanced expression of G(alpha)q and PLCbeta proteins. Since high glucose has been reported to increase the levels of vasoactive peptides and oxidative stress, the present study was undertaken to investigate the implication of angiotensin II (Ang II), endothelin (ET)-1, and oxidative stress in the high glucose-induced enhanced expression of G(alpha)q/11 and PLCbeta proteins and associated signaling in A10 VSMCs. The levels of G(alpha)q, G(alpha)11, PLCbeta-1, and PLCbeta-2 proteins, as determined by Western blotting, were significantly higher in A10 VSMCs exposed to high glucose than in control cells. The elevated levels were restored to control values by the antioxidant diphenyleneiodonium (DPI), as well as by the antagonist of Ang II AT1 receptor losartan and the antagonists of ETA and ETB receptors BQ123 and BQ788, respectively. In addition, ET-1-stimulated production of inositol trisphosphate (IP3), which was enhanced by high glucose, was also restored toward control levels by DPI. Furthermore, the enhanced production of superoxide anion (O2-), increased NADPH oxidase activity, and enhanced expression of p22phox and p47phox proteins induced by high glucose were restored to control levels by losartan, BQ123, and BQ788. These results suggest that through increased oxidative stress, high glucose-induced enhanced levels of endogenous Ang II and ET-1 may contribute to the increased levels of G(alpha)q/11 and mediated signaling in A10 VSMCs.
Collapse
Affiliation(s)
- Magda Descorbeth
- Department of Physiology, Faculty of Medicine, University of Montreal, CP 6128, Succ Centre-ville, Montreal, QC H3C 3J7, Canada
| | | |
Collapse
|
9
|
Morand-Contant M, Anand-Srivastava MB, Couture R. Kinin B1 receptor upregulation by angiotensin II and endothelin-1 in rat vascular smooth muscle cells: receptors and mechanisms. Am J Physiol Heart Circ Physiol 2010; 299:H1625-32. [DOI: 10.1152/ajpheart.00735.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress upregulates the kinin B1 receptor (B1R) in diabetes and hypertension. Since angiotensin II (ANG II) and endothelin-1 (ET-1) are increased in these disorders, this study aims at determining the role of these two prooxidative peptides in B1R expression in rat vascular smooth muscle cells (VSMC). In the A10 cell line and aortic VSMC, ANG II enhanced B1R protein expression in a concentration- and time-dependent manner (maximal at 1 μM and 6 h). In A10 cells, ANG II (1 μM) also increased B1R mRNA expression at 3 h and the activation of induced B1R with the agonist [Sar-d-Phe8]-des-Arg9-BK (10 nM, 5 min) significantly enhanced mitogen -activated protein kinase (MAPK1/2) phosphorylation. The enhancing effect of ANG II on B1R protein expression in A10 cells was normalized by the AT1 (losartan) but not by the AT2 (PD123319) receptor antagonist. Furthermore, it was inhibited by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and NF-κB (MG132) but not of MAPK (PD098059). Whereas the ETB receptor antagonist (BQ788) had no effect, the ETA receptor antagonist (BQ123) blocked the effect of ANG II at 6–8 h but not at an early time point. BQ123 and BQ788 also blocked the increasing effect of ET-1 on B1R protein expression. Antioxidants ( N-acetyl-l-cysteine and diphenyleneiodonium) abolished ANG II- and ET-1-increased B1R protein expression. In conclusion, B1R induction is linked to oxidative stress and activation of phosphatidylinositol 3-kinase and NF-κB. The newly synthesized B1R is functional and can activate MAPK signaling in VSMC. The effect of ANG II is mediated by the AT1 receptor and the subsequent activation of ETA through ET-1 release.
Collapse
Affiliation(s)
- Marielle Morand-Contant
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Madhu B. Anand-Srivastava
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
10
|
Kizub IV, Pavlova OO, Johnson CD, Soloviev AI, Zholos AV. Rho kinase and protein kinase C involvement in vascular smooth muscle myofilament calcium sensitization in arteries from diabetic rats. Br J Pharmacol 2010; 159:1724-31. [PMID: 20218979 DOI: 10.1111/j.1476-5381.2010.00666.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus (DM) causes multiple dysfunctions including circulatory disorders such as cardiomyopathy, angiopathy, atherosclerosis and arterial hypertension. Rho kinase (ROCK) and protein kinase C (PKC) regulate vascular smooth muscle (VSM) Ca(2+) sensitivity, thus enhancing VSM contraction, and up-regulation of both enzymes in DM is well known. We postulated that in DM, Ca(2+) sensitization occurs in diabetic arteries due to increased ROCK and/or PKC activity. EXPERIMENTAL APPROACH Rats were rendered hyperglycaemic by i.p. injection of streptozotocin. Age-matched control tissues were used for comparison. Contractile responses to phenylephrine (Phe) and different Ca(2+) concentrations were recorded, respectively, from intact and chemically permeabilized vascular rings from aorta, tail and mesenteric arteries. KEY RESULTS Diabetic tail and mesenteric arteries demonstrated markedly enhanced sensitivity to Phe while these changes were not observed in aorta. The ROCK inhibitor HA1077, but not the PKC inhibitor chelerythrine, caused significant reduction in sensitivity to agonist in diabetic vessels. Similar changes were observed for myofilament Ca(2+) sensitivity, which was again enhanced in DM in tail and mesenteric arteries, but not in aorta, and could be reduced by both the ROCK and PKC blockers. CONCLUSIONS AND IMPLICATIONS We conclude that in DM enhanced myofilament Ca(2+) sensitivity is mainly manifested in muscular-type blood vessels and thus likely to contribute to the development of hypertension. Both PKC and, in particular, ROCK are involved in this phenomenon. This highlights their potential usefulness as drug targets in the pharmacological management of DM-associated vascular dysfunction.
Collapse
Affiliation(s)
- I V Kizub
- Institute of Pharmacology and Toxicology, Academy of Medical Sciences of Ukraine, Kiev, Ukraine
| | | | | | | | | |
Collapse
|
11
|
Searls YM, Loganathan R, Smirnova IV, Stehno-Bittel L. Intracellular Ca2+ regulating proteins in vascular smooth muscle cells are altered with type 1 diabetes due to the direct effects of hyperglycemia. Cardiovasc Diabetol 2010; 9:8. [PMID: 20122173 PMCID: PMC2829469 DOI: 10.1186/1475-2840-9-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 02/01/2010] [Indexed: 02/01/2023] Open
Abstract
Background Diminished calcium (Ca2+) transients in response to physiological agonists have been reported in vascular smooth muscle cells (VSMCs) from diabetic animals. However, the mechanism responsible was unclear. Methodology/Principal Findings VSMCs from autoimmune type 1 Diabetes Resistant Bio-Breeding (DR-BB) rats and streptozotocin-induced rats were examined for levels and distribution of inositol trisphosphate receptors (IP3R) and the SR Ca2+ pumps (SERCA 2 and 3). Generally, a decrease in IP3R levels and dramatic increase in ryanodine receptor (RyR) levels were noted in the aortic samples from diabetic animals. Redistribution of the specific IP3R subtypes was dependent on the rat model. SERCA 2 was redistributed to a peri-nuclear pattern that was more prominent in the DR-BB diabetic rat aorta than the STZ diabetic rat. The free intracellular Ca2+ in freshly dispersed VSMCs from control and diabetic animals was monitored using ratiometric Ca2+ sensitive fluorophores viewed by confocal microscopy. In control VSMCs, basal fluorescence levels were significantly higher in the nucleus relative to the cytoplasm, while in diabetic VSMCs they were essentially the same. Vasopressin induced a predictable increase in free intracellular Ca2+ in the VSMCs from control rats with a prolonged and significantly blunted response in the diabetic VSMCs. A slow rise in free intracellular Ca2+ in response to thapsigargin, a specific blocker of SERCA was seen in the control VSMCs but was significantly delayed and prolonged in cells from diabetic rats. To determine whether the changes were due to the direct effects of hyperglycemica, experiments were repeated using cultured rat aortic smooth muscle cells (A7r5) grown in hyperglycemic and control conditions. In general, they demonstrated the same changes in protein levels and distribution as well as the blunted Ca2+ responses to vasopressin and thapsigargin as noted in the cells from diabetic animals. Conclusions/Significance This work demonstrates that the previously-reported reduced Ca2+ signaling in VSMCs from diabetic animals is related to decreases and/or redistribution in the IP3R Ca2+ channels and SERCA proteins. These changes can be duplicated in culture with high glucose levels.
Collapse
Affiliation(s)
- Yvonne M Searls
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
12
|
Descorbeth M, Anand-Srivastava MB. Role of growth factor receptor transactivation in high glucose-induced increased levels of Gq/11alpha and signaling in vascular smooth muscle cells. J Mol Cell Cardiol 2009; 49:221-33. [PMID: 20036247 DOI: 10.1016/j.yjmcc.2009.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 11/29/2022]
Abstract
We have recently shown that high glucose increased the expression of Gq/11alpha, PLCbeta and mediated signaling in A10 vascular smooth muscle cells (VSMC). Since high glucose has been shown to increase growth factor receptor activation, we investigated the role of epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R) transactivation in high glucose-induced enhanced expression of Gq/11alpha and PLCbeta. Pre-treatment of A10 VSMC with high glucose (26 mM) for 3 days, increased the levels of Gqalpha, G11alpha, PLCbeta-1 and PLCbeta-2 proteins which were restored to control levels by AG1478, an inhibitor of EGF-R, AG1295, an inhibitor of PDGF-R and PP2, an inhibitor of c-Src but not by PP3. In addition, endothelin-1 (ET-1)-stimulated production of IP(3) that was enhanced by high glucose was also restored towards control levels by AG1478, AG1295 and PP2. High glucose also increased the phosphorylation of EGF-R and PDGF-R which was abolished by AG1478, AG1295 and PP2. Furthermore, high glucose-induced enhanced levels of Gqalpha, G11alpha and PLCbeta were also attenuated by PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) and wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K). In addition, AG1478 and AG1295, also attenuated high glucose-induced enhanced phosphorylation of ERK1/2 and AKT. Furthermore, high glucose augmented the phosphorylation of c-Src which was attenuated by antioxidant, DPI. These results suggest that oxidative stress through the activation of c-Src and resultant transactivation of growth factor receptor contributes to the high glucose-induced enhanced expression of Gq/11alpha/PLC and -mediated cell signaling through MAPK/PI3K pathway.
Collapse
Affiliation(s)
- Magda Descorbeth
- Department of Physiology, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|