1
|
Kinin B1 Receptor Mediates Bidirectional Interaction between Neuroinflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12010150. [PMID: 36671012 PMCID: PMC9854481 DOI: 10.3390/antiox12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Hypertension is associated with increased expression of kinin B1 receptors (B1R) and increased levels of pro-inflammatory cytokines within the neurons. We previously reported that angiotensin II (Ang II) upregulates B1R expression and can induce neuroinflammation and oxidative stress in primary hypothalamic neurons. However, the order in which B1R activation, neuroinflammation, and oxidative stress occur has not yet been studied. Using primary hypothalamic neurons from neonatal mice, we show that tumor necrosis factor (TNF), lipopolysaccharides (LPS), and hydrogen peroxide (H2O2) can upregulate B1R expression and increase oxidative stress. Furthermore, our study shows that B1R blockade with R715, a specific B1R antagonist, can attenuate these effects. To further confirm our findings, we used a deoxycorticosterone acetate (DOCA)-salt model of hypertension to show that oxidative stress is upregulated in the hypothalamic paraventricular nucleus (PVN) of the brain. Together, these data provide novel evidence that relationship between oxidative stress, neuroinflammation, and B1R upregulation in the brain is bidirectional, and that B1R antagonism may have beneficial effects on neuroinflammation and oxidative stress in various disease pathologies.
Collapse
|
2
|
Kishimoto Y, Aoyama M, Saita E, Ikegami Y, Ohmori R, Kondo K, Momiyama Y. Associations Between Plasma Kinin B1 Receptor Levels and the Presence and Severity of Coronary Artery Disease. J Atheroscler Thromb 2021; 28:1195-1203. [PMID: 33132295 PMCID: PMC8592707 DOI: 10.5551/jat.59899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim:
Kinin B1 receptor (KB1R) was shown to be up-regulated in human carotid atherosclerotic lesions. Serum KB1R levels were also reported to be high in patients with stroke. However, KB1R deficiency increased atherosclerotic lesions. Therefore, the role of KB1R in atherosclerosis remains unclear. Moreover, no study has reported blood KB1R levels in patients with coronary artery disease (CAD).
Methods:
We measured plasma KB1R levels in 375 patients undergoing coronary angiography. The severity of CAD was represented as the numbers of >50% stenotic vessels and segments and the severity score.
Results:
CAD was found in 197 patients, of whom 89 had 1-vessel disease (1-VD), 62 had 2-VD, and 46 had 3-VD. Plasma KB1R levels were higher in 197 patients with CAD than in 178 without CAD (median 83.3 vs. 73.7 pg/mL,
p
<0.01). A stepwise increase in KB1R levels was found depending on the number of stenotic vessels: 77.1 in 1-VD, 87.8 in 2-VD, and 88.5 pg/mL in 3-VD (
p
<0.025). A high KB1R level (>90.0 pg/mL) was present in 30% of patients with CAD(-), 39% of 1-VD, 50% of 2-VD, and 48% of 3-VD (
p
<0.025). KB1R levels correlated with the number of stenotic segments and the severity score (r=0.14 and r=0.17,
p
<0.01). In multivariate analysis, KB1R levels were an independent factor associated with CAD. Odds ratio for CAD was 1.62 (95%CI=1.02-2.58) for high KB1R level >90.0 pg/mL.
Conclusion:
Plasma KB1R levels in patients with CAD were high and were associated with the presence and severity of CAD independent of atherosclerotic risk factors.
Collapse
Affiliation(s)
| | - Masayuki Aoyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Emi Saita
- Institute of Transformative Bio-Molecules, Nagoya University
| | - Yukinori Ikegami
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University
| | | | - Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center
| |
Collapse
|
3
|
Нероев ВВ, Чеснокова НБ, Кост ОА, Охоцимская ТД, Павленко ТА, Безнос ОВ, Биневский ПВ, Лисовская ОА. [Bradykinin and angiotensin-converting enzyme in serum of patients with diabetic retinopathy and the prognosis of diabetic macular edema development (pilot study)]. PROBLEMY ENDOKRINOLOGII 2021; 67:13-19. [PMID: 34533010 PMCID: PMC9753801 DOI: 10.14341/probl12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Diabetic macular edema (DME) is a microvascular complication of diabetic retinopathy. One of the key roles in the pathogenesis of DME may belong to the components of rennin-angiotensin and kallikrein-kinin systems: bradykinin (Bk) and angiotensin-converting enzyme (ACE). PURPOSE To determine the Bk and ACE concentration and ACE activity in serum of patients with proliferative diabetic retinopathy (PDR) and to estimate the significance of these parameters for the early diagnostic and prognosis of DMO. MATERIALS AND METHODS Serum was collected from the 2 groups of patients with II type diabetes. Group I (n=9) had DME, group II (n=27) had PDR without DME. Control group (n=14) consisted of adult volonteers without diabetes and ophthalmic diseases. Concentration of Bk and ACE was measured using ELISA kits, ACE activity was determined enzymatically with specific fluorogenic substrate. RESULTS Concentration of Bk in serum of patients without DME did not differ from one in controls (12,00 (9,70; 12,40) pg/ml) while all patients with DME had Bk level of 14,69 (13,68; 16,78) pg/ml that was significantly higher (p<0,01). In patients without DME ACE concentration (88,60 (77,30; 97,45) ng/ml) and ACE activity (6,8 (5,1;7,1) nmol/min·ml) were higher than normal (p<0,01) while in the case of DME concentration of ACE increased (77,36 (70,24; 86,29 ng/ml, p<0,01) and activity remained normal. The Bk/ACE concentrations ratio decreased in patients without DME and increased in those having DME. CONCLUSION Patients with DME have increased Bk concentration along with nearly normal ACE concentration that indicate predominance of Bk synthesis over its degradation that may lead to the DME development. The Bk/ACE ratio decrease in patients with uncomplicated PDR and increase significantly in ones with DME. It means that determination of Bk in serum of patients with PDR may be used for the prediction of DME development. The Bk/ACE concentrations ratio may be even more informative.
Collapse
Affiliation(s)
- В. В. Нероев
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - Н. Б. Чеснокова
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - О. А. Кост
- Московский государственный университет имени М.В.Ломоносова
| | - Т. Д. Охоцимская
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - Т. А. Павленко
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - О. В. Безнос
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | | | - О. А. Лисовская
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| |
Collapse
|
4
|
Othman R, Cagnone G, Joyal JS, Vaucher E, Couture R. Kinins and Their Receptors as Potential Therapeutic Targets in Retinal Pathologies. Cells 2021; 10:1913. [PMID: 34440682 PMCID: PMC8391508 DOI: 10.3390/cells10081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).
Collapse
Affiliation(s)
- Rahmeh Othman
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gael Cagnone
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Jean-Sébastien Joyal
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
5
|
Estrela GR, Wasinski F, Gregnani MF, Freitas-Lima LC, Arruda AC, Morais RL, Malheiros DM, Camara NOS, Pesquero JB, Bader M, Barros CC, Araújo RC. Angiotensin-Converting Enzyme Inhibitor Protects Against Cisplatin Nephrotoxicity by Modulating Kinin B1 Receptor Expression and Aminopeptidase P Activity in Mice. Front Mol Biosci 2020; 7:96. [PMID: 32528973 PMCID: PMC7257977 DOI: 10.3389/fmolb.2020.00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is a highly effective chemotherapeutic agent. However, its use is limited by nephrotoxicity. Enalapril is an angiotensin I-converting enzyme inhibitor used for the treatment of hypertension, mainly through the reduction of angiotensin II formation, but also through the increase of kinins half-life. Kinin B1 receptor is associated with inflammation and migration of immune cells into the injured tissue. We have previously shown that the deletion or blockage of kinin B1 and B2 receptors can attenuate cisplatin nephrotoxicity. In this study, we tested enalapril treatment as a tool to prevent cisplatin nephrotoxicity. Male C57Bl/6 mice were divided into 3 groups: control group; cisplatin (20 mg/kg i.p) group; and enalapril (1.5 mg;kg i.p) + cisplatin group. The animals were treated with a single dose of cisplatin and euthanized after 96 h. Enalapril was able to attenuate cisplatin-induced increase in creatinine and urea, and to reduce tubular injury and upregulation of apoptosis-related genes, as well as inflammatory cytokines in circulation and kidney. The upregulation of B1 receptor was blocked in enalapril + cisplatin group. Carboxypeptidase M expression, which generates B1 receptor agonists, is blunted by cisplatin + enalapril treatment. The activity of aminopeptidase P, a secondary key enzyme able to degrade kinins, is restored by enalapril treatment. These findings were confirmed in mouse renal epithelial tubular cells, in which enalaprilat (5 μM) was capable of decreasing tubular injury and inflammatory markers. We treated mouse renal epithelial tubular cells with cisplatin (100 μM), cisplatin+enalaprilat and cisplatin+enalaprilat+apstatin (10 μM). The results showed that cisplatin alone decreases cell viability, cisplatin plus enalaprilat is able to restore cell viability, and cisplatin plus enalaprilat and apstatin decreases cell viability. In the present study, we demonstrated that enalapril prevents cisplatin nephrotoxicity mainly by preventing the upregulation of B1 receptor and carboxypeptidase M and the increased concentrations of kinin peptides through aminopeptidase activity restoration.
Collapse
Affiliation(s)
- Gabriel R Estrela
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Oncologia Clínica e Experimental, Disciplina de Hematologia e Hematoterapia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos F Gregnani
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Adriano C Arruda
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rafael Leite Morais
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Niels O S Camara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Carlos Castilho Barros
- Departamento de Nutrição, Escola de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Ronaldo Carvalho Araújo
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Sriramula S. Kinin B1 receptor: A target for neuroinflammation in hypertension. Pharmacol Res 2020; 155:104715. [DOI: 10.1016/j.phrs.2020.104715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 11/25/2022]
|
7
|
Su E, Zhao L, Yang X, Zhu B, Liu Y, Zhao W, Wang X, Qi D, Zhu L, Gao C. Aggravated endothelial endocrine dysfunction and intimal thickening of renal artery in high-fat diet-induced obese pigs following renal denervation. BMC Cardiovasc Disord 2020; 20:176. [PMID: 32295540 PMCID: PMC7161153 DOI: 10.1186/s12872-020-01472-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Renal denervation (RDN) targeting the sympathetic nerves in the renal arterial adventitia as a treatment of resistant hypertension can cause endothelial injury and vascular wall injury. This study aims to evaluate the risk of atherosclerosis induced by RDN in renal arteries. Methods A total of 15 minipigs were randomly assigned to 3 groups: (1) control group, (2) sham group, and (3) RDN group (n = 5 per group). All pigs were fed a high-fat diet (HFD) for 6 months after appropriate treatment. The degree of intimal thickening of renal artery and the conversion of endothelin 1 (ET-1) receptors were evaluated by histological staining. Western blot was used to assess the expression of nitric oxide (NO) synthesis signaling pathway, ET-1 and its receptors, NADPH oxidase 2 (NOX2) and 4-hydroxynonenal (4-HNE) proteins, and the activation of NF-kappa B (NF-κB). Results The histological staining results suggested that compared to the sham treatment, RDN led to significant intimal thickening and significantly promoted the production of endothelin B receptor (ETBR) in vascular smooth muscle cells (VSMCs). Western blotting analysis indicated that RDN significantly suppressed the expression of AMPK/Akt/eNOS signaling pathway proteins, and decreased the production of NO, and increased the expression of endothelin system proteins including endothelin-1 (ET-1), endothelin converting enzyme 1 (ECE1), endothelin A receptor (ETAR) and ETBR; and upregulated the expression of NOX2 and 4-HNE proteins and enhanced the activation of NF-kappa B (NF-κB) when compared with the sham treatment (all p < 0.05). There were no significant differences between the control and sham groups (all p > 0.05). Conclusions RDN aggravated endothelial endocrine dysfunction and intimal thickening, and increased the risk of atherosclerosis in renal arteries of HFD-fed pigs.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Linwei Zhao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Xiaohang Yang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Binbin Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Yahui Liu
- Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Wen Zhao
- Zhengzhou University School of Pharmaceutical Sciences, Zhengzhou, 450001, Henan, China
| | - Xianpei Wang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Datun Qi
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Lijie Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China. .,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China.
| |
Collapse
|
8
|
Parekh RU, Robidoux J, Sriramula S. Kinin B1 Receptor Blockade Prevents Angiotensin II-induced Neuroinflammation and Oxidative Stress in Primary Hypothalamic Neurons. Cell Mol Neurobiol 2019; 40:845-857. [PMID: 31865500 PMCID: PMC8112717 DOI: 10.1007/s10571-019-00778-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has become an important underlying factor in many cardiovascular disorders, including hypertension. Previously we showed that elevated angiotensin II (Ang II) and angiotensin II type I receptor (AT1R) expression levels can increase neuroinflammation leading to hypertension. We also found that kinin B1 receptor (B1R) expression increased in the hypothalamic paraventricular neurons resulting in neuroinflammation and oxidative stress in neurogenic hypertension. However, whether there are any potential interactions between AT1R and B1R in neuroinflammation is not clear. In the present study, we aimed to determine whether Ang II-mediated effects on inflammation and oxidative stress are mediated by the activation of B1R in mouse neonatal primary hypothalamic neuronal cultures. Gene expression and immunostaining revealed that both B1R and AT1R are expressed on primary hypothalamic neurons. Ang II stimulation significantly increased the expression of B1R, decreased mitochondrial respiration, increased the expression of two NADPH oxidase subunits (Nox2 and Nox4), increased the oxidative potential, upregulated several proinflammatory genes (IL-1β, IL-6, and TNFα), and increased NF-kB p65 DNA binding activity. These changes were prevented by pretreatment with the B1R-specific peptide antagonist, R715. In summary, our study demonstrates a causal relationship between B1R expression after Ang II stimulation, suggesting a possible cross talk between AT1R and B1R in neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.
| |
Collapse
|
9
|
Deng T, Xie X, Duan J, Chen M. Di-(2-ethylhexyl) phthalate induced an increase in blood pressure via activation of ACE and inhibition of the bradykinin-NO pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:927-934. [PMID: 30823347 DOI: 10.1016/j.envpol.2019.01.099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological studies and animal experiments have suggested that exposure to Di-(2-ethylhexyl) phthalate (DEHP) is strongly associated with an increase in blood pressure. However, the mechanisms that result in the detrimental effects of DEHP exposure on blood pressure are unclear. In our study, mice were orally exposed to DEHP dosages of 0.1, 1, 10 mg/kg/day for 6 weeks. The results showed that DEHP could induce a significant increase in systolic blood pressure (SBP) and heart rate, and a significant thickening of the ventricular wall. To explore the underlying mechanism, we measured the level of: angiotensin converting enzyme (ACE); bradykinin B2 receptor (BK2R); endothelial nitric oxide synthase (eNOS); bradykinin and Ca2+ in cardiac cytoplasm as well as in serum nitric oxide (NO). The results suggested that DEHP could induce an increase in ACE levels, and a decrease in bradykinin levels. Moreover, BK2R, Ca2+, eNOS and NO decreased when mice were exposed to 10 mg/kg/day DEHP. Interestingly, 5 mg/kg/day angiotensin converting enzyme inhibitor (ACEI) treatment inhibited the increase in blood pressure, and inhibited the decrease in the levels of BK2R, Ca2+, eNOS, and NO, that were induced by DEHP exposure. Our results suggest that DEHP might increase blood pressure by activating ACE expression, and inhibiting the bradykinin-NO pathway.
Collapse
Affiliation(s)
- Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
10
|
Blum-Johnston C, Thorpe RB, Wee C, Opsahl R, Romero M, Murray S, Brunelle A, Blood Q, Wilson R, Blood AB, Zhang L, Longo LD, Pearce WJ, Wilson SM. Long-term hypoxia uncouples Ca 2+ and eNOS in bradykinin-mediated pulmonary arterial relaxation. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513562 DOI: 10.1152/ajpregu.00311.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers a rise in intracellular Ca2+ that activates nitric oxide (NO)-dependent vasorelaxation. Chronic hypoxia is commonly associated with increased pulmonary vascular tone, which can cause pulmonary hypertension in responsive individuals. In the present study, we tested the hypothesis that long-term high-altitude hypoxia (LTH) diminishes bradykinin-induced Ca2+ signals and inhibits endothelial nitric oxide synthase (eNOS), prostacyclin (PGI2), and large-conductance K+ (BKCa) channels in sheep, which are moderately responsive to LTH, resulting in decreased pulmonary arterial vasorelaxation. Pulmonary arteries were isolated from ewes kept near sea level (720 m) or at high altitude (3,801 m) for >100 days. Vessel force was measured with wire myography and endothelial intracellular Ca2+ with confocal microscopy. eNOS was inhibited with 100 μM NG-nitro-l-arginine methyl ester (l-NAME), PGI2 production was inhibited with 10 µM indomethacin that inhibits cyclooxygenase, and BKCa channels were blocked with 1 mM tetraethylammonium. Bradykinin-induced endothelial Ca2+ signals increased following LTH, but bradykinin relaxation decreased. Furthermore, some vessels contracted in response to bradykinin after LTH. l-NAME sensitivity decreased, suggesting that eNOS dysfunction played a role in uncoupling Ca2+ signals and bradykinin relaxation. The Ca2+ ionophore A-23187 (10 µM) elicited an enhanced Ca2+ response following LTH while relaxation was unchanged although l-NAME sensitivity increased. Additionally, BKCa function decreased during bradykinin relaxation following LTH. Western analysis showed that BKCa α-subunit expression was increased by LTH while that for the β1 subunit was unchanged. Overall, these results suggest that those even moderately responsive to LTH can have impaired endothelial function.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Richard B Thorpe
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Chelsea Wee
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Raechel Opsahl
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| | - Samuel Murray
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunelle
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Quintin Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Rachael Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lawrence D Longo
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
11
|
Humenberger M, Andreas M, Redwan B, Distelmaier K, Klappacher G, Adlbrecht C, Wurm R, Lang IM. Peri-interventional endothelin-A receptor blockade improves long-term outcome in patients with ST-elevation acute myocardial infarction. Thromb Haemost 2017; 112:176-82. [DOI: 10.1160/th13-10-0832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/08/2014] [Indexed: 11/05/2022]
Abstract
SummaryEndothelin (ET)-1 is a pro-fibrotic vasoconstrictive peptide causing microvascular dysfunction and cardiac remodelling after acute ST-elevation myocardial infarction (STEMI). It acts via two distinct receptors, ET-A and ET-B, and is involved in inflammation and atherogenesis. Patients with posterior-wall STEMI were randomly assigned to intravenous BQ-123 at 400 nmol/minute (min) or placebo over 60 min, starting immediately prior to primary percutaneous coronary intervention (n=54). Peripheral blood samples were drawn at baseline as well as after 24 hours and 30 days. Myeloperoxidase (MPO), as a marker of neutrophil activation and matrix metalloproteinase 9 (MMP-9), a marker of extracellular matrix degradation were measured in plasma. Clinical follow-up was conducted by an investigator blinded to treatment allocation over three years. During the median follow-up period of 3.6 years (interquartile range [IQR] 3.3–4.1) we observed a longer event-free survival in patients randomised to receive BQ-123 compared with patients randomised to placebo (mean 4.5 years (95% confidence interval: 3.9–5) versus mean 3 years (2.2–3.7), p=0.031). Patients randomised to ET-A receptor blockade demonstrated a greater reduction of MPO levels from baseline to 24 hours compared to placebo-treated patients (-177 ng/ml (IQR 103–274) vs –108 ng/ml (74–147), p=0.006). In addition, a pronounced drop in MMP-9 levels (-568 ng/ml (44–1157) vs –117 ng/ml (57–561), p=0.018) was observed. There was no significant difference in amino-terminal propetide of pro-collagen type III levels. In conclusion, short-term administration of BQ-123 leads to a reduction in MPO, as well as MMP-9 plasma levels and to a longer event-free survival in patients with STEMI.ClinicalTrials.gov Identifier: NCT00502528
Collapse
|
12
|
Sriramula S, Lazartigues E. Kinin B1 Receptor Promotes Neurogenic Hypertension Through Activation of Centrally Mediated Mechanisms. Hypertension 2017; 70:1122-1131. [PMID: 29038201 DOI: 10.1161/hypertensionaha.117.09744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/04/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023]
Abstract
Hypertension is associated with increased activity of the kallikrein-kinin system. Kinin B1 receptor (B1R) activation leads to vasoconstriction and inflammation. Despite evidence supporting a role for the B1R in blood pressure regulation, the mechanisms by which B1R could alter autonomic function and participate in the pathogenesis of hypertension remain unidentified. We sought to explore whether B1R-mediated inflammation contributes to hypertension and investigate the molecular mechanisms involved. In this study, we tested the hypothesis that activation of B1R in the brain is involved in the pathogenesis of hypertension, using the deoxycorticosterone acetate-salt model of neurogenic hypertension in wild-type and B1R knockout mice. Deoxycorticosterone acetate-salt treatment in wild-type mice led to significant increases in B1R mRNA and protein levels and bradykinin levels, enhanced gene expression of carboxypeptidase N supporting an increase in the B1R ligand, associated with enhanced blood pressure, inflammation, sympathoexcitation, autonomic dysfunction, and impaired baroreflex sensitivity, whereas these changes were blunted or prevented in B1R knockout mice. B1R stimulation was further shown to involve activation of the ASK1-JNK-ERK1/2 and NF-κB pathways in the brain. To dismiss potential developmental alterations in knockout mice, we further used B1R blockade selectively in the brain of wild-type mice. Supporting the central origin of this mechanism, intracerebroventricular infusion of a specific B1R antagonist, attenuated the deoxycorticosterone acetate-salt-induced increase in blood pressure in wild-type mice. Our data provide the first evidence of a central role for B1R-mediated inflammatory pathways in the pathogenesis of deoxycorticosterone acetate-salt hypertension and offer novel insights into possible B1R-targeted therapies for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA.,Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC.
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA.,Neurosciences Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
13
|
Scharfstein J, Ramos PIP, Barral-Netto M. G Protein-Coupled Kinin Receptors and Immunity Against Pathogens. Adv Immunol 2017; 136:29-84. [PMID: 28950949 DOI: 10.1016/bs.ai.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For decades, immunologists have considered the complement system as a paradigm of a proteolytic cascade that, acting cooperatively with the immune system, enhances host defense against infectious organisms. In recent years, advances made in thrombosis research disclosed a functional link between activated neutrophils, monocytes, and platelet-driven thrombogenesis. Forging a physical barrier, the fibrin scaffolds generated by synergism between the extrinsic and intrinsic (contact) pathways of coagulation entrap microbes within microvessels, limiting the systemic spread of infection while enhancing the clearance of pathogens by activated leukocytes. Insight from mice models of thrombosis linked fibrin formation via the intrinsic pathway to the autoactivation of factor XII (FXII) by negatively charged "contact" substances, such as platelet-derived polyphosphates and DNA from neutrophil extracellular traps. Following cleavage by FXIIa, activated plasma kallikrein (PK) initiates inflammation by liberating the nonapeptide bradykinin (BK) from an internal domain of high molecular weight kininogen (HK). Acting as a paracrine mediator, BK induces vasodilation and increases microvascular permeability via activation of endothelial B2R, a constitutively expressed subtype of kinin receptor. During infection, neutrophil-driven extravasation of plasma fuels inflammation via extravascular activation of the kallikrein-kinin system (KKS). Whether liberated by plasma-borne PK, tissue kallikrein, and/or microbial-derived proteases, the short-lived kinins activate immature dendritic cells via B2R, thus linking the infection-associated innate immunity/inflammation to the adaptive arm of immunity. As inflammation persists, a GPI-linked carboxypeptidase M removes the C-terminal arginine from the primary kinin, converting the B2R agonist into a high-affinity ligand for B1R, a GPCR subtype that is transcriptionally upregulated in injured/inflamed tissues. As reviewed here, lessons taken from studies of kinin receptor function in experimental infections have shed light on the complex proteolytic circuits that, acting at the endothelial interface, reciprocally couple immunity to the proinflammatory KKS.
Collapse
Affiliation(s)
- Julio Scharfstein
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Center of Health Sciences (CCS), Cidade Universitária, Rio de Janeiro, Brazil.
| | - Pablo I P Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | |
Collapse
|
14
|
Nascimento CR, Andrade D, Carvalho-Pinto CE, Serra RR, Vellasco L, Brasil G, Ramos-Junior ES, da Mota JB, Almeida LN, Andrade MV, Correia Soeiro MDN, Juliano L, Alvarenga PH, Oliveira AC, Sicuro FL, de Carvalho ACC, Svensjö E, Scharfstein J. Mast Cell Coupling to the Kallikrein-Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease. Front Immunol 2017; 8:840. [PMID: 28824610 PMCID: PMC5539176 DOI: 10.3389/fimmu.2017.00840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023] Open
Abstract
During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain) demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2). Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs) and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR)/endothelin B receptor (ETBR)] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein-kinin system (KKS). Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs) and the KKS by topically exposing the hamster cheek pouch (HCP) tissues to dextran sulfate (DXS), a potent "contact" activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII)-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK). Guided by this mechanistic insight, we next exposed TCTs to "leaky" HCP-forged by low dose histamine application-and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream) and FXII-mediated generation of BK (downstream). We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i.) in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT mice pretreated with (i) cromoglycate (MC stabilizer) (ii) infestin-4, a specific inhibitor of FXIIa (iii) HOE-140 (specific antagonist of B2R), and (iv) bosentan, a non-selective antagonist of ETAR/ETBR. Notably, histopathology of heart tissues from mice pretreated with these G protein-coupled receptors blockers revealed that myocarditis and heart fibrosis (30 d.p.i.) was markedly and redundantly attenuated. Collectively, our study suggests that inflammatory edema propagated via activation of the MC/KKS pathway fuels intracardiac parasitism by generating infection-stimulatory peptides (BK and endothelins) in the edematous heart tissues.
Collapse
Affiliation(s)
- Clarissa R. Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniele Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rafaela Rangel Serra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Vellasco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilherme Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Erivan Schnaider Ramos-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- University of the Pacific, San Francisco, CA, United States
| | - Julia Barbalho da Mota
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Larissa Nogueira Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcus V. Andrade
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Clinica Medica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Luiz Juliano
- Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Patrícia Hessab Alvarenga
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernando Lencastre Sicuro
- Universidade do Estado do Rio de Janeiro (UERJ), Centro Biomédico Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Erik Svensjö
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Julio Scharfstein,
| |
Collapse
|
15
|
El Midaoui A, Haddad Y, Couture R. Beneficial effects of argan oil on blood pressure, insulin resistance, and oxidative stress in rat. Nutrition 2016; 32:1132-7. [DOI: 10.1016/j.nut.2016.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/14/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
|
16
|
Aztatzi-Aguilar OG, Uribe-Ramírez M, Arias-Montaño JA, Barbier O, De Vizcaya-Ruiz A. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-II type-I receptor as a molecular target of particulate matter exposure. Part Fibre Toxicol 2015; 12:17. [PMID: 26113123 PMCID: PMC4482198 DOI: 10.1186/s12989-015-0094-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/15/2015] [Indexed: 01/03/2023] Open
Abstract
Background Particulate matter (PM) adverse effects on health include lung and heart damage. The renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) endocrine systems are involved in the pathophysiology of cardiovascular diseases and have been found to impact lung diseases. The aim of the present study was to evaluate whether PM exposure regulates elements of RAAS and KKS. Methods Sprague–Dawley rats were acutely (3 days) and subchronically (8 weeks) exposed to coarse (CP), fine (FP) or ultrafine (UFP) particulates using a particulate concentrator, and a control group exposed to filtered air (FA). We evaluated the mRNA of the RAAS components At1, At2r and Ace, and of the KKS components B1r, B2r and Klk-1 by RT-PCR in the lungs and heart. The ACE and AT1R protein were evaluated by Western blot, as were HO-1 and γGCSc as indicators of the antioxidant response and IL-6 levels as an inflammation marker. We performed a binding assay to determinate AT1R density in the lung, also the subcellular AT1R distribution in the lungs was evaluated. Finally, we performed a histological analysis of intramyocardial coronary arteries and the expression of markers of heart gene reprogramming (Acta1 and Col3a1). Results The PM fractions induced the expression of RAAS and KKS elements in the lungs and heart in a time-dependent manner. CP exposure induced Ace mRNA expression and regulated its protein in the lungs. Acute and subchronic exposure to FP and UFP induced the expression of At1r in the lungs and heart. All PM fractions increased the AT1R protein in a size-dependent manner in the lungs and heart after subchronic exposure. The AT1R lung protein showed a time-dependent change in subcellular distribution. In addition, the presence of AT1R in the heart was accompanied by a decrease in HO-1, which was concomitant with the induction of Acta1 and Col3a1 and the increment of IL-6. Moreover, exposure to all PM fractions increased coronary artery wall thickness. Conclusion We demonstrate that exposure to PM induces the expression of RAAS and KKS elements, including AT1R, which was the main target in the lungs and the heart.
Collapse
Affiliation(s)
- Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - José Antonio Arias-Montaño
- Departamento de Fisiología, Neurociencias y Biofísica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, C.P. 07360, Mexico.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| |
Collapse
|
17
|
Guo YS, Wu ZG, Yang JK, Chen XJ. Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells. Mol Med Rep 2014; 11:1587-94. [PMID: 25405958 PMCID: PMC4270314 DOI: 10.3892/mmr.2014.2952] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 06/20/2014] [Indexed: 12/04/2022] Open
Abstract
The present study aimed to investigate the impact of losartan and angiotensin II (AngII) on the expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), secreted by rat vascular smooth muscle cells (VSMCs). Rat VSMCs were isolated and cultured in different concentrations of AngII and losartan for 24 h and western blot analysis and quantitative polymerase chain reaction were performed to observe the subsequent impact on the gene and protein expression of MMP-9 and TIMP-1. AngII was shown to promote the protein and gene expression of MMP-9 in VSMCs in a concentration-dependent manner. No effect was observed on the expression of TIMP-1, therefore, an increase in the MMP-9/TIMP-1 ratio was observed. Losartan was shown to be able to inhibit MMP-9 protein and gene expression in a concentration-dependent manner, whilst promoting an increase in TIMP-1 expression, thus decreasing the ratio of MMP-9/TIMP-1. The combined action of losartan and AngII resulted in the same directional changes in MMP-9 and TIMP-1 expression as observed for losartan alone. The comparison of AngII, losartan and the combinatory effect on the expression of MMP-9 and TIMP-1 in VSMCs indicated that losartan inhibited the effects of AngII, therefore reducing the MMP-9/TIMP-1 ratio, which may contribute to the molecular mechanism of losartan in preventing atherosclerosis. In atherosclerosis, the development of the extracellular matrix of plaque is closely correlated with the evolution of AS. The balance between MMPs and TIMPs is important in maintaining the dynamic equilibrium between the ECM, and the renin-angiotensin-aldosterone system, which is involved in the pathologenesis of AS, and in which AngII has a central role.
Collapse
Affiliation(s)
- Yan-Song Guo
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, Fuzhou 350001, P.R. China
| | - Zong-Gui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jun-Ke Yang
- Department of Cardiology, General Hospital of PLA Second Artillery, Beijing 100088, P.R. China
| | - Xin-Jing Chen
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, Fuzhou 350001, P.R. China
| |
Collapse
|
18
|
Ceravolo GS, Montezano AC, Jordão MT, Akamine EH, Costa TJ, Takano AP, Fernandes DC, Barreto-Chaves ML, Laurindo FR, Tostes RC, Fortes ZB, Chopard RP, Touyz RM, Carvalho MHC. An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies. PLoS One 2014; 9:e111117. [PMID: 25369284 PMCID: PMC4219703 DOI: 10.1371/journal.pone.0111117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/24/2014] [Indexed: 01/29/2023] Open
Abstract
The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R) contributes to vascular hypertrophy in angiotensin II (ANG II)-induced hypertension, through a mechanism involving reactive oxygen species (ROS) generation and extracellular signal-regulated kinase (ERK1/2) activation. Male Wistar rats were infused with vehicle (control rats), 400 ng/Kg/min ANG II (ANG II rats) or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg(9)-Leu(8)-bradykinin (ANGII+DAL rats), via osmotic mini-pumps (14 days) or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats). After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg) 184 ± 5.9 vs 115 ± 2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE): 21.8 ± 2.7 vs 6.0 ± 1.8] and ERK1/2 phosphorylation (% of control: 218.3 ± 29.4 vs 100 ± 0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17 ± 3.1) and ERK1/2 phosphorylation (137 ± 20.7%) in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC) stimulated with low concentrations (0.1 nM) of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM), B1R antagonist (10 µM) and Tiron (superoxide anion scavenger, 10 mM). These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth. Our findings highlight an important cross-talk between the DABK and ANG II in the vascular system and contribute to a better understanding of the mechanisms involved in vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Graziela S. Ceravolo
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Augusto C. Montezano
- Ottawa Health Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, Canada
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Maria T. Jordão
- Department of Anatomy, Institute of Biomedical Sciences III, University of São Paulo, Sao Paulo, Brazil
| | - Eliana H. Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago J. Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana P. Takano
- Department of Anatomy, Institute of Biomedical Sciences III, University of São Paulo, Sao Paulo, Brazil
| | - Denise C. Fernandes
- Vascular Biology Laboratory, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria L. Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences III, University of São Paulo, Sao Paulo, Brazil
| | - Francisco R. Laurindo
- Vascular Biology Laboratory, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Zuleica B. Fortes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Renato P. Chopard
- Department of Anatomy, Institute of Biomedical Sciences III, University of São Paulo, Sao Paulo, Brazil
| | - Rhian M. Touyz
- Ottawa Health Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, Canada
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Maria Helena C. Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Torika N, Filipovich-Rimon T, Asraf K, Roasso E, Danon A, Fleisher-Berkovich S. Differential regulation of astrocyte prostaglandin response by kinins: possible role for mitogen activated protein kinases. Eur J Pharmacol 2014; 741:323-9. [PMID: 25169427 DOI: 10.1016/j.ejphar.2014.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022]
Abstract
The role of kinins, well known as peripheral inflammatory mediators, in the modulation of brain inflammation is not completely understood. The present data show that bradykinin, a B2 receptor agonist, enhanced both basal and lipopolysaccharide (LPS)-induced cyclooxygenase-2 mRNA and protein levels and prostaglandin E2 synthesis in primary rat astrocytes. By contrast, Lys-des-Arg(9)-bradykinin, which is a bradykinin breakdown product and a selective kinin B1 receptor agonist, attenuated both basal and LPS-induced astrocyte cyclooxygenase-2 mRNA levels and prostaglandin E2 production. Pre-treating the cells with p42/p44 MAPK but not with JNK or p38 inhibitors completely abrogated PGE2 synthesis in cells stimulated with LPS in the presence of bradykinin or bradykinin B1 receptor agonist. Bradykinin, but not the bradykinin B1 receptor agonist, augmented p42/p44 MAPK phosphorylation. The phosphorylation of JNK and p38 was not altered upon exposure to Bradykinin or the bradykinin B1 receptor agonist. These results suggest that the dual delayed effect of kinins on PGE2 synthesis may be due to differential regulation of COX-2 and signaling molecules such as p42/p44 MAPKs. Thus, kinins may exert opposing actions on brain inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Talia Filipovich-Rimon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ella Roasso
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.
| |
Collapse
|
20
|
Zhang X, Brovkovych V, Zhang Y, Tan F, Skidgel RA. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling. Cell Signal 2014; 27:90-103. [PMID: 25289859 DOI: 10.1016/j.cellsig.2014.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Viktor Brovkovych
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Yongkang Zhang
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Fulong Tan
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States
| | - Randal A Skidgel
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States; Center for Lung and Vascular Biology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, United States.
| |
Collapse
|
21
|
Bhat M, Pouliot M, Couture R, Vaucher E. The kallikrein-kinin system in diabetic retinopathy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:111-43. [PMID: 25130041 DOI: 10.1007/978-3-319-06683-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication associated with type 1 and type 2 diabetes mellitus, which can lead to visual impairment and blindness. Current treatment strategies for DR are mostly limited to laser therapies, steroids, and anti-VEGF agents, which are often associated with unwanted side effects leading to further complications. Recent evidence suggests that kinins play a primary role in the development of DR through enhanced vascular permeability, leukocytes infiltration, and other inflammatory mechanisms. These deleterious effects are mediated by kinin B1 and B2 receptors, which are expressed in diabetic human and rodent retina. Importantly, kinin B1 receptor is virtually absent in sane tissue, yet it is induced and upregulated in diabetic retina. These peptides belong to the kallikrein-kinin system (KKS), which contains two separate and independent pathways of regulated serine proteases, namely plasma kallikrein (PK) and tissue kallikrein (TK) that are involved in the biosynthesis of bradykinin (BK) and kallidin (Lys-BK), respectively. Hence, ocular inhibition of kallikreins or antagonism of kinin receptors offers new therapeutic avenues in the treatment and management of DR. Herein, we present an overview of the principal features and known inflammatory mechanisms associated with DR along with the current therapeutic approaches and put special emphasis on the KKS as a new and promising therapeutic target due to its link with key pathways directly associated with the development of DR.
Collapse
|
22
|
Scharfstein J, Andrade D, Svensjö E, Oliveira AC, Nascimento CR. The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi. Front Immunol 2013; 3:396. [PMID: 23355836 PMCID: PMC3555122 DOI: 10.3389/fimmu.2012.00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac remodeling.
Collapse
Affiliation(s)
- Julio Scharfstein
- Laboratório de Imunologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
23
|
Long-term endothelin receptor antagonism attenuates coronary plaque progression in patients with early atherosclerosis. Int J Cardiol 2013; 168:1316-21. [PMID: 23290081 DOI: 10.1016/j.ijcard.2012.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 11/06/2012] [Accepted: 12/01/2012] [Indexed: 01/11/2023]
Abstract
AIM The purpose of the current study was to determine if long term treatment with an endothelin-A (ETA) receptor antagonist attenuates the progression of coronary plaques in patients with coronary endothelial dysfunction. METHODS Thirty-five patients with non-obstructive coronary disease and coronary endothelial dysfunction were randomized in a double blind manner to treatment with placebo or ETA receptor antagonist Atrasentan (10 mg) for six months. Endothelial function was assessed by the change in coronary blood flow and coronary artery diameter in response to intracoronary acetylcholine. Normalized mean total atheroma volume (TAVMEAN), percent atheroma volume (PAV) and changes of atheroma volume were assessed by intravascular ultrasound (IVUS) at baseline and 6-month follow-up. RESULTS In segments with coronary endothelial dysfunction, there was a significant decrease in normalized TAVMEAN and PAV at six months from baseline in the Atrasentan group compared to the placebo group median (IQR) -2.00 mm(3) (-7.28, 2.53.) vs 9.11 mm(3) (1.23, 14.05), p=0.0024 and 0.955% (-3.43, 1.70) vs 3.85% (-0.39, 14.59) p=0.010. There was no change in normalized TAV or PAV in the segments with normal endothelial function. CONCLUSION This study demonstrates that 6-month treatment with Atrasentan attenuates progression of coronary plaque in segments with endothelial dysfunction.
Collapse
|
24
|
Brain kinin B₁ receptor contributes to the onset of stereotypic nocifensive behavior in rat. Behav Brain Res 2012; 241:17-26. [PMID: 23219968 DOI: 10.1016/j.bbr.2012.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 12/26/2022]
Abstract
While brain kinin B(1) receptor (B(1)R) is virtually absent in control rats, it contributes to hypertension via a midbrain dopaminergic (DA) mechanism in spontaneously hypertensive rat (SHR) and Angiotensin II (Ang II)-induced hypertension. This study aims at determining whether B(1)R can also affect stereotypic nocifensive behavior through DA and/or other neuromediators in the same models. The selective B(1)R agonist Sar[D-Phe(8)][des-Arg(9)]BK was injected i.c.v. (1 μg/site) to freely behaving SHR (16 weeks), Ang II-hypertensive rats (200 ng/kg/min × 2 weeks, s.c.) and control Wistar-Kyoto rats (WKY). Behavioral activity to the agonist was measured before and after treatment with receptor antagonists (10 μg/site i.c.v. or otherwise stated) for B(1) (SSR240612), tachykinin NK(1) (RP67580), glutamate NMDA (DL-AP5), DA D(1) (SCH23390, 0.2mg/kg s.c.) and D(2) (Raclopride, 0.16 mg/kg s.c.). Other studies included inhibitors (10 μg/site) of NOS (l-NNA) and iNOS (1400W). The possible desensitisation of B(1)R upon repeated intracerebral stimulation was also excluded. B(1)R expression was measured by qRT-PCR in selected areas and by immunohistochemistry in the ventral tegmental area. Results showed that the B(1)R agonist had no effect in WKY, yet it induced nocifensive behavioral manifestations in both models of hypertension (face washing, sniffing, head scratching, rearing, teeth chattering, grooming, digging, licking, wet-dog shakes). These responses were prevented by all antagonists and inhibitors tested, but 1400 W had a less inhibitory effect on most behaviors. Compared with WKY, B(1)R mRNA levels were markedly enhanced in hypothalamus, ventral tegmental area and nucleus accumbens of SHR and Ang II-treated rats. B(1)R was detected on DA neuron of the ventral tegmental area in SHR. Data suggest that kinin B(1)R is upregulated in midbrain DA system in hypertensive rats and its i.c.v. activation induced stereotypic nocifensive behavior that is mediated by several mediators, notably substance P, glutamate, DA and NO.
Collapse
|
25
|
Phipps JA, Jobling AI, Greferath U, Fletcher EL, Vessey KA. Alternative pathways in the development of diabetic retinopathy: the renin-angiotensin and kallikrein-kinin systems. Clin Exp Optom 2012; 95:282-9. [PMID: 22594546 DOI: 10.1111/j.1444-0938.2012.00747.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy is a common complication of both type 1 and type 2 diabetes and is the leading cause of blindness in people of working age. Current treatment strategies are mostly limited to laser photocoagulation, which restricts proliferative retinopathic changes but also causes irreversible damage to the retina. This review examines two important pathways involved in regulating vascular function and their role in the development of diabetic retinopathy. One, the renin-angiotensin system, is well known and has established angiogenic effects on the retina that increase in diabetic retinopathy. The other, the kallikrein-kinin system, has recently been found to be important in the development of diabetic retinal complications. This review describes the components of the two signalling networks, examines the current animal model studies investigating the role of these pathways in diabetic retinopathy and reviews the clinical studies that have been undertaken examining systemic inhibition of different points in these pathways. These systems are promising targets for therapies aimed at inhibiting the development of diabetic retinopathy and in the future, combination therapies that take advantage of both pathways might result in new treatment options for this debilitating complication of diabetes.
Collapse
Affiliation(s)
- Joanna A Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The kallikrein-kinin system (KKS) constitutes a complex multienzyme cascade that produces several bioactive kinin peptides and their derivatives including bradykinin. In addition to the classical notion of the KKS as a potent vasodilator and a mediator of inflammatory responses, recent studies suggest a link between the KKS and oxidative stress. A number of established mouse models with altered levels of KKS components opened the way to evaluate precise functions of the KKS. Here we review recent findings on the role of the KKS in cardiovascular diseases and chronic kidney diseases, and discuss potential benefits of KKS activation in these diseases. RECENT FINDINGS Deletion of both B1R and B2R in a diabetic mouse model exacerbates its renal phenotypes, suggesting that the KKS exerts protective effects on diabetic nephropathy by suppressing oxidative stress, presumably via nitric oxide and prostaglandins. SUMMARY Accumulating evidence has highlighted the importance of the KKS as a protective system against oxidative stress and organ damage in the heart and kidney. The activation of the KKS by angiotensin I-converting enzyme inhibitors and vasopeptidase inhibitors is likely to be beneficial in senescence-associated cardiovascular diseases and chronic kidney diseases.
Collapse
|
27
|
Abstract
Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy.
Collapse
|
28
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Scharfstein J, Andrade D. Infection-associated vasculopathy in experimental chagas disease pathogenic roles of endothelin and kinin pathways. ADVANCES IN PARASITOLOGY 2011; 76:101-27. [PMID: 21884889 DOI: 10.1016/b978-0-12-385895-5.00005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting at the interface between microcirculation and immunity, Trypanosoma cruzi induces modifications in peripheral tissues which translate into mutual benefits to host/parasite balance. In this chapter, we will review evidence linking infection-associated vasculopathy to the proinflammatory activity of a small subset of T. cruzi molecules, namely GPI-linked mucins, cysteine proteases (cruzipain), surface glycoproteins of the trans-sialidase family and/or parasite-derived eicosanoids (thromboxane A(2)). Initial insight into pathogenesis came from research in animal models showing that myocardial fibrosis is worsened as result of endothelin upregulation by infected cardiovascular cells. Paralleling these studies, the kinin system emerged as a proteolytic mechanism that links oedematogenic inflammation to immunity. Analyses of the dynamics of inflammation revealed that tissue culture trypomastigotes elicit interstitial oedema in peripheral sites of infection through synergistic activation of toll-like 2 receptors (TLR2) and G-protein-coupled bradykinin receptors, respectively, engaged by tGPI (TLR2 ligand) and kinin peptides (bradykinin B2 receptors (BK(2)R) ligands) proteolytically generated by cruzipain. Further downstream, kinins stimulate lymph node dendritic cells via G-protein-coupled BK(2)R, thus converting these specialized antigen-presenting cells into T(H)1 inducers. Tightly regulated by angiotensin-converting enzyme, the intact kinins (BK(2)R agonists) may be processed by carboxypeptidase M/N, generating [des-Arg]-kinins, which activates BK(1)R, a subtype of GPCR that is upregulated by cardiovascular cells during inflammation. Ongoing studies may clarify if discrepancies between proinflammatory phenotypes of T. cruzi strains may be ascribed, at least in part, to variable expression of TLR2 ligands and cruzipain isoforms.
Collapse
Affiliation(s)
- Julio Scharfstein
- Instituto de Biofı´sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Laborato´ rio deImunologia Molecular, Cidade Universita´ ria Rio de Janeiro, Brazil
| | | |
Collapse
|
30
|
Sandoval YHG, Li Y, Anand-Srivastava MB. Transactivation of epidermal growth factor receptor by enhanced levels of endogenous angiotensin II contributes to the overexpression of Giα proteins in vascular smooth muscle cells from SHR. Cell Signal 2011; 23:1716-26. [PMID: 21712088 DOI: 10.1016/j.cellsig.2011.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
We earlier showed that the increased expression of Gi proteins exhibited by vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) was attributed to the enhanced levels of endogenous endothelin. Since the levels of angiotensin II (Ang II) are also enhanced in VSMC from SHR, the present study was undertaken to examine the role of enhanced levels of endogenous Ang II in the overexpression of Giα proteins in VSMC from SHR and to further explore the underlying mechanisms responsible for this increase. The enhanced expression of Giα-2 and Giα-3 proteins in VSMC from SHR compared to WKY was attenuated by the captopril, losartan and AG1478, inhibitors of angiotensin converting enzyme, AT(1) receptor and epidermal growth factor receptor (EGFR) respectively as well as by the siRNAs of AT1, cSrc and EGFR. The enhanced inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of GTPγS (receptor-independent functions) and of inhibitory responses of hormones on adenylyl cyclase activity (receptor-dependent functions) in VSMC from SHR was also attenuated by losartan. Furthermore, the enhanced phosphorylation of EGFR in VSMC from SHR was also restored to control levels by captopril, losartan, PP2, a c-Src inhibitor and N-acetyl-L-cysteine (NAC), superoxide anion (O(2)(-)) scavenger, whereas enhanced ERK1/2 phosphorylation was attenuated by captopril and losartan. Furthermore, NAC also restored the enhanced phosphorylation of c-Src in SHR to control levels. These results suggest that the enhanced levels of endogenous Ang II in VSMC from SHR, transactivate EGFR, which through MAP kinase signaling, enhance the expression of Giα proteins and associated adenylyl cyclase signaling.
Collapse
|
31
|
Bunni MA, Kramarenko II, Walker L, Raymond JR, Garnovskaya MN. Role of integrins in angiotensin II-induced proliferation of vascular smooth muscle cells. Am J Physiol Cell Physiol 2010; 300:C647-56. [PMID: 21148411 DOI: 10.1152/ajpcell.00179.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiotensin II (AII) binds to G protein-coupled receptor AT(1) and stimulates extracellular signal-regulated kinase (ERK), leading to vascular smooth muscle cells (VSMC) proliferation. Proliferation of mammalian cells is tightly regulated by adhesion to the extracellular matrix, which occurs via integrins. To study cross-talk between G protein-coupled receptor- and integrin-induced signaling, we hypothesized that integrins are involved in AII-induced proliferation of VSMC. Using Oligo GEArray and quantitative RT-PCR, we established that messages for α(1)-, α(5)-, α(V)-, and β(1)-integrins are predominant in VSMC. VSMC were cultured on plastic dishes or on plates coated with either extracellular matrix or poly-d-lysine (which promotes electrostatic cell attachment independent of integrins). AII significantly induced proliferation in VSMC grown on collagen I or fibronectin, and this effect was blocked by the ERK inhibitor PD-98059, suggesting that AII-induced proliferation requires ERK activity. VSMC grown on collagen I or on fibronectin demonstrated approximately three- and approximately sixfold increases in ERK phosphorylation after stimulation with 100 nM AII, respectively, whereas VSMC grown on poly-d-lysine demonstrated no significant ERK activation, supporting the importance of integrin-mediated adhesion. AII-induced ERK activation was reduced by >65% by synthetic peptides containing an RGD (arginine-glycine-aspartic acid) sequence that inhibit α(5)β(1)-integrin, and by ∼60% by the KTS (lysine-threonine-serine)-containing peptides specific for integrin-α(1)β(1). Furthermore, neutralizing antibody against β(1)-integrin and silencing of α(1), α(5), and β(1) expression by transfecting VSMC with short interfering RNAs resulted in decreased AII-induced ERK activation. This work demonstrates roles for specific integrins (most likely α(5)β(1) and α(1)β(1)) in AII-induced proliferation of VSMC.
Collapse
Affiliation(s)
- Marlene A Bunni
- Ralph H. Johnson Veterans Affairs Medical Center, Medical Univ. of South Carolina, Dept. of Medicine-Nephrology, 96 Jonathan Lucas St., MSC 629, Charleston, SC 29425-6290, USA
| | | | | | | | | |
Collapse
|