1
|
Alhasan KA, King MA, Pattar BSB, Lewis IA, Lopaschuk GD, Greenway SC. Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics. Cardiovasc Res 2024; 120:2166-2178. [PMID: 39570879 DOI: 10.1093/cvr/cvae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Heart failure (HF) is a complex syndrome and a leading cause of mortality worldwide. While current medical treatment is based on known pathophysiology and is effective for many patients, the underlying cellular mechanisms are poorly understood. Energy deficiency is a characteristic of HF, marked by complex alterations in metabolism. Within the tricarboxylic acid cycle, anaplerosis emerges as an essential metabolic process responsible for replenishing lost intermediates, thereby playing a crucial role in sustaining energy metabolism and consequently cardiac function. Alterations in cardiac anaplerosis are commonly observed in HF, demonstrating potential for therapeutic intervention. This review discusses recent advances in understanding the anaplerotic adaptations that occur in HF. We also explore therapeutics that can directly modulate anaplerosis or are likely to confer cardioprotective effects through anaplerosis, which could potentially be implemented to rescue the failing heart.
Collapse
Affiliation(s)
- Karm A Alhasan
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Melissa A King
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Badal S B Pattar
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Steven C Greenway
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
2
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue. J Proteome Res 2024; 23:4188-4202. [PMID: 38647137 PMCID: PMC11460328 DOI: 10.1021/acs.jproteome.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
3
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. Data-Independent Acquisition Proteomics and N-Terminomics Methods Reveal Alterations in Mitochondrial Function and Metabolism in Ischemic-Reperfused Hearts. J Proteome Res 2024; 23:844-856. [PMID: 38264990 PMCID: PMC10846531 DOI: 10.1021/acs.jproteome.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Myocardial ischemia-reperfusion (IR) (stunning) injury triggers changes in the proteome and degradome of the heart. Here, we utilize quantitative proteomics and comprehensive degradomics to investigate the molecular mechanisms of IR injury in isolated rat hearts. The control group underwent aerobic perfusion, while the IR injury group underwent 20 min of ischemia and 30 min of reperfusion to induce a stunning injury. As MMP-2 activation has been shown to contribute to myocardial injury, hearts also underwent IR injury with ARP-100, an MMP-2-preferring inhibitor, to dissect the contribution of MMP-2 to IR injury. Using data-independent acquisition (DIA) and mass spectroscopy, we quantified 4468 proteins in ventricular extracts, whereby 447 proteins showed significant alterations among the three groups. We then used subtiligase-mediated N-terminomic labeling to identify more than a hundred specific cleavage sites. Among these protease substrates, 15 were identified following IR injury. We identified alterations in numerous proteins involved in mitochondrial function and metabolism following IR injury. Our findings provide valuable insights into the biochemical mechanisms of myocardial IR injury, suggesting alterations in reactive oxygen/nitrogen species handling and generation, fatty acid metabolism, mitochondrial function and metabolism, and cardiomyocyte contraction.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
4
|
Kajimoto M, Nuri M, Sleasman JR, Charette KA, Kajimoto H, Portman MA. Right ventricular energy metabolism in a porcine model of acute right ventricular pressure overload after weaning from cardiopulmonary bypass. Physiol Rep 2022; 10:e15421. [PMID: 36394073 PMCID: PMC9669618 DOI: 10.14814/phy2.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023] Open
Abstract
Acute right ventricular pressure overload (RVPO) occurs following congenital heart surgery and often results in low cardiac output syndrome. We tested the hypothesis that the RV exhibits limited ability to modify substrate utilization in response to increasing energy requirements during acute RVPO after cardiopulmonary bypass (CPB). We assessed the RV fractional contributions (Fc) of substrates to the citric acid cycle in juvenile pigs exposed to acute RVPO by pulmonary artery banding (PAB) and CPB. Sixteen Yorkshire male pigs (median 38 days old, 12.2 kg of body weight) were randomized to SHAM (Ctrl, n = 5), 2-h CPB (CPB, n = 5) or CPB with PAB (PAB-CPB, n = 6). Carbon-13 (13 C)-labeled lactate, medium-chain, and mixed long-chain fatty acids (MCFA and LCFAs) were infused as metabolic tracers for energy substrates. After weaning from CPB, RV systolic pressure (RVSP) doubled baseline in PAB-CPB while piglets in CPB group maintained normal RVSP. Fc-LCFAs decreased significantly in order PAB-CPB > CPB > Ctrl groups by 13 C-NMR. Fc-lactate and Fc-MCFA were similar among the three groups. Intragroup analysis for PAB-CPB showed that the limited Fc-LCFAs appeared prominently in piglets exposed to high RVSP-to-left ventricular systolic pressure ratio and high RV rate-pressure product, an indicator of myocardial oxygen demand. Acute RVPO after CPB strongly inhibits LCFA oxidation without compensation by lactate oxidation, resulting in energy deficiency as determined by lower (phosphocreatine)/(adenosine triphosphate) in PAB-CPB. Adequate energy supply but also metabolic interventions may be required to circumvent these RV energy metabolic abnormalities during RVPO after CPB.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Muhammad Nuri
- Division of Cardiothoracic Surgery at Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Justin R. Sleasman
- Division of Pediatric Cardiac SurgeryLucile Packard Children's HospitalPalo AltoCaliforniaUSA
| | - Kevin A. Charette
- Division of Pediatric Cardiac SurgerySeattle Children's HospitalSeattleWashingtonUSA
| | - Hidemi Kajimoto
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Michael A. Portman
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Division of Cardiology, Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
5
|
The effect of oral triiodothyronine supplementation on lactate and pyruvate after paediatric cardiac surgery. Cardiol Young 2021; 31:205-211. [PMID: 33168128 DOI: 10.1017/s1047951120003698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine if triiodothyronine alters lactate, glucose, and pyruvate metabolism, and if serum pyruvate concentration could serve as a predictor of low cardiac output syndrome in children after cardiopulmonary bypass procedures. METHODS This study was ancillary to the Oral Triiodothyronine for Infants and Children undergoing Cardiopulmonary bypass (OTICC) trial. Serum pyruvate was measured in the first 48 patients and lactate and glucose were measured in all 208 patients enrolled in the OTICC study on the induction of anaesthesia, 1 and 24 hours post-aortic cross-clamp removal. Patients were also defined as having low cardiac output syndrome according to the OTICC trial protocol. RESULT Amongst the designated patient population for pyruvate analysis, 22 received placebo, and 26 received triiodothyronine (T3). Lactate concentrations were nearly 20 times greater than pyruvate. Lactate and pyruvate levels were not significantly different between T3 and placebo group. Glucose levels were significantly higher in the placebo group mainly at 24-hour post-cross-clamp removal. Additionally, lactate and glucose levels peaked at 1-hour post-cross-clamp removal in low cardiac output syndrome and non-low cardiac output syndrome patients, but subsequently decreased at a slower rate in low cardiac output syndrome. Lactate and pyruvate concentrations correlated with glucose only prior to surgery. CONCLUSION Thyroid supplementation does not alter systemic lactate/pyruvate metabolism after cardiopulmonary bypass and reperfusion. Pyruvate levels are not useful for predicting low cardiac output syndrome. Increased blood glucose may be regarded as a response to hypermetabolic stress, seen mostly in patients with low cardiac output syndrome.
Collapse
|
6
|
De Jong KA, Hall LG, Renton MC, Connor T, Martin SD, Kowalski GM, Shaw CS, Bruce CR, Howlett KF, McGee SL. Loss of protein kinase D activity demonstrates redundancy in cardiac glucose metabolism and preserves cardiac function in obesity. Mol Metab 2020; 42:101105. [PMID: 33099046 PMCID: PMC7680779 DOI: 10.1016/j.molmet.2020.101105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Protein kinase D (PKD) signaling has been implicated in stress-induced cardiac remodeling and function as well as metabolic processes including contraction-mediated cardiac glucose uptake. PKD has recently emerged as a nutrient-sensing kinase that is activated in high-lipid environments, such as in obesity. However, the role of PKD signaling in cardiac glucose metabolism and cardiac function in both normal and obese conditions remains unknown. Methods A cardiac-specific and inducible dominant negative (DN) PKD mouse model was developed. Echocardiography was used to assess cardiac function, while metabolic phenotyping was performed, including stable isotope metabolomics on cardiac tissue in mice fed either regular chow or a high-fat diet (43% calories from fat). Results Cardiac PKD activity declined by ∼90% following DN PKD induction in adult mice. The mice had diminished basal cardiac glucose clearance, suggesting impaired contraction-mediated glucose uptake, but normal cardiac function. In obesity studies, systolic function indices were reduced in control mice, but not in cardiac DN PKD mice. Using targeted stable isotope metabolomic analyses, no differences in glucose flux through glycolysis or the TCA cycle were observed between groups. Conclusions The data show that PKD contributes to cardiac dysfunction in obesity and highlight the redundancy in cardiac glucose metabolism that maintains cardiac glucose flux in vivo. The data suggest that impairments in contraction-mediated glucose uptake are unlikely to drive cardiac dysfunction in both normal and metabolic disease states. Cardiac protein kinase D (PKD) is required for contraction-mediated glucose uptake. PKD is not essential for normal cardiac function. Loss of PKD activity does not alter cardiac glucose flux in normal or obese mice. Loss of cardiac PKD activity preserves cardiac function in obesity.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany
| | - Liam G Hall
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Timothy Connor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Greg M Kowalski
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| |
Collapse
|
7
|
Schnelle M, Chong M, Zoccarato A, Elkenani M, Sawyer GJ, Hasenfuss G, Ludwig C, Shah AM. In vivo [U- 13C]glucose labeling to assess heart metabolism in murine models of pressure and volume overload. Am J Physiol Heart Circ Physiol 2020; 319:H422-H431. [PMID: 32648823 PMCID: PMC7473922 DOI: 10.1152/ajpheart.00219.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations in the metabolism of substrates such as glucose are integrally linked to the structural and functional changes that occur in the remodeling heart. Assessment of such metabolic changes under in vivo conditions would provide important insights into this interrelationship. We aimed to investigate glucose carbon metabolism in pressure-overload and volume-overload cardiac hypertrophy by using an in vivo [U-13C]glucose labeling strategy to enable analyses of the metabolic fates of glucose carbons in the mouse heart. Therefore, [U-13C]glucose was administered in anesthetized mice by tail vein infusion, and the optimal duration of infusion was established. Hearts were then excised for 13C metabolite isotopomer analysis by NMR spectroscopy. [U-13C]glucose infusions were performed in mice 2 wk following transverse aortic constriction (TAC) or aortocaval fistula (Shunt) surgery. At this time point, there were similar increases in left ventricular (LV) mass in both groups, but TAC resulted in concentric hypertrophy with impaired LV function, whereas Shunt caused eccentric hypertrophy with preserved LV function. TAC was accompanied by significant changes in glycolysis, mitochondrial oxidative metabolism, glucose metabolism to anaplerotic substrates, and de novo glutamine synthesis. In contrast to TAC, hardly any metabolic changes could be observed in the Shunt group. Taken together, in vivo [U-13C]glucose labeling is a valuable method to investigate the fate of nutrients such as glucose in the remodeling heart. We find that concentric and eccentric cardiac remodeling are accompanied by distinct differences in glucose carbon metabolism. NEW & NOTEWORTHY This study implemented a method for assessing the fate of glucose carbons in the heart in vivo and used this to demonstrate that pressure and volume overload are associated with distinct changes. In contrast to volume overload, pressure overload-induced changes affect the tricarboxylic acid cycle, glycolytic pathways, and glutamine synthesis. A better understanding of cardiac glucose metabolism under pathological conditions in vivo may provide new therapeutic strategies specific for different types of hemodynamic overload. Listen to this article’s corresponding podcast at: https://ajpheart.podbean.com/e/u-13c-glucose-and-in-vivo-heart-metabolism/.
Collapse
Affiliation(s)
- Moritz Schnelle
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Mei Chong
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Manar Elkenani
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.,Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Greta Jane Sawyer
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Goettingen, Goettingen, Germany
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| |
Collapse
|
8
|
Kajimoto M, Nuri M, Isern NG, Robillard-Frayne I, Des Rosiers C, Portman MA. Metabolic Response to Stress by the Immature Right Ventricle Exposed to Chronic Pressure Overload. J Am Heart Assoc 2019; 8:e013169. [PMID: 31450994 PMCID: PMC6755848 DOI: 10.1161/jaha.119.013169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The right ventricle exposed to chronic pressure overload exhibits hypertrophy and decompensates when exposed to stress. We hypothesize that impaired ability to increase myocardial oxidative flux through pyruvate dehydrogenase leads to hypertrophied right ventricular (RV) dysfunction when exposed to hemodynamic stress, and pyruvate dehydrogenase stimulation can improve RV function. Methods and Results Infant male Yorkshire piglets (13.5±0.6 kg weight, n=19) were used to assess substrate fractional contribution to the citric acid cycle after sustained pulmonary artery banding (PAB). Carbon 13–labeled glucose, lactate, and leucine, oxidative substrate tracers for the citric acid cycle, were infused into the right coronary artery on 7 to 10 days after PAB. RV systolic pressure, RV free wall thickness, and individual cardiomyocyte cell size after PAB were significantly elevated compared with the sham group. Both fractional glucose and lactate oxidations in the PAB group were >2‐fold higher than in the sham group. Pigs with overdrive atrial pacing (≈80% increase in heart rate) stress after PAB showed only a 22% increase in rate‐pressure product from baseline before atrial pacing and limited carbohydrate oxidation rate in the right ventricle. Intracoronary infusion of dichloroacetate, a pyruvate dehydrogenase agonist, produced higher rate‐pressure product (59% increase) in response to increased workload by atrial pacing in association with a marked increase in lactate oxidation. Conclusions The immature hypertrophied right ventricle shows limited ability to increase carbohydrate oxidation in response to tachycardia stress leading to energy supply/utilization imbalance and decreased systolic function. Enhanced pyruvate dehydrogenase activation by dichloroacetate increases energy supply and preserves hypertrophied RV contractile function during hemodynamic stress.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA
| | - Muhammad Nuri
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA.,Division of Pediatric Cardiac Surgery Seattle Children's Hospital Seattle WA
| | - Nancy G Isern
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratories Richland WA
| | | | - Christine Des Rosiers
- Department of Nutrition Université de Montréal and Montreal Heart Institute Montréal Quebec Canada
| | - Michael A Portman
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA.,Division of Cardiology Department of Pediatrics University of Washington Seattle WA
| |
Collapse
|
9
|
Kajimoto M, Nuri M, Isern NG, Robillard-Frayne I, Des Rosiers C, Portman MA. Metabolic Response of the Immature Right Ventricle to Acute Pressure Overloading. J Am Heart Assoc 2018; 7:JAHA.118.008570. [PMID: 29848498 PMCID: PMC6015375 DOI: 10.1161/jaha.118.008570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Surgical palliation or repair of complex congenital heart disease in early infancy can produce right ventricular (RV) pressure overload, often leading to acute hemodynamic decompensation. The mechanisms causing this acute RV dysfunction remain unclear. We tested the hypothesis that the immature right ventricle lacks the ability to modify substrate metabolism in order to meet increased energy demands induced by acute pressure overloading. METHODS AND RESULTS Twenty-two infant male mixed breed Yorkshire piglets were randomized to a sham operation (Control) or pulmonary artery banding yielding >2-fold elevation over baseline RV systolic pressure. We used carbon 13 (13C)-labeled substrates and proton nuclear magnetic resonance to assess RV energy metabolism. [Phosphocreatine]/[ATP] was significantly lower after pulmonary artery banding. [Phosphocreatine]/[ATP] inversely correlated with energy demand indexed by maximal sustained RV systolic pressure/left ventricular systolic pressure. Fractional contributions of fatty acids to citric acid cycle were significantly lower in the pulmonary artery banding group than in the Control group (medium-chain fatty acids; 14.5±1.6 versus 8.2±1.0%, long-chain fatty acids; 9.3±1.5 versus 5.1±1.1%). 13C-flux analysis showed that flux via pyruvate decarboxylation did not increase during RV pressure overloading. CONCLUSIONS Acute RV pressure overload yielded a decrease in [phosphocreatine]/[ATP] ratio, implying that ATP production did not balance the increasing ATP requirement. Relative fatty acids oxidation decreased without a reciprocal increase in pyruvate decarboxylation. The data imply that RV inability to adjust substrate oxidation contributes to energy imbalance, and potentially to contractile failure. The data suggest that interventions directed at increasing RV pyruvate decarboxylation flux could ameliorate contractile dysfunction associated with acute pressure overloading.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA
| | - Muhammad Nuri
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA.,Division of Pediatric Cardiac Surgery, Seattle Children's Hospital, Seattle, WA
| | - Nancy G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratories, Richland, WA
| | - Isabelle Robillard-Frayne
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, Quebec, Canada
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, Quebec, Canada
| | - Michael A Portman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA .,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Dornfeld K, Madden M, Skildum A, Wallace KB. Aspartate facilitates mitochondrial function, growth arrest and survival during doxorubicin exposure. Cell Cycle 2016; 14:3282-91. [PMID: 26317891 PMCID: PMC4825578 DOI: 10.1080/15384101.2015.1087619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic screens of doxorubicin toxicity in S. cerevisiae have identified numerous mutants in amino acid and carbon metabolism which express increased doxorubicin sensitivity. This work examines the effect of amino acid metabolism on doxorubicin toxicity. S. cerevisiae were treated with doxorubicin in combination with a variety of amino acid supplements. Strains of S. cerevisiae with mutations in pathways utilizing aspartate and other metabolites were examined for sensitivity to doxorubicin. S. cerevisiae cultures exposed to doxorubicin in minimal media showed significantly more toxicity than cultures exposed in rich media. Supplementing minimal media with aspartate, glutamate or alanine reduced doxorubicin toxicity. Cell cycle response was assessed by examining the budding pattern of treated cells. Cultures exposed to doxorubicin in minimal media arrested growth with no apparent cell cycle progression. Aspartate supplementation allowed cultures exposed to doxorubicin in minimal media to arrest after one division with a budding pattern and survival comparable to cultures exposed in rich media. Aspartate provides less protection from doxorubicin in cells mutant in either mitochondrial citrate synthase (CIT1) or NADH oxidase (NDI1), suggesting aspartate reduces doxorubicin toxicity by facilitating mitochondrial function. These data suggest glycolysis becomes less active and mitochondrial respiration more active following doxorubicin exposure.
Collapse
Affiliation(s)
- Ken Dornfeld
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA.,b Department of Radiation Oncology ; Essentia Health ; Duluth , MN USA
| | - Michael Madden
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Andrew Skildum
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Kendall B Wallace
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| |
Collapse
|
11
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
12
|
Low T3 State Is Correlated with Cardiac Mitochondrial Impairments after Ischemia Reperfusion Injury: Evidence from a Proteomic Approach. Int J Mol Sci 2015; 16:26687-705. [PMID: 26561807 PMCID: PMC4661832 DOI: 10.3390/ijms161125973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are major determinants of cell fate in ischemia/reperfusion injury (IR) and common effectors of cardio-protective strategies in cardiac ischemic disease. Thyroid hormone homeostasis critically affects mitochondrial function and energy production. Since a low T3 state (LT3S) is frequently observed in the post infarction setting, the study was aimed to investigate the relationship between 72 h post IR T3 levels and both the cardiac function and the mitochondrial proteome in a rat model of IR. The low T3 group exhibits the most compromised cardiac performance along with the worst mitochondrial activity. Accordingly, our results show a different remodeling of the mitochondrial proteome in the presence or absence of a LT3S, with alterations in groups of proteins that play a key role in energy metabolism, quality control and regulation of cell death pathways. Overall, our findings highlight a relationship between LT3S in the early post IR and poor cardiac and mitochondrial outcomes, and suggest a potential implication of thyroid hormone in the cardio-protection and tissue remodeling in ischemic disease.
Collapse
|
13
|
Kajimoto M, Ledee DR, Olson AK, Isern NG, Des Rosiers C, Portman MA. Differential effects of octanoate and heptanoate on myocardial metabolism during extracorporeal membrane oxygenation in an infant swine model. Am J Physiol Heart Circ Physiol 2015; 309:H1157-65. [PMID: 26232235 DOI: 10.1152/ajpheart.00298.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
Abstract
Nutritional energy support during extracorporeal membrane oxygenation (ECMO) should promote successful myocardial adaptation and eventual weaning from the ECMO circuit. Fatty acids (FAs) are a major myocardial energy source, and medium-chain FAs (MCFAs) are easily taken up by cell and mitochondria without membrane transporters. Odd-numbered MCFAs supply carbons to the citric acid cycle (CAC) via anaplerotic propionyl-CoA as well as acetyl-CoA, the predominant β-oxidation product for even-numbered MCFA. Theoretically, this anaplerotic pathway enhances carbon entry into the CAC, and provides superior energy state and preservation of protein synthesis. We tested this hypothesis in an immature swine model undergoing ECMO. Fifteen male Yorkshire pigs (26-45 days old) with 8-h ECMO received either normal saline, heptanoate (odd-numbered MCFA), or octanoate (even-numbered MCFA) at 2.3 μmol·kg body wt(-1)·min(-1) as MCFAs systemically during ECMO (n = 5/group). The 13-carbon ((13)C)-labeled substrates ([2-(13)C]lactate, [5,6,7-(13)C3]heptanoate, and [U-(13)C6]leucine) were systemically infused as metabolic markers for the final 60 min before left ventricular tissue extraction. Extracted tissues were analyzed for the (13)C-labeled and absolute concentrations of metabolites by nuclear magnetic resonance and gas chromatography-mass spectrometry. Octanoate produced markedly higher myocardial citrate concentration, and led to a higher [ATP]-to-[ADP] ratio compared with other groups. Unexpectedly, octanoate and heptanoate increased the flux of propionyl-CoA relative to acetyl-CoA into the CAC compared with control. MCFAs promoted increases in leucine oxidation, but were not associated with a difference in protein synthesis rate. In conclusion, octanoate provides energetic advantages to the heart over heptanoate.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Dolena R Ledee
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Aaron K Olson
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington; Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Nancy G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratories, Richland, Washington; and
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, Quebec, Canada
| | - Michael A Portman
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington; Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington;
| |
Collapse
|
14
|
Ledee DR, Kajimoto M, O'Kelly Priddy CM, Olson AK, Isern N, Robillard-Frayne I, Des Rosiers C, Portman MA. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model. Am J Physiol Heart Circ Physiol 2015; 309:H137-46. [PMID: 25910802 DOI: 10.1152/ajpheart.00011.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we tested the hypothesis that prolonged systemic pyruvate supplementation activates pyruvate oxidation in an immature swine model in vivo. Twelve male mixed-breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (group C) or pyruvate (group P) during the final 6 h of 8 h of ECMO. Over the final hour, piglets received [2-(13)C] pyruvate, as a reference substrate for oxidation, and [(13)C6]-l-leucine, as an indicator for amino acid oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of the citric acid cycle intermediates. An increase in anaplerotic flux through pyruvate carboxylation in group P occurred compared with no change in pyruvate oxidation. Additionally, pyruvate promoted an increase in the phosphorylation state of several nutrient-sensitive enzymes, like AMP-activated protein kinase and acetyl CoA carboxylase, suggesting activation for fatty acid oxidation. Pyruvate also promoted O-GlcNAcylation through the hexosamine biosynthetic pathway. In conclusion, although prolonged pyruvate supplementation did not alter pyruvate oxidation, it did elicit changes in nutrient- and energy-sensitive pathways. Therefore, the observed results support the further study of pyruvate and its downstream effect on cardiac function.
Collapse
Affiliation(s)
- Dolena R Ledee
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | | | - Aaron K Olson
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington; Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Nancy Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Isabelle Robillard-Frayne
- Department of Nutrition, Université de Montréal and Montréal Heart Institute, Montréal, Quebec, Canada
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montréal Heart Institute, Montréal, Quebec, Canada
| | - Michael A Portman
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington; Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Kajimoto M, Ledee DR, Xu C, Kajimoto H, Isern NG, Portman MA. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation. Circ J 2014; 78:2867-2875. [PMID: 25421230 PMCID: PMC5570456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. CONCLUSIONS T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute
| | | | | | | | | | | |
Collapse
|
16
|
Files MD, Kajimoto M, O'Kelly Priddy CM, Ledee DR, Xu C, Des Rosiers C, Isern N, Portman MA. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization. J Am Heart Assoc 2014; 3:e000680. [PMID: 24650924 PMCID: PMC4187495 DOI: 10.1161/jaha.113.000680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia-reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. METHODS AND RESULTS Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2-(13)C]pyruvate and [(13)C6, (15)N]l-leucine to evaluate oxidative metabolism by gas chromatography-mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. CONCLUSIONS Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO-induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning.
Collapse
Affiliation(s)
- Matthew D Files
- Department of Cardiology, Seattle Children's Hospital, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kajimoto M, Priddy CMO, Ledee DR, Xu C, Isern N, Olson AK, Portman MA. Effects of continuous triiodothyronine infusion on the tricarboxylic acid cycle in the normal immature swine heart under extracorporeal membrane oxygenation in vivo. Am J Physiol Heart Circ Physiol 2014; 306:H1164-70. [PMID: 24531815 DOI: 10.1152/ajpheart.00964.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO-induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age: 25-38 days) with ECMO received [2-(13)C]lactate, [2,4,6,8-(13)C4]octanoate (medium-chain fatty acid), and [U-(13)C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 min of each protocol. NMR analysis of left ventricular tissue determined the fractional contribution of these substrates to the tricarboxylic acid cycle. Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg·kg(-1)·h(-1)) during ECMO. Under both substrate loading conditions, T3 significantly increased the fractional contribution of lactate with a marginal increase in the fractional contribution of octanoate. Both T3 and high substrate provision increased the myocardial energy status, as indexed by phosphocreatine concentration/ATP concentration. In conclusion, T3 supplementation promoted lactate metabolism to the tricarboxylic acid cycle during ECMO, suggesting that T3 releases the inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve the resting energy state and facilitate weaning.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | | | | | | | | | | | | |
Collapse
|
18
|
Gurji HA, White DW, Hoxha B, Sun J, Harbor JP, Schulz DR, Williams AG, Olivencia-Yurvati AH, Mallet RT. Pyruvate-enriched resuscitation: metabolic support of post-ischemic hindlimb muscle in hypovolemic goats. Exp Biol Med (Maywood) 2014; 239:240-9. [PMID: 24414481 DOI: 10.1177/1535370213514329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tourniquet-imposed ischemia-reperfusion of extremities generates reactive oxygen and nitrogen species (RONS), which can disrupt intermediary metabolism and ATP production. This study tested the hypothesis that fluid resuscitation with pyruvate, a natural antioxidant and metabolic fuel, ameliorates the deleterious effects of ischemia-reperfusion on intermediary metabolism in skeletal muscle. Anesthetized male goats (∼25 kg) were bled to a mean arterial pressure of 48 ± 1 mmHg and then subjected to 90 min hindlimb ischemia with a tourniquet and femoral crossclamp, followed by 4-h reperfusion. Lactated Ringers (LR) or pyruvate Ringers (PR) was infused intravenous for 90 min, from 30 min ischemia to 30 min reperfusion, to deliver 0.05 mmol kg(-1) min(-1) lactate or pyruvate. Time controls (TC) underwent neither hemorrhage nor hindlimb ischemia. Lipid peroxidation product 8-isoprostane, RONS-sensitive aconitase and creatine kinase activities, antioxidant superoxide dismutase activity, and phosphocreatine phosphorylation potential ([PCr]/[{Cr}{P(i)}]), an index of tissue energy state, were measured in reperfused gastrocnemius at 90 min resuscitation (n = 6 all groups) and 3.5 h post-resuscitation (n = 8 TC, 9 LR, 10 PR). PR more effectively than LR suppressed 8-isoprostane formation, prevented inactivation of aconitase and creatine kinase, doubled superoxide dismutase activity, and augmented [PCr]/([Cr][P(i)]). Pyruvate-enriched Ringer's is metabolically superior to Ringer's lactate for fluid resuscitation of tourniqueted muscle.
Collapse
Affiliation(s)
- Hunaid A Gurji
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kajimoto M, Ledee DR, Xu C, Kajimoto H, Isern NG, Portman MA. Triiodothyronine Activates Lactate Oxidation Without Impairing Fatty Acid Oxidation and Improves Weaning From Extracorporeal Membrane Oxygenation. Circ J 2014. [DOI: 10.1253/circj.cj-14-0821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children’s Research Institute
| | - Dolena R. Ledee
- Center for Developmental Therapeutics, Seattle Children’s Research Institute
| | - Chun Xu
- Center for Developmental Therapeutics, Seattle Children’s Research Institute
| | - Hidemi Kajimoto
- Center for Developmental Therapeutics, Seattle Children’s Research Institute
| | - Nancy G. Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Michael A. Portman
- Center for Developmental Therapeutics, Seattle Children’s Research Institute
- Division of Cardiology, Department of Pediatrics, University of Washington
| |
Collapse
|
20
|
Kajimoto M, O'Kelly Priddy CM, Ledee DR, Xu C, Isern N, Olson AK, Des Rosiers C, Portman MA. Myocardial reloading after extracorporeal membrane oxygenation alters substrate metabolism while promoting protein synthesis. J Am Heart Assoc 2013; 2:e000106. [PMID: 23959443 PMCID: PMC3828804 DOI: 10.1161/jaha.113.000106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Methods and Results Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8‐hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2‐13C]‐pyruvate as an oxidative substrate and [13C6]‐L‐leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near‐baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl‐CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). Conclusions RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve success rate from weaning from ECMO.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kajimoto M, O'Kelly Priddy CM, Ledee DR, Xu C, Isern N, Olson AK, Portman MA. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo. J Mol Cell Cardiol 2013; 62:144-52. [PMID: 23727393 DOI: 10.1016/j.yjmcc.2013.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/29/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), long-chain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Priddy CMO, Kajimoto M, Ledee DR, Bouchard B, Isern N, Olson AK, Des Rosiers C, Portman MA. Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation. Am J Physiol Heart Circ Physiol 2012. [PMID: 23203964 DOI: 10.1152/ajpheart.00672.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) provides essential mechanical circulatory support necessary for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur, which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative metabolism and protein synthesis. We focused on the amino acid leucine and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart 1) the fractional contribution of leucine (FcLeucine) and pyruvate to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and 2) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 h of normal circulation or ECMO) and intracoronary infusion [(13)C(6),(15)N]-L-leucine (3.7 mM) alone or with [2-(13)C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (∼40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining 1) metabolic flexibility indicated by ability to respond to pyruvate and 2) a normal or increased capacity for global protein synthesis.
Collapse
|
23
|
Gender-dependent Metabolic Remodeling During Heart Preservation in Cardioplegic Celsior and Histidine Buffer Solution. J Cardiovasc Pharmacol 2012; 60:227-33. [DOI: 10.1097/fjc.0b013e3182391d17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Olson AK, Bouchard B, Ning XH, Isern N, Rosiers CD, Portman MA. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2011; 302:H1086-93. [PMID: 22180654 DOI: 10.1152/ajpheart.00959.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-(13)Carbon((13)C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-(13)C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and (13)C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, (13)C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion.
Collapse
Affiliation(s)
- Aaron K Olson
- Division of Cardiology, Department of Pediatrics, University of Washington, WA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Alves MG, Oliveira PJ, Carvalho RA. Substrate selection in hearts subjected to ischemia/reperfusion: role of cardioplegic solutions and gender. NMR IN BIOMEDICINE 2011; 24:1029-1037. [PMID: 21274961 DOI: 10.1002/nbm.1640] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 05/30/2023]
Abstract
In conditions of ischemia/reperfusion (I/R), the relative use of all available substrates by the heart has a significant effect on the recovery of the organ. This substrate preference in perfused hearts is influenced by ischemia. We followed the metabolic fate of [U-(13) C]glucose and [3-(13) C]lactate in hearts preserved in Celsior (Cs) and histidine buffer solution (HBS) for 4 or 6 h and subsequently perfused with a Krebs-Henseleit solution (KH) containing [U-(13) C]glucose and [3-(13) C]lactate. We also assessed gender-specific metabolic modulation in our I/R experimental conditions. Hearts from male and female Wistar rats (6-8 weeks) were subjected to moderate (0-240 min) or prolonged (240-360 min) cold ischemia whilst immersed in Cs and HBS, and perfused for 30 min with KH containing [U-(13) C]glucose and [3-(13) C]lactate. After perfusion, hearts were freeze-clamped and metabolites were extracted for (13) C NMR isotopomer analysis. In control conditions, there were no differences with regard to lactate origin in hearts from males and females. After 6 h of preservation in Cs, lactate origin was mostly from [U-(13) C]glucose in hearts from males and from [3-(13) C]lactate in hearts from females. During the 6 h of organ preservation in HBS, the lactate pool showed a strong contribution from unenriched sources in male hearts and from [U-(13) C]glucose in female hearts. The glutamate C2/C4 ratio was stable or increased in hearts from females after I/R, and the alanine index increased in hearts from both males and females. Octanoate was, as predicted, the preferential substrate during perfusion. Glucose and lactate suffer a distinct metabolic fate in our I/R conditions, which is related to the cardioplegic solution used during organ storage, and the gender. Hearts from females appear to be less sensitive to I/R injury, and heart preservation in HBS proved to be effective in enhancing anaplerosis during perfusion, especially in hearts from females.
Collapse
Affiliation(s)
- Marco G Alves
- Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
26
|
Des Rosiers C, Labarthe F, Lloyd SG, Chatham JC. Cardiac anaplerosis in health and disease: food for thought. Cardiovasc Res 2011; 90:210-9. [PMID: 21398307 DOI: 10.1093/cvr/cvr055] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There has been a resurgence of interest for the field of cardiac metabolism catalysed by the increased need for new therapeutic targets for patients with heart failure. The primary focus of research in this area to date has been on the impact of substrate selection for oxidative energy metabolism; however, anaplerotic metabolism also has significant interest for its potential cardioprotective role. Anaplerosis refers to metabolic pathways that replenish the citric acid cycle intermediates, which are essential to energy metabolism; however, our understanding of the role and regulation of this process in the heart, particularly under pathophysiological conditions, is very limited. Therefore, the goal of this article is to provide a foundation for future directions of research on cardiac anaplerosis and heart disease. We include an overview of anaplerotic metabolism, a critical evaluation of current methods available for its quantitation in the intact heart, and a discussion of its role and regulation both in health and disease as it is currently understood based mostly on animal studies. We also consider genetic diseases affecting anaplerotic pathways in humans and acute intervention studies with anaplerotic substrates in the clinics. Finally, as future perspectives, we will share our thoughts about potential benefits and practical considerations on modalities of interventions targeting anaplerosis in heart disease, including heart failure.
Collapse
Affiliation(s)
- Christine Des Rosiers
- Department of Nutrition, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada H3C 3J7.
| | | | | | | |
Collapse
|
27
|
Nielsen TT, Støttrup NB, Løfgren B, Bøtker HE. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. Cardiovasc Res 2011; 91:382-91. [PMID: 21349875 DOI: 10.1093/cvr/cvr051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The convergence of cardioprotective intracellular signalling pathways to modulate mitochondrial function as an end-target of cytoprotective stimuli is well described. However, our understanding of whether the complementary changes in mitochondrial energy metabolism are secondary responses or inherent mechanisms of ischaemic cardioprotection remains incomplete. In the heart, the malate-aspartate shuttle (MAS) constitutes the primary metabolic pathway for transfer of reducing equivalents from the cytosol into the mitochondria for oxidation. The flux of MAS is tightly linked to the flux of the tricarboxylic acid cycle and the electron transport chain, partly by the amino acid l-glutamate. In addition, emerging evidence suggests the MAS is an important regulator of cytosolic and mitochondrial calcium homeostasis. In the isolated rat heart, inhibition of MAS during ischaemia and early reperfusion by the aminotransferase inhibitor aminooxyacetate induces infarct limitation, improves haemodynamic responses, and modulates glucose metabolism, analogous to effects observed in classical ischaemic preconditioning. On the basis of these findings, the mechanisms through which MAS preserves mitochondrial function and cell survival are reviewed. We conclude that the available evidence is supportive of a down-regulation of mitochondrial respiration during lethal ischaemia with a gradual 'wake-up' during reperfusion as a pivotal feature of ischaemic cardioprotection. Finally, comments on modulating myocardial energy metabolism by the cardioprotective amino acids glutamate and glutamine are given.
Collapse
Affiliation(s)
- Torsten Toftegaard Nielsen
- Department of Cardiology, Skejby Hospital, Aarhus University Hospital, Brendstrupgaardsvej 100, Aarhus N, Denmark.
| | | | | | | |
Collapse
|
28
|
Hyyti OM, Ledee D, Ning XH, Ge M, Portman MA. Aging impairs myocardial fatty acid and ketone oxidation and modifies cardiac functional and metabolic responses to insulin in mice. Am J Physiol Heart Circ Physiol 2010; 299:H868-75. [PMID: 20601465 DOI: 10.1152/ajpheart.00931.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4-6 mo) and aged (22-24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing (13)C-labeled free fatty acids (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)alpha and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.
Collapse
Affiliation(s)
- Outi M Hyyti
- Division of Cardiology and Department of Pediatrics, University of Washington, and Seattle Children's Hospital Research Institute, Center for Developmental Therapeutics, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|