1
|
Xu Q, Yao M, Tang C. RGS2 and female common diseases: a guard of women's health. J Transl Med 2023; 21:583. [PMID: 37649067 PMCID: PMC10469436 DOI: 10.1186/s12967-023-04462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Currently, women around the world are still suffering from various female common diseases with the high incidence, such as ovarian cancer, uterine fibroids and preeclampsia (PE), and some diseases are even with the high mortality rate. As a negative feedback regulator in G Protein-Coupled Receptor signaling (GPCR), the Regulator of G-protein Signaling (RGS) protein family participates in regulating kinds of cell biological functions by destabilizing the enzyme-substrate complex through the transformation of hydrolysis of G Guanosine Triphosphate (GTP). Recent work has indicated that, the Regulator of G-protein Signaling 2 (RGS2), a member belonging to the RGS protein family, is closely associated with the occurrence and development of certain female diseases, providing with the evidence that RGS2 functions in sustaining women's health. In this review paper, we summarize the current knowledge of RGS2 in female common diseases, and also tap and discuss its therapeutic potential by targeting multiple mechanisms.
Collapse
Affiliation(s)
- Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China
| | - Mukun Yao
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
2
|
Abstract
BACKGROUND Atrial fibrillation (AF) is by far the most common cardiac arrhythmia. In about 3% of individuals, AF develops as a primary disorder without any identifiable trigger (idiopathic or historically termed lone AF). In line with the emerging field of autoantibody-related cardiac arrhythmias, the objective of this study was to explore whether autoantibodies targeting cardiac ion channels can underlie unexplained AF. METHODS Peptide microarray was used to screen patient samples for autoantibodies. We compared patients with unexplained AF (n=37 pre-existent AF; n=14 incident AF on follow-up) to age- and sex-matched controls (n=37). Electrophysiological properties of the identified autoantibody were then tested in vitro with the patch clamp technique and in vivo with an experimental mouse model of immunization. RESULTS A common autoantibody response against Kir3.4 protein was detected in patients with AF and even before the development of clinically apparent AF. Kir3.4 protein forms a heterotetramer that underlies the cardiac acetylcholine-activated inwardly rectifying K+ current, IKACh. Functional studies on human induced pluripotent stem cell-derived atrial cardiomyocytes showed that anti-Kir3.4 IgG purified from patients with AF shortened action potentials and enhanced the constitutive form of IKACh, both key mediators of AF. To establish a causal relationship, we developed a mouse model of Kir3.4 autoimmunity. Electrophysiological study in Kir3.4-immunized mice showed that Kir3.4 autoantibodies significantly reduced atrial effective refractory period and predisposed animals to a 2.8-fold increased susceptibility to AF. CONCLUSIONS To our knowledge, this is the first report of an autoimmune pathogenesis of AF with direct evidence of Kir3.4 autoantibody-mediated AF.
Collapse
Affiliation(s)
- Ange Maguy
- Institute of Physiology, University of Bern, Switzerland (A.M.)
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - David Busseuil
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - Jin Li
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Switzerland (J.L.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland (J.L.)
| |
Collapse
|
3
|
Hohendanner F, Prabhu A, Wilck N, Stangl V, Pieske B, Stangl K, Althoff TF. G q-Mediated Arrhythmogenic Signaling Promotes Atrial Fibrillation. Biomedicines 2023; 11:biomedicines11020526. [PMID: 36831062 PMCID: PMC9953645 DOI: 10.3390/biomedicines11020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is promoted by various stimuli like angiotensin II, endothelin-1, epinephrine/norepinephrine, vagal activation, or mechanical stress, all of which activate receptors coupled to G-proteins of the Gαq/Gα11-family (Gq). Besides pro-fibrotic and pro-inflammatory effects, Gq-mediated signaling induces inositol trisphosphate receptor (IP3R)-mediated intracellular Ca2+ mobilization related to delayed after-depolarisations and AF. However, direct evidence of arrhythmogenic Gq-mediated signaling is absent. METHODS AND RESULTS To define the role of Gq in AF, transgenic mice with tamoxifen-inducible, cardiomyocyte-specific Gαq/Gα11-deficiency (Gq-KO) were created and exposed to intracardiac electrophysiological studies. Baseline electrophysiological properties, including heart rate, sinus node recovery time, and atrial as well as AV nodal effective refractory periods, were comparable in Gq-KO and control mice. However, inducibility and mean duration of AF episodes were significantly reduced in Gq-KO mice-both before and after vagal stimulation. To explore underlying mechanisms, left atrial cardiomyocytes were isolated from Gq-KO and control mice and electrically stimulated to study Ca2+-mobilization during excitation-contraction coupling using confocal microscopy. Spontaneous arrhythmogenic Ca2+ waves and sarcoplasmic reticulum content-corrected Ca2+ sparks were less frequent in Gq-KO mice. Interestingly, nuclear but not cytosolic Ca2+ transient amplitudes were significantly decreased in Gq-KO mice. CONCLUSION Gq-signaling promotes arrhythmogenic atrial Ca2+-release and AF in mice. Targeting this pathway, ideally using Gq-selective, biased receptor ligands, may be a promising approach for the treatment and prevention of AF. Importantly, the atrial-specific expression of the Gq-effector IP3R confers atrial selectivity mitigating the risk of life-threatening ventricular pro-arrhythmic effects.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ashok Prabhu
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicola Wilck
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a Cooperation of Charité–Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125 Berlin, Germany
- Department of Nephrology and Medical Intensive Care Medicine, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Verena Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkert Pieske
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Karl Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Till F. Althoff
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Arrhythmia Section, Cardiovascular Institute (ICCV), Hospital Clínic, Universitat de Barcelona, C/Villarroel N° 170, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275551; Fax: +34-93-4513045
| |
Collapse
|
4
|
Favere K, Van Fraeyenhove J, Jacobs G, Bosman M, Eens S, De Sutter J, Miljoen H, Guns PJ, De Keulenaer GW, Segers VFM, Heidbuchel H. Cardiac electrophysiology studies in mice via the transjugular route: a comprehensive practical guide. Am J Physiol Heart Circ Physiol 2022; 323:H763-H773. [PMID: 36018757 DOI: 10.1152/ajpheart.00337.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac arrhythmias are associated with cardiovascular morbidity and mortality. Cardiac electrophysiology studies (EPS) use intracardiac catheter recording and stimulation for profound evaluation of the heart's electrical properties. The main clinical application is investigation and treatment of rhythm disorders. These techniques have been translated to the murine setting to open opportunities for detailed evaluation of the impact of different characteristics (including genetics) and interventions on cardiac electrophysiology and -pathology. Currently, a detailed description of the technique of murine transjugular EPS (which is the standard route of catheter introduction) is lacking. This article provides detailed information on EPS in mice via the transjugular route. This includes catheter placement, stimulation protocols, intracardiac tracing interpretation, artefact reduction and surface ECG recording. In addition, reference values as obtained in C57BL/6N mice are presented for common electrophysiological parameters. This detailed methodological description aims to increase accessibility and standardisation of EPS in mice. Ultimately, also human research and patient care may benefit from translation of the knowledge obtained in preclinical models using this technique.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Jens Van Fraeyenhove
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Griet Jacobs
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Sander Eens
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hielko Miljoen
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, ZNA Middelheim Hospital, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
5
|
Lymperopoulos A, Suster MS, Borges JI. Cardiovascular GPCR regulation by regulator of G protein signaling proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:145-166. [PMID: 36357075 DOI: 10.1016/bs.pmbts.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiovascular homeostasis across all vertebrate species, including humans. In terms of normal cellular function, termination of GPCR signaling via the heterotrimeric G proteins is equally (if not more) important to its stimulation. The Regulator of G protein Signaling (RGS) protein superfamily are indispensable for GPCR signaling cessation at the cell membrane, and thus, for cellular control of GPCR signaling and function. Perturbations in both activation and termination of G protein signaling underlie many examples of cardiovascular dysfunction and heart disease pathogenesis. Despite the plethora of over 30 members comprising the mammalian RGS protein superfamily, each member interacts with a specific set of second messenger pathways and GPCR types/subtypes in a tissue/cell type-specific manner. An increasing number of studies over the past two decades have provided compelling evidence for the involvement of various RGS proteins in physiological regulation of cardiovascular GPCRs and, consequently, also in the pathophysiology of several cardiovascular ailments. This chapter summarizes the current understanding of the functional roles of RGS proteins as they pertain to cardiovascular, i.e., heart, blood vessel, and platelet GPCR function, with a particular focus on their implications for chronic heart failure pathophysiology and therapy.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| |
Collapse
|
6
|
Jang EJ, Kim YJ, Hwang HS, Yee J, Gwak HS. Associations of GNAS and RGS Gene Polymorphisms with the Risk of Ritodrine-Induced Adverse Events in Korean Women with Preterm Labor: A Cohort Study. Pharmaceutics 2022; 14:pharmaceutics14061220. [PMID: 35745791 PMCID: PMC9227008 DOI: 10.3390/pharmaceutics14061220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ritodrine, a β2-adrenergic receptor agonist, is among most commonly prescribed tocolytic agents. This study aimed to evaluate the associations of single nucleotide polymorphisms in GNAS, RGS2, and RGS5 with the risk of ritodrine-induced adverse events (AEs) and develop a risk scoring system to identify high-risk patients. This is the prospective cohort study conducted at the Ewha Woman’s University Mokdong Hospital between January 2010 and October 2016. Pregnant women were included if they were treated with ritodrine for preterm labor with regular uterine contractions (at least 3 every 10 min) and cervical dilation. A total of 6, 3, and 5 single nucleotide polymorphisms (SNPs) of GNAS, RGS2, and RGS5 genes were genotyped and compared in patients with and without ritodrine-induced AEs. A total of 163 patients were included in this study. After adjusting confounders, GNAS rs3730168 (per-allele odds ratio (OR): 2.1; 95% confidence interval (95% CI): 1.0–4.3) and RGS2 rs1152746 (per-allele OR: 2.6, 95% CI: 1.1–6.5) were significantly associated with ritodrine-induced AEs. According to the constructed risk scoring models, patients with 0, 1, 2, 3, 4, and 5 points showed 0%, 13%, 19%, 31%, 46%, and 100% risks of AEs. This study suggested that GNAS and RGS2 polymorphisms could affect the risk of AEs in patients treated with ritodrine.
Collapse
Affiliation(s)
- Eun-Jeong Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Young-Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University School of Medicine, Seoul 07985, Korea;
| | - Han-Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.); Fax: +82-2-3277-3051 (J.Y. & H.-S.G.)
| | - Hye-Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.); Fax: +82-2-3277-3051 (J.Y. & H.-S.G.)
| |
Collapse
|
7
|
Dahlen SA, Bernadyn TF, Dixon AJ, Sun B, Xia J, Owens EA, Osei-Owusu P. Dual loss of regulator of G protein signaling 2 and 5 exacerbates ventricular myocyte arrhythmias and disrupts the fine-tuning of G i/o signaling. J Mol Cell Cardiol 2022; 170:34-46. [PMID: 35661621 DOI: 10.1016/j.yjmcc.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
AIMS Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modest blood pressure elevation and exaggerated cardiac hypertrophic response to pressure-overload. Whether RGS2 and 5 redundantly control G protein signaling to maintain cardiovascular homeostasis is unknown. Here we examined how the dual absence of RGS2 and 5 (Rgs2/5 dbKO) affects blood pressure and cardiac structure and function. METHODS AND RESULTS We found that Rgs2/5 dbKO mice showed left ventricular dilatation at baseline by echocardiography. Cardiac contractile response to dobutamine stress test was sex-dependently reduced in male Rgs2/5 dbKO relative to WT mice. When subjected to surgery-induced stress, male Rgs2/5 dbKO mice had 75% mortality within 72-96 h after surgery, accompanied by elevated baseline blood pressure and decreased cardiac contractile function. At the cellular level, cardiomyocytes (CM) from Rgs2/5 dbKO mice showed augmented Ca2+ transients and increased incidence of arrhythmia without augmented contractile response to electrical field stimulation (EFS) and activation of β-adrenergic receptors (βAR) with isoproterenol. Dual loss of Rgs2 and 5 suppressed forskolin-induced cAMP production, which was restored by Gi/o inactivation with pertussis toxin that also reduced arrhythmogenesis during EFS or βAR stimulation. Cardiomyocyte NCX and PMCA mRNA expression was unaffected in Rgs2/5 dbKO male mice. However, there was an exaggerated elevation of EFS-induced cytoplasmic Ca2+ in the presence of SERCA blockade with thapsigargin. CONCLUSIONS We conclude that RGS2 and 5 promote normal ventricular rhythm by coordinating their regulatory activity towards Gi/o signaling and facilitating cardiomyocyte calcium handling.
Collapse
Affiliation(s)
- Shelby A Dahlen
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Tyler F Bernadyn
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Alethia J Dixon
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Bo Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Jingsheng Xia
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America
| | - Elizabeth A Owens
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America
| | - Patrick Osei-Owusu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States of America; Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States of America.
| |
Collapse
|
8
|
Tuomi JM, Bohne LJ, Dorey TW, Jansen HJ, Liu Y, Jones DL, Rose RA. Distinct Effects of Ibrutinib and Acalabrutinib on Mouse Atrial and Sinoatrial Node Electrophysiology and Arrhythmogenesis. J Am Heart Assoc 2021; 10:e022369. [PMID: 34726066 PMCID: PMC8751944 DOI: 10.1161/jaha.121.022369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Ibrutinib and acalabrutinib are Bruton tyrosine kinase inhibitors used in the treatment of B‐cell lymphoproliferative disorders. Ibrutinib is associated with new‐onset atrial fibrillation. Cases of sinus bradycardia and sinus arrest have also been reported following ibrutinib treatment. Conversely, acalabrutinib is less arrhythmogenic. The basis for these different effects is unclear. Methods and Results The effects of ibrutinib and acalabrutinib on atrial electrophysiology were investigated in anesthetized mice using intracardiac electrophysiology, in isolated atrial preparations using high‐resolution optical mapping, and in isolated atrial and sinoatrial node (SAN) myocytes using patch‐clamping. Acute delivery of acalabrutinib did not affect atrial fibrillation susceptibility or other measures of atrial electrophysiology in mice in vivo. Optical mapping demonstrates that ibrutinib dose‐dependently impaired atrial and SAN conduction and slowed beating rate. Acalabrutinib had no effect on atrial and SAN conduction or beating rate. In isolated atrial myocytes, ibrutinib reduced action potential upstroke velocity and Na+ current. In contrast, acalabrutinib had no effects on atrial myocyte upstroke velocity or Na+ current. Both drugs increased action potential duration, but these effects were smaller for acalabrutinib compared with ibrutinib and occurred by different mechanisms. In SAN myocytes, ibrutinib impaired spontaneous action potential firing by inhibiting the delayed rectifier K+ current, while acalabrutinib had no effects on SAN myocyte action potential firing. Conclusions Ibrutinib and acalabrutinib have distinct effects on atrial electrophysiology and ion channel function that provide insight into the basis for increased atrial fibrillation susceptibility and SAN dysfunction with ibrutinib, but not with acalabrutinib.
Collapse
Affiliation(s)
- Jari M Tuomi
- Department of Medicine Schulich School of Medicine & Dentistry Western University London Ontario Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences Department of Physiology and Pharmacology Cumming School of Medicine Libin Cardiovascular Institute of AlbertaUniversity of Calgary Calgary Alberta Canada
| | - Tristan W Dorey
- Department of Cardiac Sciences Department of Physiology and Pharmacology Cumming School of Medicine Libin Cardiovascular Institute of AlbertaUniversity of Calgary Calgary Alberta Canada
| | - Hailey J Jansen
- Department of Cardiac Sciences Department of Physiology and Pharmacology Cumming School of Medicine Libin Cardiovascular Institute of AlbertaUniversity of Calgary Calgary Alberta Canada
| | - Yingjie Liu
- Department of Cardiac Sciences Department of Physiology and Pharmacology Cumming School of Medicine Libin Cardiovascular Institute of AlbertaUniversity of Calgary Calgary Alberta Canada
| | - Douglas L Jones
- Department of Medicine Schulich School of Medicine & Dentistry Western University London Ontario Canada.,Department of Physiology & Pharmacology Schulich School of Medicine & Dentistry Western University London Ontario Canada
| | - Robert A Rose
- Department of Cardiac Sciences Department of Physiology and Pharmacology Cumming School of Medicine Libin Cardiovascular Institute of AlbertaUniversity of Calgary Calgary Alberta Canada
| |
Collapse
|
9
|
Yang X, An N, Zhong C, Guan M, Jiang Y, Li X, Zhang H, Wang L, Ruan Y, Gao Y, Liu N, Shang H, Xing Y. Enhanced cardiomyocyte reactive oxygen species signaling promotes ibrutinib-induced atrial fibrillation. Redox Biol 2020; 30:101432. [PMID: 31986467 PMCID: PMC6994714 DOI: 10.1016/j.redox.2020.101432] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 12/12/2022] Open
Abstract
Atrial fibrillation (AF) occurs in up to 11% of cancer patients treated with ibrutinib. The pathophysiology of ibrutinib promoted AF is complicated, as there are multiple interactions involved; the detailed molecular mechanisms underlying this are still unclear. Here, we aimed to determine the electrophysiological and molecular mechanisms of burst-pacing-induced AF in ibrutinib-treated mice. The results indicated differentially expressed proteins in ibrutinib-treated mice, identified through proteomic analysis, were found to play a role in oxidative stress-related pathways. Finally, treatment with an inhibitor of NADPH oxidase (NOX) prevented and reversed AF development in ibrutinib-treated mice. It was showed that the related protein expression of reactive oxygen species (ROS) in the ibrutinib group was significantly increased, including NOX2, NOX4, p22-phox, XO and TGF-β protein expression. It was interesting that ibrutinib group also significantly increased the expression of ox-CaMKII, p-CaMKII (Thr-286) and p-RyR2 (Ser2814), causing enhanced abnormal sarcoplasmic reticulum (SR) Ca2+ release and mitochondrial structures, as well as atrial fibrosis and atrial hypertrophy in ibrutinib-treated mice, and apocynin reduced the expression of these proteins. Ibrutinib-treated mice were also more likely to develop AF, and AF occurred over longer periods. In conclusion, our study has established a pathophysiological role for ROS signaling in atrial cardiomyocytes, and it may be that ox-CaMKII and p-CaMKII (Thr-286) are activated by ROS to increase AF susceptibility following ibrutinib treatment. We have also identified the inhibition of NOX as a potential novel AF therapy approach.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Changming Zhong
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Manke Guan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinye Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hanlai Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Liqin Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yanfei Ruan
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100853, PR China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Nian Liu
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100853, PR China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
10
|
Beladiya JV, Chaudagar KK, Mehta AA. Protective effects of Gαq-RGS2 signalling inhibitor in aminophylline induced cardiac arrhythmia. Clin Exp Pharmacol Physiol 2019; 46:1037-1043. [PMID: 31330058 DOI: 10.1111/1440-1681.13143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
An over activation of GPCR mediated Gαq dependent signalling pathway is widely associated with the development of cardiovascular abnormalities. The objective of study was to evaluate the effects of (1-(5-chloro-2-hydroxyphenyl)-3-(4-(trifluoromethyl)phenyl)-1H-1,2,4-triazol-5(4H)-one) Gαq-RGS2 signalling inhibitor on aminophylline induced cardiac arrhythmia in rats. Rats were divided into four groups; normal rats, disease control (DC, aminophylline treated 100 mg/kg/d, i.p., 7 days), Gαq-RGS2 signalling inhibitor (1 and 10 mg/kg/d, p.o., 7 days) treated arrhythmic rats. Gαq-RGS2 signalling inhibitor was administered 1 hour prior to the administration of aminophylline from 1st day. At the end of study, heart rate (HR), QRS complex, QT and RR interval were measured by electrocardiogram (ECG) of anesthetized rats. Systolic and diastolic blood pressure (SBP, DBP) by invasive method, cardiac damage markers (CK-MB, LDH) in the serum, antioxidant enzymes (SOD, catalase, glutathione) and cAMP level were measured. The treatment of Gαq-RGS2 signalling inhibitor (10 mg/kg) significantly abolished the aminophylline induced increase of heart rate, prolongation of RR and QT interval as compared to DC rats. Gαq-RGS2 signalling inhibitor (1 and 10 mg/kg) significantly attenuated the prolongation in QRS complex, increase of SBP, DBP and cardiac damage markers as compared to DC. Gαq-RGS2 signalling inhibitor treatment (10 mg/kg) significantly reduced the cAMP level and increased the antioxidant enzyme level as compared to DC. Gαq-RGS2 signalling inhibitor (10 mg/kg) showed the protective effect against the aminophylline induced cardiac arrhythmia and it might be due to improvement in cAMP level and antioxidant enzymes.
Collapse
Affiliation(s)
- Jayesh V Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Kiranj K Chaudagar
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Anita A Mehta
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
11
|
Jansen HJ, Mackasey M, Moghtadaei M, Liu Y, Kaur J, Egom EE, Tuomi JM, Rafferty SA, Kirkby AW, Rose RA. NPR-C (Natriuretic Peptide Receptor-C) Modulates the Progression of Angiotensin II–Mediated Atrial Fibrillation and Atrial Remodeling in Mice. Circ Arrhythm Electrophysiol 2019; 12:e006863. [DOI: 10.1161/circep.118.006863] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hailey J. Jansen
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Martin Mackasey
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Motahareh Moghtadaei
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia (M. Moghtadaei, E.E.E., S.A.R.)
| | - Yingjie Liu
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Jaspreet Kaur
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Emmanuel E. Egom
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia (M. Moghtadaei, E.E.E., S.A.R.)
| | - Jari M. Tuomi
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (J.M.T.)
| | - Sara A. Rafferty
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia (M. Moghtadaei, E.E.E., S.A.R.)
| | - Adam W. Kirkby
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Robert A. Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| |
Collapse
|
12
|
Jansen HJ, Mackasey M, Moghtadaei M, Belke DD, Egom EE, Tuomi JM, Rafferty SA, Kirkby AW, Rose RA. Distinct patterns of atrial electrical and structural remodeling in angiotensin II mediated atrial fibrillation. J Mol Cell Cardiol 2018; 124:12-25. [PMID: 30273558 DOI: 10.1016/j.yjmcc.2018.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
Atrial fibrillation (AF) is prevalent in hypertension and elevated angiotensin II (Ang II); however, the mechanisms by which Ang II leads to AF are poorly understood. Here, we investigated the basis for this in mice treated with Ang II or saline for 3 weeks. Ang II treatment increased susceptibility to AF compared to saline controls in association with increases in P wave duration and atrial effective refractory period, as well as reductions in right and left atrial conduction velocity. Patch-clamp studies demonstrate that action potential (AP) duration was prolonged in right atrial myocytes from Ang II treated mice in association with a reduction in repolarizing K+ currents. In contrast, APs in left atrial myocytes from Ang II treated mice showed reductions in upstroke velocity and overshoot, as well as greater prolongations in AP duration. Ang II reduced Na+ current (INa) in the left, but not the right atrium. This reduction in INa was reversible following inhibition of protein kinase C (PKC) and PKCα expression was increased selectively in the left atrium in Ang II treated mice. The transient outward K+ current (Ito) showed larger reductions in the left atrium in association with a shift in the voltage dependence of activation. Finally, Ang II caused fibrosis throughout the atria in association with changes in collagen expression and regulators of the extracellular matrix. This study demonstrates that hypertension and elevated Ang II cause distinct patterns of electrical and structural remodeling in the right and left atria that collectively create a substrate for AF.
Collapse
Affiliation(s)
- Hailey J Jansen
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martin Mackasey
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Motahareh Moghtadaei
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Darrell D Belke
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jari M Tuomi
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Sara A Rafferty
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam W Kirkby
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Perschbacher KJ, Deng G, Fisher RA, Gibson-Corley KN, Santillan MK, Grobe JL. Regulators of G protein signaling in cardiovascular function during pregnancy. Physiol Genomics 2018; 50:590-604. [PMID: 29702036 PMCID: PMC6139632 DOI: 10.1152/physiolgenomics.00037.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor signaling mechanisms are implicated in many aspects of cardiovascular control, and dysfunction of such signaling mechanisms is commonly associated with disease states. Investigators have identified a large number of regulator of G protein signaling (RGS) proteins that variously contribute to the modulation of intracellular second-messenger signaling kinetics. These many RGS proteins each interact with a specific set of second-messenger cascades and receptor types and exhibit tissue-specific expression patterns. Increasing evidence supports the contribution of RGS proteins, or their loss, in the pathogenesis of cardiovascular dysfunctions. This review summarizes the current understanding of the functional contributions of RGS proteins, particularly within the B/R4 family, in cardiovascular disorders of pregnancy including gestational hypertension, uterine artery dysfunction, and preeclampsia.
Collapse
Affiliation(s)
| | - Guorui Deng
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
- Obesity Education & Research Initiative, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|
14
|
Interplay between negative and positive design elements in Gα helical domains of G proteins determines interaction specificity toward RGS2. Biochem J 2018; 475:2293-2304. [PMID: 29925530 DOI: 10.1042/bcj20180285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023]
Abstract
Regulators of G protein signaling (RGS) proteins inactivate Gα subunits, thereby controlling G protein-coupled signaling networks. Among all RGS proteins, RGS2 is unique in interacting only with the Gαq but not with the Gαi subfamily. Previous studies suggested that this specificity is determined by the RGS domain and, in particular, by three RGS2-specific residues that lead to a unique mode of interaction with Gαq This interaction was further proposed to act through contacts with the Gα GTPase domain. Here, we combined energy calculations and GTPase activity measurements to determine which Gα residues dictate specificity toward RGS2. We identified putative specificity-determining residues in the Gα helical domain, which among G proteins is found only in Gα subunits. Replacing these helical domain residues in Gαi with their Gαq counterparts resulted in a dramatic specificity switch toward RGS2. We further show that Gα-RGS2 specificity is set by Gαi residues that perturb interactions with RGS2, and by Gαq residues that enhance these interactions. These results show, for the first time, that the Gα helical domain is central to dictating specificity toward RGS2, suggesting that this domain plays a general role in governing Gα-RGS specificity. Our insights provide new options for manipulating RGS-G protein interactions in vivo, for better understanding of their 'wiring' into signaling networks, and for devising novel drugs targeting such interactions.
Collapse
|
15
|
Bober SL, Ciriello J, Jones DL. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 2018; 314:H1160-H1168. [DOI: 10.1152/ajpheart.00173.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obstructive sleep apnea, which involves chronic intermittent hypoxia (CIH), is a major risk factor for developing atrial fibrillation (AF). Whether or not CIH alone alters cardiac mechanisms to support AF is unknown. This study investigated the effects of CIH on atrial electrophysiology and arrhythmia vulnerability and evaluated the role of autonomics in CIH promotion of AF. Adult male Sprague-Dawley rats were exposed to 8 h/day of CIH or normoxia for 7 days. After exposure, rats were anesthetized for intracardiac electrophysiological experiments. Atrial effective refractory periods (AERPs) and AF inducibility were determined using programmed electrical stimulation and burst pacing in the absence and presence of autonomic receptor agonists and antagonists. Western blot analysis measured atrial protein expression of muscarinic M2, M3, and β1-adrenergic receptors. Compared with normoxia-exposed control rats, CIH-exposed rats had enhanced AF vulnerability using both programmed electrical stimulation and burst pacing, accompanied by greater AERP responses to carbachol and propranolol, lesser responses to isoproterenol, and higher atrial M2 receptor protein levels. Enhanced atrial vulnerability was accentuated by carbachol and abolished by atropine, indicating that the AF-promoting effects of CIH depended principally on parasympathetic activation. Enhancement of atrial vulnerability and AERP shortening with cholinergic agonists in CIH-exposed rats is consistent with sensitivity to parasympathetic activation. Higher responses to adrenergic receptor blockade in CIH-exposed rats is consistent with sympathetic potentiation. These findings implicate CIH as an important mediator of enhanced AF susceptibility in obstructive sleep apnea and provide novel insights into the underlying mechanisms. NEW & NOTEWORTHY Our study demonstrates, for the first time, that chronic intermittent hypoxia alone enhances vulnerability to atrial arrhythmia induction, which depends principally on parasympathetic activation. Enhanced atrial vulnerability was accompanied by heightened electrophysiological responses of the atrial myocardium to carbachol and isoproterenol, dampened responses to propranolol, and increased atrial M2 receptor protein levels.
Collapse
Affiliation(s)
- Sara L. Bober
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Douglas L. Jones
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Tuomi JM, Xenocostas A, Jones DL. Increased Susceptibility for Atrial and Ventricular Cardiac Arrhythmias in Mice Treated With a Single High Dose of Ibrutinib. Can J Cardiol 2017; 34:337-341. [PMID: 29475534 DOI: 10.1016/j.cjca.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Atrial fibrillation is a side effect of ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase used for treatment of B-cell lymphoproliferative disorders. We determined if single (2 or 10 mg/kg), or chronic (14 days) oral ibrutinib followed by 24-hour washout conferred susceptibility to electrically induced arrhythmias in 1-month-old male C57BL/6 mice. A single higher dose of ibrutinib increased arrhythmia inducibility. There was no inducibility difference after chronic dosing with washout. This suggests that high serum drug levels might be responsible for the proarrhythmic effect of ibrutinib and that an altered dosing strategy might mitigate the side effects.
Collapse
Affiliation(s)
- Jari M Tuomi
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Douglas L Jones
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
17
|
Bao Y, Willis BC, Frasier CR, Lopez-Santiago LF, Lin X, Ramos-Mondragón R, Auerbach DS, Chen C, Wang Z, Anumonwo J, Valdivia HH, Delmar M, Jalife J, Isom LL. Scn2b Deletion in Mice Results in Ventricular and Atrial Arrhythmias. Circ Arrhythm Electrophysiol 2017; 9:CIRCEP.116.003923. [PMID: 27932425 DOI: 10.1161/circep.116.003923] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in SCN2B, encoding voltage-gated sodium channel β2-subunits, are associated with human cardiac arrhythmias, including atrial fibrillation and Brugada syndrome. Because of this, we propose that β2-subunits play critical roles in the establishment or maintenance of normal cardiac electric activity in vivo. METHODS AND RESULTS To understand the pathophysiological roles of β2 in the heart, we investigated the cardiac phenotype of Scn2b null mice. We observed reduced sodium and potassium current densities in ventricular myocytes, as well as conduction slowing in the right ventricular outflow tract region. Functional reentry, resulting from the interplay between slowed conduction, prolonged repolarization, and increased incidence of premature ventricular complexes, was found to underlie the mechanism of spontaneous polymorphic ventricular tachycardia. Scn5a transcript levels were similar in Scn2b null and wild-type ventricles, as were levels of Nav1.5 protein, suggesting that similar to the previous work in neurons, the major function of β2-subunits in the ventricle is to chaperone voltage-gated sodium channel α-subunits to the plasma membrane. Interestingly, Scn2b deletion resulted in region-specific effects in the heart. Scn2b null atria had normal levels of sodium current density compared with wild type. Scn2b null hearts were more susceptible to atrial fibrillation, had increased levels of fibrosis, and higher repolarization dispersion than wild-type littermates. CONCLUSIONS Genetic deletion of Scn2b in mice results in ventricular and atrial arrhythmias, consistent with reported SCN2B mutations in human patients.
Collapse
Affiliation(s)
- Yangyang Bao
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - B Cicero Willis
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Chad R Frasier
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Luis F Lopez-Santiago
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Xianming Lin
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Roberto Ramos-Mondragón
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - David S Auerbach
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Chunling Chen
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Zhenxun Wang
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Justus Anumonwo
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Héctor H Valdivia
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Mario Delmar
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - José Jalife
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.)
| | - Lori L Isom
- From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.).
| |
Collapse
|
18
|
Qin M, Liu X, Liu T, Wang T, Huang C. Potential Role of Regulator of G-Protein Signaling 5 in the Protection of Vagal-Related Bradycardia and Atrial Tachyarrhythmia. J Am Heart Assoc 2016; 5:e002783. [PMID: 26961238 PMCID: PMC4943254 DOI: 10.1161/jaha.115.002783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background The regulator of G‐protein signaling 5 (Rgs5), which functions as the regulator of G‐protein‐coupled receptor (GPCR) including muscarinic receptors, has a potential effect on atrial muscarinic receptor‐activated IKAch current. Methods and Results In the present study, hearts of Rgs5 knockout (KO) mice had decreased low‐frequency/high‐frequency ratio in spectral measures of heart rate variability. Loss of Rgs5 provoked dramatically exaggerated bradycardia and significantly (P<0.05) prolonged sinus nodal recovery time in response to carbachol (0.1 mg/kg, intraperitoneally). Compared to those from wild‐type (WT) mice, Langendorff perfused hearts from Rgs5 KO mice had significantly (P<0.01) abbreviated atrial effective refractory periods and increased dominant frequency after administration of acetylcholine (ACh; 1 μmol/L). In addition, whole patch clamp analyses of single atrial myocytes revealed that the ACh‐regulated potassium current (IKAch) was significant increased in the time course of activation and deactivation (P<0.01) in Rgs5 KO, compared to those in WT, mice. To further determine the effect of Rgs5, transgenic mice with cardiac‐specific overexpression of human Rgs5 were found to be resistant to ACh‐related effects in bradycardia, atrial electrophysiology, and atrial tachyarrhythmia (AT). Conclusion The results of this study indicate that, as a critical regulator of parasympathetic activation in the heart, Rgs5 prevents vagal‐related bradycardia and AT through negatively regulating the IKAch current.
Collapse
Affiliation(s)
- Mu Qin
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Tao Liu
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Teng Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Congxin Huang
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Tinker A, Finlay M, Nobles M, Opel A. The contribution of pathways initiated via the Gq\11 G-protein family to atrial fibrillation. Pharmacol Res 2016; 105:54-61. [DOI: 10.1016/j.phrs.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/28/2023]
|
20
|
Opel A, Nobles M, Montaigne D, Finlay M, Anderson N, Breckenridge R, Tinker A. Absence of the Regulator of G-protein Signaling, RGS4, Predisposes to Atrial Fibrillation and Is Associated with Abnormal Calcium Handling. J Biol Chem 2015; 290:19233-44. [PMID: 26088132 PMCID: PMC4521044 DOI: 10.1074/jbc.m115.666719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/15/2015] [Indexed: 01/11/2023] Open
Abstract
The description of potential molecular substrates for predisposition to atrial fibrillation (AF) is incomplete, and it is unknown what role regulators of G-protein signaling might play. We address whether the attenuation of RGS4 function may promote AF and the mechanism through which this occurs. For this purpose, we studied a mouse with global genetic deletion of RGS4 (RGS4(-/-)) and the normal littermate controls (RGS4(+/+)). In vivo electrophysiology using atrial burst pacing revealed that mice with global RGS4 deletion developed AF more frequently than control littermates. Isolated atrial cells from RGS4(-/-) mice show an increase in Ca(2+) spark frequency under basal conditions and after the addition of endothelin-1 and abnormal spontaneous Ca(2+) release events after field stimulation. Isolated left atria studied on a multielectrode array revealed modest changes in path length for re-entry but abnormal electrical events after a pacing train in RGS4(-/-) mice. RGS4 deletion results in a predisposition to atrial fibrillation from enhanced activity in the Gαq/11-IP3 pathway, resulting in abnormal Ca(2+) release and corresponding electrical events.
Collapse
Affiliation(s)
- Aaisha Opel
- From the British Heart Foundation Laboratories, Department of Medicine, University College London, Rayne Institute, London WC1E 6JJ, United Kingdom and the William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, London EC1M 6BQ, United Kingdom
| | - Muriel Nobles
- the William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, London EC1M 6BQ, United Kingdom
| | - David Montaigne
- the William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, London EC1M 6BQ, United Kingdom
| | - Malcolm Finlay
- the William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, London EC1M 6BQ, United Kingdom
| | - Naomi Anderson
- the William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, London EC1M 6BQ, United Kingdom
| | - Ross Breckenridge
- From the British Heart Foundation Laboratories, Department of Medicine, University College London, Rayne Institute, London WC1E 6JJ, United Kingdom and
| | - Andrew Tinker
- From the British Heart Foundation Laboratories, Department of Medicine, University College London, Rayne Institute, London WC1E 6JJ, United Kingdom and the William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, London EC1M 6BQ, United Kingdom
| |
Collapse
|
21
|
Sjögren B, Swaney S, Neubig RR. FBXO44-Mediated Degradation of RGS2 Protein Uniquely Depends on a Cullin 4B/DDB1 Complex. PLoS One 2015; 10:e0123581. [PMID: 25970626 PMCID: PMC4430315 DOI: 10.1371/journal.pone.0123581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system for protein degradation plays a major role in regulating cell function and many signaling proteins are tightly controlled by this mechanism. Among these, Regulator of G Protein Signaling 2 (RGS2) is a target for rapid proteasomal degradation, however, the specific enzymes involved are not known. Using a genomic siRNA screening approach, we identified a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation. While the more typical F-box partners CUL1 and Skp1 can bind FBXO44, that E3 ligase complex does not bind RGS2 and is not involved in RGS2 degradation. These observations define an unexpected DDB1/CUL4B-containing FBXO44 E3 ligase complex. Pharmacological targeting of this mechanism provides a novel therapeutic approach to hypertension, anxiety, and other diseases associated with RGS2 dysregulation.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology & Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, United States of America
| | - Steven Swaney
- Center for Chemical Genomics, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, United States of America
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, United States of America
| |
Collapse
|
22
|
Regulator of G-protein signaling 6 (RGS6) in cardiology and oncology. Int J Cardiol 2015; 187:99-102. [PMID: 25828322 DOI: 10.1016/j.ijcard.2015.03.278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
|
23
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
24
|
Ganss R. Keeping the Balance Right. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:93-121. [DOI: 10.1016/bs.pmbts.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Patanè S. Regulator of G-protein signaling 2 (RGS2) in cardiology and oncology. Int J Cardiol 2014; 179:63-5. [PMID: 25464414 DOI: 10.1016/j.ijcard.2014.10.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Salvatore Patanè
- Cardiologia Ospedale San Vincenzo - Taormina (Me) Azienda Sanitaria Provinciale di Messina, 98039 Taormina, Messina, Italy. patane-@libero.it
| |
Collapse
|
26
|
Chidiac P, Sobiesiak AJ, Lee KN, Gros R, Nguyen CH. The eIF2B-interacting domain of RGS2 protects against GPCR agonist-induced hypertrophy in neonatal rat cardiomyocytes. Cell Signal 2014; 26:1226-34. [PMID: 24576550 DOI: 10.1016/j.cellsig.2014.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 11/29/2022]
Abstract
The protective effect of Regulator of G protein Signaling 2 (RGS2) in cardiac hypertrophy is thought to occur through its ability to inhibit the chronic GPCR signaling that promotes pathogenic growth both in vivo and in cultured cardiomyocytes. However, RGS2 is known to have additional functions beyond its activity as a GTPase accelerating protein, such as the ability to bind to eukaryotic initiation factor, eIF2B, and inhibit protein synthesis. The RGS2 eIF2B-interacting domain (RGS2(eb)) was examined for its ability to regulate hypertrophy in neonatal ventricular myocytes. Both full-length RGS2 and RGS2(eb) were able to inhibit agonist-induced cardiomyocyte hypertrophy, but RGS2(eb) had no effect on receptor-mediated inositol phosphate production, cAMP production, or ERK 1/2 activation. These results suggest that the protective effects of RGS2 in cardiac hypertrophy may derive at least in part from its ability to govern protein synthesis.
Collapse
Affiliation(s)
- Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alina J Sobiesiak
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Katherine N Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Chau H Nguyen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; School of Pharmacy, D'Youville College, Buffalo, NY 14201, USA.
| |
Collapse
|
27
|
Zhang P, Mende U. Functional role, mechanisms of regulation, and therapeutic potential of regulator of G protein signaling 2 in the heart. Trends Cardiovasc Med 2013; 24:85-93. [PMID: 23962825 DOI: 10.1016/j.tcm.2013.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022]
Abstract
G protein-mediated signal transduction is essential for the regulation of cardiovascular function, including heart rate, growth, contraction, and vascular tone. Regulators of G protein Signaling (RGS proteins) fine-tune G protein-coupled receptor-induced signaling by regulating its magnitude and duration through direct interaction with the α subunits of heterotrimeric G proteins. Changes in the RGS protein expression and/or function in the heart often lead to pathophysiological changes and are associated with cardiac disease in animals and humans, including hypertrophy, fibrosis development, heart failure, and arrhythmias. This article focuses on Regulator of G protein Signaling 2 (RGS2), which is widely expressed in many tissues and is highly regulated in its expression and function. Most information to date has been obtained in biochemical, cellular, and animal studies, but data from humans is emerging. We review recent advances on the functional role of cardiovascular RGS2 and the mechanisms that determine its signaling selectivity, expression, and functionality. We highlight key unanswered questions and discuss the potential of RGS2 as a therapeutic target.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
28
|
Nenasheva TA, Neary M, Mashanov GI, Birdsall NJ, Breckenridge RA, Molloy JE. Abundance, distribution, mobility and oligomeric state of M₂ muscarinic acetylcholine receptors in live cardiac muscle. J Mol Cell Cardiol 2013; 57:129-36. [PMID: 23357106 PMCID: PMC3605596 DOI: 10.1016/j.yjmcc.2013.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022]
Abstract
M2 muscarinic acetylcholine receptors modulate cardiac rhythm via regulation of the inward potassium current. To increase our understanding of M2 receptor physiology we used Total Internal Reflection Fluorescence Microscopy to visualize individual receptors at the plasma membrane of transformed CHO(M2) cells, a cardiac cell line (HL-1), primary cardiomyocytes and tissue slices from pre- and post-natal mice. Receptor expression levels between individual cells in dissociated cardiomyocytes and heart slices were highly variable and only 10% of murine cardiomyocytes expressed muscarinic receptors. M2 receptors were evenly distributed across individual cells and their density in freshly isolated embryonic cardiomyocytes was ~1μm(-2), increasing at birth (to ~3μm(-2)) and decreasing back to ~1μm(-2) after birth. M2 receptors were primarily monomeric but formed reversible dimers. They diffused freely at the plasma membrane, moving approximately 4-times faster in heart slices than in cultured cardiomyocytes. Knowledge of receptor density and mobility has allowed receptor collision rate to be modeled by Monte Carlo simulations. Our estimated encounter rate of 5-10 collisions per second, may explain the latency between acetylcholine application and GIRK channel opening.
Collapse
Affiliation(s)
- Tatiana A. Nenasheva
- Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Marianne Neary
- Division of Developmental Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Gregory I. Mashanov
- Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Nigel J.M. Birdsall
- Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Ross A. Breckenridge
- Division of Developmental Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Justin E. Molloy
- Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
29
|
Buga AM, Scholz CJ, Kumar S, Herndon JG, Alexandru D, Cojocaru GR, Dandekar T, Popa-Wagner A. Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. PLoS One 2012; 7:e50985. [PMID: 23251410 PMCID: PMC3521001 DOI: 10.1371/journal.pone.0050985] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/31/2012] [Indexed: 12/17/2022] Open
Abstract
Background Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions. Methodology/Principal Findings We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc) may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups. Conclusion/Significance We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure.
Collapse
Affiliation(s)
- Ana-Maria Buga
- Department of Psychiatry, University of Medicine, Rostock, Germany
- Department of Functional Sciences, University of Medicine, Craiova, Romania
| | - Claus Jürgen Scholz
- Interdisciplinary Center for Clinical Research, Lab for Microarray Applications, University of Würzburg, Würzburg, Germany
| | - Senthil Kumar
- Department of Biomedical Sciences, College of Veterinary Medicine, Ames, Iowa, United States of America
| | - James G. Herndon
- Yerkes National Primate Research Center of Emory University, Atlanta, Georgia, United States of America
| | - Dragos Alexandru
- Department of Functional Sciences, University of Medicine, Craiova, Romania
| | | | - Thomas Dandekar
- Department of Bioinformatics, Biocenter Am Hubland, Würzburg, Germany
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine, Rostock, Germany
- * E-mail:
| |
Collapse
|
30
|
Qin M, Huang H, Wang T, Hu H, Liu Y, Gu Y, Cao H, Li H, Huang C. Atrial tachyarrhythmia in Rgs5-null mice. PLoS One 2012; 7:e46856. [PMID: 23144791 PMCID: PMC3489853 DOI: 10.1371/journal.pone.0046856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/07/2012] [Indexed: 12/19/2022] Open
Abstract
AIMS The aim of this study was to elucidate the effects of regulator of G-protein signaling 5 (Rgs5), a negative regulator of G protein-mediated signaling, on atrial repolarization and tachyarrhythmia (ATA) in mice. METHODS AND RESULTS In present study, the incidence of ATA were increased in Rgs5(-/-) Langendorff-perfused mouse hearts during program electrical stimulation (PES) (46.7%, 7 of 15) and burst pacing (26.7%, 4 of 15) compared with wild-type (WT) mice (PES: 7.1%,1 of 14; burst:7.1%,1 of 14) (P<0.05). And the duration of ATA also shown longer in Rgs5(-/-) heart than that in WT, 2 out of 15 hearts exhibited sustained ATA (>30 s) but none of them observed in WT mice. Atrial prolonged repolarization was observed in Rgs5(-/-) hearts including widened P wave in surface ECG recording, increased action potential duration (APD) and atrial effective refractory periods (AERP), all of them showed significant difference with WT mice (P<0.05). At the cellular level, whole-cell patch clamp recorded markedly decreased densities of repolarizing K(+) currents including I(Kur) (at +60 mV: 14.0±2.2 pF/pA) and I(to) (at +60 mV: 16.7±1.3 pA/pF) in Rgs5(-/-) atrial cardiomyocytes, compared to those of WT mice (at +60 mV I(to): 20.4±2.0 pA/pF; I(kur): 17.9±2.0 pF/pA) (P<0.05). CONCLUSION These results suggest that Rgs5 is an important regulator of arrhythmogenesis in the mouse atrium and that the enhanced susceptibility to atrial tachyarrhythmias in Rgs5(-/-) mice may contribute to abnormalities of atrial repolarization.
Collapse
Affiliation(s)
- Mu Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Teng Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - He Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongwei Gu
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hong Cao
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hongliang Li
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
31
|
Relationship between Rgs2 gene expression level and anxiety and depression-like behaviour in a mutant mouse model: serotonergic involvement. Int J Neuropsychopharmacol 2012; 15:1307-18. [PMID: 22040681 DOI: 10.1017/s1461145711001453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
RGS2 is a member of a family of proteins that negatively modulate G-protein coupled receptor transmission. Variations in the RGS2 gene were found to be associated in humans with anxious and depressive phenotypes. We sought to study the relationship of Rgs2 expression level to depression and anxiety-like behavioural features, sociability and brain 5-HT1A and 5-HT1B receptor expression. We studied male mice carrying a mutation that causes lower Rgs2 gene expression, employing mice heterozygous (Het) or homozygous (Hom) for this mutation, or wild-type (WT). Mice were subjected to behavioural tests reflecting depressive-like behaviour [forced swim test (FST), novelty suppressed feeding test (NSFT)], elevated plus maze (EPM) for evaluation of anxiety levels and the three-chamber sociability test. The possible involvement of raphe nucleus 5-HT1A receptors in these behavioural features was examined by 8-OH-DPAT-induced hypothermia. Expression levels of 5-HT1A and 5-HT1B receptors in the cortex, raphe nucleus and hypothalamus were compared among mice of the different Rgs2 genotype groups. NSFT results demonstrated that Hom mice showed more depressive-like features than Rgs2 Het and WT mice. A trend for such a relationship was also suggested by the FST results. EPM and sociability test results showed Hom and Het mice to be more anxious and less sociable than WT mice. In addition Hom and Het mice were characterized by lower basal body temperature and demonstrated less 8-OH-DPAT-induced hypothermia than WT mice. Finally, Hom and Het mice had significantly lower 5-HT1A and 5-HT1B receptor expression levels in the raphe than WT mice. Our findings demonstrate a relationship between Rgs2 gene expression level and a propensity for anxious and depressive-like behaviour and reduced social interaction that may involve changes in serotonergic receptor expression.
Collapse
|
32
|
Park-Windhol C, Zhang P, Zhu M, Su J, Chaves L, Maldonado AE, King ME, Rickey L, Cullen D, Mende U. Gq/11-mediated signaling and hypertrophy in mice with cardiac-specific transgenic expression of regulator of G-protein signaling 2. PLoS One 2012; 7:e40048. [PMID: 22802950 PMCID: PMC3388988 DOI: 10.1371/journal.pone.0040048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/31/2012] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G(q/11)-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G(q/11) signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G(q/11)-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G(q/11)-mediated phospholipase C β activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G(q/11)-mediated PLCβ activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G(q/11) signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G(q/11)-regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G(q/11) signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G(q/11)-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G(q/11) signaling in the atria in vivo.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Peng Zhang
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Ming Zhu
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jialin Su
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Leonard Chaves
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Angel E. Maldonado
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Michelle E. King
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Lisa Rickey
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Darragh Cullen
- Cardiac Muscle Research Laboratory, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ulrike Mende
- Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
33
|
Jones DL, Tuomi JM, Chidiac P. Role of Cholinergic Innervation and RGS2 in Atrial Arrhythmia. Front Physiol 2012; 3:239. [PMID: 22754542 PMCID: PMC3386567 DOI: 10.3389/fphys.2012.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/12/2012] [Indexed: 01/25/2023] Open
Abstract
The heart receives sympathetic and parasympathetic efferent innervation as well as the ability to process information internally via an intrinsic cardiac autonomic nervous system (ICANS). For over a century, the role of the parasympathetics via vagal acetylcholine release was related to controlling primarily heart rate. Although in the late 1800s shown to play a role in atrial arrhythmia, the myocardium took precedence from the mid-1950s until in the last decade a resurgence of interest in the autonomics along with signaling cascades, regulators, and ion channels. Originally ignored as being benign and thus untreated, recent emphasis has focused on atrial arrhythmia as atrial fibrillation (AF) is the most common arrhythmia seen by the general practitioner. It is now recognized to have significant mortality and morbidity due to resultant stroke and heart failure. With the aging population, there will be an unprecedented increased burden on health care resources. Although it has been known for more than half a century that cholinergic stimulation can initiate AF, the classical concept focused on the M2 receptor and its signaling cascade including RGS4, as these had been shown to have predominant effects on nodal function (heart rate and conduction block) as well as contractility. However, recent evidence suggests that the M3 receptor may also playa role in initiation and perpetuation of AF and thus RGS2, a putative regulator of the M3 receptor, may be a target for therapeutic intervention. Mice lacking RGS2 (RGS2−/−), were found to have significantly altered electrophysiological atrial responses and were more susceptible to electrically induced AF. Vagally induced or programmed stimulation-induced AF could be blocked by the selective M3R antagonist, darifenacin. These results suggest a potential surgical target (ICANS) and pharmacological targets (M3R, RGS2) for the management of AF.
Collapse
Affiliation(s)
- Douglas L Jones
- Department of Physiology and Pharmacology, The University of Western Ontario London, ON, Canada
| | | | | |
Collapse
|
34
|
Sjögren B, Parra S, Heath LJ, Atkins KB, Xie ZJ, Neubig RR. Cardiotonic steroids stabilize regulator of G protein signaling 2 protein levels. Mol Pharmacol 2012; 82:500-9. [PMID: 22695717 DOI: 10.1124/mol.112.079293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulator of G protein signaling 2 (RGS2), a G(q)-specific GTPase-activating protein, is strongly implicated in cardiovascular function. RGS2(-/-) mice are hypertensive and prone to heart failure, and several rare human mutations that accelerate RGS2 degradation have been identified among patients with hypertension. Therefore, pharmacological up-regulation of RGS2 protein levels might be beneficial. We used a β-galactosidase complementation method to screen several thousand compounds with known pharmacological functions for those that increased RGS2 protein levels. Several cardiotonic steroids (CTSs), including ouabain and digoxin, increased RGS2 but not RGS4 protein levels. CTSs increased RGS2 protein levels through a post-transcriptional mechanism, by slowing protein degradation. RGS2 mRNA levels in primary vascular smooth muscle cells were unaffected by CTS treatment, whereas protein levels were increased 2- to 3-fold. Na(+)/K(+)-ATPase was required for the increase in RGS2 protein levels, because the effect was lost in Na(+)/K(+)-ATPase-knockdown cells. Furthermore, we demonstrated that CTS-induced increases in RGS2 levels were functional and reduced receptor-stimulated, G(q)-dependent, extracellular signal-regulated kinase phosphorylation. Finally, we showed that in vivo treatment with digoxin led to increased RGS2 protein levels in heart and kidney. CTS-induced increases in RGS2 protein levels and function might modify several deleterious mechanisms in hypertension and heart failure. This novel CTS mechanism might contribute to the beneficial actions of low-dose digoxin treatment in heart failure. Our results support the concept of small-molecule modulation of RGS2 protein levels as a new strategy for cardiovascular therapy.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nõlvak H, Truu M, Truu J. Evaluation of quantitative real-time PCR workflow modifications on 16S rRNA and tetA gene quantification in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:351-358. [PMID: 22521102 DOI: 10.1016/j.scitotenv.2012.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
The study examined the variability in 16S ribosomal RNA (16S rRNA) and tetracycline resistance tetA gene quantification from environmental samples in relation to modifications in quantitative polymerase chain reaction (qPCR) workflow and subsequent data evaluation and analysis. We analysed three types of soil samples using two DNA extraction methods, two qPCR chemistries (SYBR green, LUX™), and qPCR reaction kits from different manufacturers. To improve data quality, we employed a three-step amplification outlier removal approach prior to gene quantification calculations. We compared three variants of target gene enumerations and four variants of functional tetA gene normalisations against 16S rRNA genes. Results reveal that modifications in qPCR workflow steps significantly influence the gene quantification results from environmental samples. Primary factors affecting qPCR amplification efficiency included the variability of the target amplicon and the qPCR chemistry; the quality of the resulting datasets also had an impact. Although LUX™ qPCR has shown promise for environmental samples, SYBR green qPCR yielded considerably better-quality datasets and higher, more stable amplification efficiency values. Gene enumeration data of outlier-removed and unmodified sample sets showed minor differences for good-quality datasets (i.e., amplifications with SYBR green), but differed by up to 40% among lower-quality datasets. Different DNA extraction methods yielded varying amounts and purities of extracted microbial community DNA from environmental samples, with as much as an order of magnitude variation in gene copy numbers. Target gene normalisations yielded stable results on good-quality data, regardless of the DNA extraction method or qPCR chemistry used. Even though qPCR is regarded as a precise method with low detection limit, technical variability in the qPCR workflow tends to overestimate or effectively mask minute changes in community.
Collapse
Affiliation(s)
- Hiie Nõlvak
- Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia St, 51010, Tartu, Estonia.
| | | | | |
Collapse
|
36
|
Verkerk AO, Geuzebroek GSC, Veldkamp MW, Wilders R. Effects of acetylcholine and noradrenalin on action potentials of isolated rabbit sinoatrial and atrial myocytes. Front Physiol 2012; 3:174. [PMID: 22754533 PMCID: PMC3385584 DOI: 10.3389/fphys.2012.00174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/12/2012] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1-1000 nM, while a clear-cut frequency dependence in the range of 1-4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | | | | |
Collapse
|
37
|
Ang R, Opel A, Tinker A. The Role of Inhibitory G Proteins and Regulators of G Protein Signaling in the in vivo Control of Heart Rate and Predisposition to Cardiac Arrhythmias. Front Physiol 2012; 3:96. [PMID: 22783193 PMCID: PMC3390690 DOI: 10.3389/fphys.2012.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibitory heterotrimeric G proteins and the control of heart rate. The activation of cell signaling pathways involving inhibitory heterotrimeric G proteins acts to slow the heart rate via modulation of ion channels. A large number of Regulators of G protein signalings (RGSs) can act as GTPase accelerating proteins to inhibitory G proteins and thus it is important to understand the network of RGS\G-protein interaction. We will review our recent findings on in vivo heart rate control in mice with global genetic deletion of various inhibitory G protein alpha subunits. We will discuss potential central and peripheral contributions to the phenotype and the controversies in the literature.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Aaisha Opel
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and DentistryLondon, UK
| |
Collapse
|
38
|
Stewart A, Huang J, Fisher RA. RGS Proteins in Heart: Brakes on the Vagus. Front Physiol 2012; 3:95. [PMID: 22685433 PMCID: PMC3368389 DOI: 10.3389/fphys.2012.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/27/2012] [Indexed: 12/14/2022] Open
Abstract
It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh) release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of G(i/o)-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK) channels via Gβγ resulting in membrane hyperpolarization and inhibition of action potential (AP) firing. However, expression of M2R-GIRK signaling components in heterologous systems failed to recapitulate native channel gating kinetics. The missing link was identified with the discovery of regulator of G protein signaling (RGS) proteins, which act as GTPase-activating proteins to accelerate the intrinsic GTPase activity of Gα resulting in termination of Gα- and Gβγ-mediated signaling to downstream effectors. Studies in mice expressing an RGS-insensitive Gα(i2) mutant (G184S) implicated endogenous RGS proteins as key regulators of parasympathetic signaling in heart. Recently, two RGS proteins have been identified as critical regulators of M2R signaling in heart. RGS6 exhibits a uniquely robust expression in heart, especially in sinoatrial (SAN) and atrioventricular nodal regions. Mice lacking RGS6 exhibit increased bradycardia and inhibition of SAN AP firing in response to CCh as well as a loss of rapid activation and deactivation kinetics and current desensitization for ACh-induced GIRK current (I(KACh)). Similar findings were observed in mice lacking RGS4. Thus, dysregulation in RGS protein expression or function may contribute to pathologies involving aberrant electrical activity in cardiac pacemaker cells. Moreover, RGS6 expression was found to be up-regulated in heart under certain pathological conditions, including doxorubicin treatment, which is known to cause life-threatening cardiotoxicity and atrial fibrillation in cancer patients. On the other hand, increased vagal tone may be cardioprotective in heart failure where acetylcholinesterase inhibitors and vagal stimulation have been proposed as potential therapeutics. Together, these studies identify RGS proteins, especially RGS6, as new therapeutic targets for diseases such as sick sinus syndrome or other maladies involving abnormal autonomic control of the heart.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
39
|
Zhou Y, Xu W, Han R, Zhou J, Pan Z, Rong H, Li J, Xu C, Qiao G, Lu Y. Matrine inhibits pacing induced atrial fibrillation by modulating I(KM3) and I(Ca-L). Int J Biol Sci 2011; 8:150-8. [PMID: 22211113 PMCID: PMC3248657 DOI: 10.7150/ijbs.8.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/04/2011] [Indexed: 11/06/2022] Open
Abstract
AIM To elucidate the protective effects of Matrine on atrial fibrillation (AF) induced by electric pacing in mice and underlying molecular and ion channel mechanisms. METHODS AF was introduced by electric pacing in mice and the incidence and duration of AF were evaluated. Functional expression of M(3) receptor (M(3)-R) and Cav1.2 were explored by western and Real-time PCR, action potential (AP) and the density of (I(KM3)) L-type calcium channel (I(Ca-L)) were both recorded using whole-cell patch in isolated atrial cardiomyocytes. RESULTS In control group, incidence and duration of AF induced by electric pacing were 50 ± 17% and 3.68 ± 1.84 s, respectively; after application of carbachol 50 µg/kg both incidence and duration of AF were significantly increased to 86 ± 24% and 65.2 ± 29.0 s. Compared with control group, pretreatment of Matrine for 15 days significantly reduced AF incidence and duration in dose-dependent manner. Atrial membrane-protein expression of M(3)-R was decreased and membrane Cav1.2 expression was up-regulated. In single Matrine-treated atrial cardiomyocyte the density of I(KM3) was significantly decreased by 39% as well compared with control group, P < 0.05, whereas, I(Ca-L) density of atrium was increased by 40%. CONCLUSION These data demonstrated at the first time that the anti-AF effects of Matrine may due, at least in part, to down-regulation of I(KM3) density and M(3)-R expression and up-regulation of I(Ca-L )density and α1C/Cav1.2 expression.
Collapse
Affiliation(s)
- Yuhong Zhou
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Wei Xu
- 2. Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University
| | - Ruyi Han
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jiaying Zhou
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhenwei Pan
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Huo Rong
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Junnan Li
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Changqing Xu
- 3. Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guofen Qiao
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yanjie Lu
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
40
|
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions and has been widely implicated in human disease. Regulators of G-protein signaling (RGS proteins) belong to a diverse protein family that was originally discovered for their ability to accelerate signal termination in response to GPCR stimulation, thereby reducing the amplitude and duration of GPCR effects. All RGS proteins share a common RGS domain that interacts with G protein α subunits and mediates their biological regulation of GPCR signaling. However, RGS proteins differ widely in size and the organization of their sequences flanking the RGS domain, which contain several additional functional domains that facilitate protein-protein (or protein-lipid) interactions. RGS proteins are subject to posttranslational modifications, and, in addition, their expression, activity, and subcellular localization can be dynamically regulated. Thus, there exists a wide array of mechanisms that facilitate their proper function as modulators and integrators of G-protein signaling. Several RGS proteins have been implicated in the cardiac remodeling response and heart rate regulation, and changes in RGS protein expression and/or function are believed to participate in the pathophysiology of cardiac hypertrophy, failure and arrhythmias as well as hypertension. This review is based on recent advances in our understanding of the expression pattern, regulation, and functional role of canonical RGS proteins, with a special focus on the healthy heart and the diseased heart. In addition, we discuss their potential and promise as therapeutic targets as well as strategies to modulate their expression and function.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI 02903, USA
| | | |
Collapse
|
41
|
Tuomi JM, Tyml K, Jones DL. Atrial tachycardia/fibrillation in the connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse. Am J Physiol Heart Circ Physiol 2011; 300:H1402-11. [PMID: 21239638 DOI: 10.1152/ajpheart.01094.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia seen in general practice, can be promoted by conduction slowing. Cardiac impulse conduction depends on gap junction channels, which are composed of connexins (Cxs). While atrial Cx40 and Cx43 are equally expressed, AF studies have primarily focused on Cx40 reductions. The G60S Cx43 mutant (Cx43(G60S/+)) mouse model of Oculodentodigital dysplasia has a 60% reduction in Cx43 in the atria. Cx43(G60S/+) mice were compared with Cx40-deficient (Cx40(-/-)) mice to determine the role of Cxs in atrial tachycardia/fibrillation (AT/F). Intracardiac electrophysiological studies were done in 6-mo-old male C57BL/6 Cx43(G60S/+) mutant, littermate (Cx43(+/+)), Cx40(-/-), and C57BL/6 wild-type (WT) mice. AT/F induction used an extra stimulus during sinus rhythm, programmed electrical stimulation, or burst pacing (1-ms pulses, 50-Hz, 400-ms train) in the absence and presence of carbachol (CCh). Atrial effective refractory periods did not differ between strains. Cx43(G60S/+) mice were more susceptible to induction of sustained AT/F (duration >2 min, 9 of 12; maximum >35 min) compared with Cx43(+/+) mice (3 of 11; χ(2) = 5.24; P = 0.02). CCh enhanced sustained AT/F susceptibility in WT (from 1 of 12 without, to 7 of 10 with CCh; χ(2) = 8.98; P < 0.01) but not in Cx40(-/-) mice (1 of 13 without vs. 2 of 9 with CCh; χ(2) = 0.95; P = NS). The pattern of epicardial recordings during AT/F in Cx43(G60S/+) mice was left preceding right, with left atrial fractionated activation patterns consistent with clinical observations of AF. In conclusions, while Cx43(G60S/+) mice had severe AT/F, Cx40(-/-) mice were resistant to CCh-induced AT/F.
Collapse
Affiliation(s)
- Jari M Tuomi
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
42
|
Cao R, Dong XW, Jiang JX, Yan XF, He JS, Deng YM, Li FF, Bao MJ, Xie YC, Chen XP, Xie QM. M(3) muscarinic receptor antagonist bencycloquidium bromide attenuates allergic airway inflammation, hyperresponsiveness and remodeling in mice. Eur J Pharmacol 2011; 655:83-90. [PMID: 21277298 DOI: 10.1016/j.ejphar.2011.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 12/14/2010] [Accepted: 01/12/2011] [Indexed: 11/15/2022]
Abstract
M(3) muscarinic receptors are localized on inflammatory cells, airway smooth muscle, and submucosal glands, known to mediate bronchoconstriction, mucus secretion, and airway remodeling. It is hypothesized bencycloquidium bromide (BCQB), a novel M(3) receptor antagonist, might have potential effects on airway hyperresponsiveness, inflammation and airway remodeling in a murine model of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was examined to determine the total and differential cell counts, and cytokine levels. Lung tissues were evaluated for cell infiltration, mucus hypersecretion, airway remodeling, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Inhalation administration of BCQB significantly not only reduced ovalbumin-induced airway hyperresponsiveness comparing to methacholine, and prevented the ovalbumin-induced increase in total cell counts and eosinophil counts. Reverse transcriptase polymerase chain reaction analysis of whole lung lysates revealed that BCQB markedly suppressed ovalbumin-induced mRNA expression of eotaxin, IL-5, IL-4 and MMP-9, and increased mRNA expression of IFN-γ and TIMP-1 in a dose-dependent manner. Substantial IFN-γ/IL-4 (Th1/Th2) levels were recovered in bronchoalveolar lavage fluid after BCQB treatment. In addition, histological studies showed that BCQB dramatically inhibited ovalbumin-induced lung tissue eosinophil infiltration, airway mucus production and collagen deposition in lung tissues. Results reported in current paper suggest that M(3) receptors antagonist may provide a novel therapeutic approach to treat airway inflammation, hyperresponsiveness and remodeling.
Collapse
Affiliation(s)
- Rui Cao
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kaur K, Kehrl JM, Charbeneau RA, Neubig RR. RGS-insensitive Gα subunits: probes of Gα subtype-selective signaling and physiological functions of RGS proteins. Methods Mol Biol 2011; 756:75-98. [PMID: 21870221 DOI: 10.1007/978-1-61779-160-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Regulator of G protein Signaling (RGS) proteins were identified as a family in 1996 and humans have more than 30 such proteins. Their best known function is to suppress G Protein-Coupled Receptors (GPCR) signaling by increasing the rate of Gα turnoff through stimulation of GTPase activity (i.e., GTPase acceleration protein or GAP activity). The GAP activity of RGS proteins on the Gαi and Gαq family of G proteins can terminate signals initiated by both α and βγ subunits. RGS proteins also serve as scaffolds, assembling signal-regulating modules. Understanding the physiological roles of RGS proteins is of great importance, as GPCRs are major targets for drug development. The traditional method of using RGS knockout mice has provided some information about the role of RGS proteins but in many cases effects are modest, perhaps because of redundancy in RGS protein function. As an alternative approach, we have utilized a glycine-to-serine mutation in the switch 1 region of Gα subunits that prevents RGS binding. The mutation has no known effects on Gα binding to receptor, Gβγ, or effectors. Alterations in function resulting from the G>S mutation imply a role for both the specific mutated Gα subunit and its regulation by RGS protein activity. Mutant rodents expressing these G>S mutant Gα subunits have strong phenotypes and provide important information about specific physiological functions of Gαi2 and Gαo and their control by RGS. The conceptual framework behind this approach and a summary of recent results is presented in this chapter.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
44
|
Cazzola M, Calzetta L, Matera MG. The cardiovascular risk of tiotropium: is it real? Expert Opin Drug Saf 2010; 9:783-92. [DOI: 10.1517/14740338.2010.500611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|