1
|
Carvalho de Arruda Veiga E, Ferreira Levy R, Sales Bocalini D, Maria Soares Junior J, Chada Baracat E, Carvalho Cavalli R, dos Santos L. Exercise training and experimental myocardial ischemia and reperfusion: A systematic review and meta-analysis. IJC HEART & VASCULATURE 2023; 46:101214. [PMID: 37181278 PMCID: PMC10172783 DOI: 10.1016/j.ijcha.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Background Despite the success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases. Therefore, the objective of this systematic review was to analyze studies in animal models of ischemia-reperfusion in association with physical exercise protocols. Search strategy Articles published on the topic over a 13-year period (2010-2022) were searched in two databases (PubMed and Google Scholar) using the keywords exercise training, ischemia/reperfusion or ischemia reperfusion injury. Meta-analysis and quality assessment of the studies were performed using the Review Manager 5.3 program. Results From the 238 articles retrieved from PubMed and 200 from Google Scholar, after screening and eligibility assessment, 26 articles were included in the systematic review and meta-analysis. For meta-analysis comparing the group of previously exercised animals with the non-exercised animals and then submitted to ischemia-reperfusion, the infarct size was significantly decreased by exercise (p < 0.00001). In addition, the group exercised had increased heart-to-body weight ratio (p < 0.00001) and improved ejection fraction as measured by echocardiography (p < 0.0004) in comparison to non-exercised animals. Conclusion We concluded that the animal models of ischemia-reperfusion indicates that exercise reduce infarct size and preserve ejection fraction, associated with beneficial myocardial remodeling.
Collapse
Affiliation(s)
- Eduardo Carvalho de Arruda Veiga
- Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo – FMRPUSP, São Paulo, Brazil
| | | | - Danilo Sales Bocalini
- Laboratório de Fisiologia e Bioquímica Experimental do Centro de Educação Física e do Esporte, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Jose Maria Soares Junior
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Edmund Chada Baracat
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Ricardo Carvalho Cavalli
- Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo – FMRPUSP, São Paulo, Brazil
| | - Leonardo dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Brazil
| |
Collapse
|
2
|
Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021; 10:1787. [PMID: 34829658 PMCID: PMC8614825 DOI: 10.3390/antiox10111787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Marin Kuntic
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
| | - Katie Frenis
- Department of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sourangsu Chowdhury
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
3
|
Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway. Sci Rep 2017; 7:39715. [PMID: 28045070 PMCID: PMC5206643 DOI: 10.1038/srep39715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Risk of hospital readmission and cardiac mortality increases with atmospheric pollution for patients with heart failure. The underlying mechanisms are unclear. Carbon monoxide (CO) a ubiquitous environmental pollutant could be involved. We explored the effect of daily exposure of CO relevant to urban pollution on post-myocardial infarcted animals. Rats with ischemic heart failure were exposed 4 weeks to daily peaks of CO mimicking urban exposure or to standard filtered air. CO exposure worsened cardiac contractile dysfunction evaluated by echocardiography and at the cardiomyocyte level. In line with clinical reports, the animals exposed to CO also exhibited a severe arrhythmogenic phenotype with numerous sustained ventricular tachycardias as monitored by surface telemetric electrocardiograms. CO did not affect cardiac β-adrenergic responsiveness. Instead, mitochondrial dysfunction was exacerbated leading to additional oxidative stress and Ca2+ cycling alterations. This was reversed following acute antioxidant treatment of cardiomyocytes with N-acetylcysteine confirming involvement of CO-induced oxidative stress. Exposure to daily peaks of CO pollution aggravated cardiac dysfunction in rats with ischemic heart failure by specifically targeting mitochondria and generating ROS-dependent alterations. This pathway may contribute to the high sensibility and vulnerability of individuals with cardiac disease to environmental outdoor air quality.
Collapse
|
4
|
|
5
|
Bourdier G, Flore P, Sanchez H, Pepin JL, Belaidi E, Arnaud C. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size. Am J Physiol Heart Circ Physiol 2015; 310:H279-89. [PMID: 26566725 DOI: 10.1152/ajpheart.00448.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Chronic intermittent hypoxia (IH) is described as the major detrimental factor leading to cardiovascular morbimortality in obstructive sleep apnea (OSA) patients. OSA patients exhibit increased infarct size after a myocardial event, and previous animal studies have shown that chronic IH could be the main mechanism. Endoplasmic reticulum (ER) stress plays a major role in the pathophysiology of cardiovascular disease. High-intensity training (HIT) exerts beneficial effects on the cardiovascular system. Thus, we hypothesized that HIT could prevent IH-induced ER stress and the increase in infarct size. Male Wistar rats were exposed to 21 days of IH (21-5% fraction of inspired O2, 60-s cycle, 8 h/day) or normoxia. After 1 wk of IH alone, rats were submitted daily to both IH and HIT (2 × 24 min, 15-30m/min). Rat hearts were either rapidly frozen to evaluate ER stress by Western blot analysis or submitted to an ischemia-reperfusion protocol ex vivo (30 min of global ischemia/120 min of reperfusion). IH induced cardiac proapoptotic ER stress, characterized by increased expression of glucose-regulated protein kinase 78, phosphorylated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein. IH-induced myocardial apoptosis was confirmed by increased expression of cleaved caspase-3. These IH-associated proapoptotic alterations were associated with a significant increase in infarct size (35.4 ± 3.2% vs. 22.7 ± 1.7% of ventricles in IH + sedenary and normoxia + sedentary groups, respectively, P < 0.05). HIT prevented both the IH-induced proapoptotic ER stress and increased myocardial infarct size (28.8 ± 3.9% and 21.0 ± 5.1% in IH + HIT and normoxia + HIT groups, respectively, P = 0.28). In conclusion, these findings suggest that HIT could represent a preventive strategy to limit IH-induced myocardial ischemia-reperfusion damages in OSA patients.
Collapse
Affiliation(s)
- Guillaume Bourdier
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Patrice Flore
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Hervé Sanchez
- Institut de Recherche Biomédicale des Armées, Operational Environments, Brétigny/Orge, France
| | - Jean-Louis Pepin
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Elise Belaidi
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Claire Arnaud
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| |
Collapse
|
6
|
FENG RUI, LIU YAN, SUN XUEFEI, WANG YAN, HU HUIYUAN, GUO FENG, ZHAO JINSHENG, HAO LIYING. Molecular cloning and expression of the calmodulin gene from guinea pig hearts. Exp Ther Med 2015; 9:2311-2318. [DOI: 10.3892/etm.2015.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
|
7
|
Meyer G, André L, Kleindienst A, Singh F, Tanguy S, Richard S, Obert P, Boucher F, Jover B, Cazorla O, Reboul C. Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2015; 308:H759-67. [PMID: 25595132 DOI: 10.1152/ajpheart.00702.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/13/2015] [Indexed: 11/22/2022]
Abstract
We investigated the role of inducible nitric oxide (NO) synthase (iNOS) on ischemic myocardial damage in rats exposed to daily low nontoxic levels of carbon monoxide (CO). CO is a ubiquitous environmental pollutant that impacts on mortality and morbidity from cardiovascular diseases. We have previously shown that CO exposure aggravates myocardial ischemia-reperfusion (I/R) injury partly because of increased oxidative stress. Nevertheless, cellular mechanisms underlying cardiac CO toxicity remain hypothetical. Wistar rats were exposed to simulated urban CO pollution for 4 wk. First, the effects of CO exposure on NO production and NO synthase (NOS) expression were evaluated. Myocardial I/R was performed on isolated perfused hearts in the presence or absence of S-methyl-isothiourea (1 μM), a NOS inhibitor highly specific for iNOS. Finally, Ca(2+) handling was evaluated in isolated myocytes before and after an anoxia-reoxygenation performed with or without S-methyl-isothiourea or N-acetylcystein (20 μM), a nonspecific antioxidant. Our main results revealed that 1) CO exposure altered the pattern of NOS expression, which is characterized by increased neuronal NOS and iNOS expression; 2) cardiac NO production increased in CO rats because of its overexpression of iNOS; and 3) the use of a specific inhibitor of iNOS reduced myocardial hypersensitivity to I/R (infarct size, 29 vs. 51% of risk zone) in CO rat hearts. These last results are explained by the deleterious effects of NO and reactive oxygen species overproduction by iNOS on diastolic Ca(2+) overload and myofilaments Ca(2+) sensitivity. In conclusion, this study highlights the involvement of iNOS overexpression in the pathogenesis of simulated urban CO air pollution exposure.
Collapse
Affiliation(s)
| | - Lucas André
- Institut national de la santé et de la recherche médicale, Université Montpellier1, Université Montpellier2, Montpellier, France
| | | | - François Singh
- Fédération de Médecine Translationelle, Faculty of Medicine, Université de Strasbourg, Strasbourg France
| | - Stéphane Tanguy
- Université d'Avignon, Avignon, France; Laboratoire Techniques for biomedical engineering and complexity management-informatics, mathematics, and applications-Grenoble, Bâtiment Jean Roget-Domaine de la Merci, Université Joseph Fourier, La Tronche Cedex, France
| | - Sylvain Richard
- Institut national de la santé et de la recherche médicale, Université Montpellier1, Université Montpellier2, Montpellier, France
| | | | - François Boucher
- Laboratoire Techniques for biomedical engineering and complexity management-informatics, mathematics, and applications-Grenoble, Bâtiment Jean Roget-Domaine de la Merci, Université Joseph Fourier, La Tronche Cedex, France
| | - Bernard Jover
- Centre de Pharmacologie et Innovation dans le Diabète, Faculty of Pharmacy, Université Montpellier1, Montpellier, France; and
| | - Olivier Cazorla
- Institut national de la santé et de la recherche médicale, Université Montpellier1, Université Montpellier2, Montpellier, France
| | | |
Collapse
|
8
|
Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, Obert P, Cazorla O, Tanguy S, Reboul C. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol 2013; 108:389. [PMID: 24105420 DOI: 10.1007/s00395-013-0389-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/08/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.
Collapse
Affiliation(s)
- C Farah
- Laboratoire de Pharm-Ecologie Cardiovasculaire (EA4278), Faculty of Sciences, Avignon University, 33 rue Louis Pasteur, 84000, Avignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Reboul C, Thireau J, Meyer G, André L, Obert P, Cazorla O, Richard S. Carbon monoxide exposure in the urban environment: An insidious foe for the heart? Respir Physiol Neurobiol 2012; 184:204-12. [DOI: 10.1016/j.resp.2012.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
|
10
|
Archer T, Svensson K, Alricsson M. Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand 2012; 125:293-302. [PMID: 22233115 DOI: 10.1111/j.1600-0404.2011.01638.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
Abstract
The extent and depth of traumatic brain injury (TBI) remains a major determining factor together with the type of structural insult and its location, whether mild, moderate or severe, as well as the distribution and magnitude of inflammation and loss of cerebrovascular integrity, and the eventual efficacy of intervention. The influence of exercise intervention in TBI is multiple, ranging from anti-apoptotic effects to the augmentation of neuroplasticity. Physical exercise diminishes cerebral inflammation by elevating factors and agents involved in immunomodulatory function, and buttresses glial cell, cerebrovascular, and blood-brain barrier intactness. It provides unique non-pharmacologic intervention that incorporate different physical activity regimes, whether dynamic or static, endurance or resistance. Physical training regimes ought necessarily to be adapted to the specific demands of diagnosis, type and degree of injury and prognosis for individuals who have suffered TBI.
Collapse
Affiliation(s)
| | - K. Svensson
- School of Education; Psychology and Sport Science; Linnaeus University; Kalmar; Sweden
| | | |
Collapse
|
11
|
Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 2012; 94:168-80. [PMID: 22499772 DOI: 10.1093/cvr/cvs116] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reperfusion may induce additional cell death in patients with acute myocardial infarction receiving primary angioplasty or thrombolysis. Altered intracellular Ca(2+) handling was initially considered an essential mechanism of reperfusion-induced cardiomyocyte death. However, more recent studies have demonstrated the importance of Ca(2+)-independent mechanisms that converge on mitochondrial permeability transition (MPT) and are shared by cardiomyocytes and other cell types. This article analyses the importance of Ca(2+)-dependent cell death in light of these new observations. Altered Ca(2+) handling includes increased cytosolic Ca(2+) levels, leading to activation of calpain-mediated proteolysis and sarcoplasmic reticulum-driven oscillations; this can induce hypercontracture, but also MPT due to the privileged Ca(2+) transfer between sarcoplasmic reticulum and mitochondria through cytosolic Ca(2+) microdomains. In the opposite direction, permeability transition can worsen altered Ca(2+) handling and favour hypercontracture. Ca(2+) appears to play an important role in cell death during the initial minutes of reperfusion, particularly after brief periods of ischaemia. Developing effective and safe treatments to prevent Ca(2+)-mediated cardiomyocyte death in patients with transient ischaemia, by targeting Ca(2+) influx, intracellular Ca(2+) handling, or Ca(2+)-induced cell death effectors, is an unmet challenge with important therapeutic implications and large potential clinical impact.
Collapse
|
12
|
Nascimento FO, Santana O, Perez-Caminero M, Benjo AM. The characteristics of stress cardiomyopathy in an ethnically heterogeneous population. Clinics (Sao Paulo) 2011; 66:1895-9. [PMID: 22086519 PMCID: PMC3203961 DOI: 10.1590/s1807-59322011001100008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Stress cardiomyopathy is a cardiac syndrome that is characterized by transient left ventricular systolic dysfunction in the absence of obstructive coronary artery disease. Its epidemiology has been described in homogeneous Asian, Caucasian and Black populations, but its characteristics in heterogeneous populations are poorly understood. Our aim was to assess the characteristics of stress cardiomyopathy in a heterogeneous population that included a large percentage of Hispanics. METHODS We reviewed 59 consecutive cases of stress cardiomyopathy that were confirmed by coronary angiography and were in agreement with the Mayo Clinic diagnostic criteria. RESULTS The mean age of the patients was 74 years (range, 39-91 years), and 37 patients were female (62.7%). Twenty-nine patients (49.2%) were Latino/Hispanic, 26 (44%) were Caucasian, 3 (5%) were Asian, and 1 patient (1.7%) was Black. The most common chief symptom was dyspnea, followed by chest pain and an absence of symptoms in 54.2, 28.8, and 18.6% of the patients, respectively. The primary EKG abnormalities consisted of a T wave inversion, an ST segment elevation, and ST segment depression in 69.5%, 25.4%, and 15.3% of the patients, respectively. The stressor event was identified in 90% of the cases. In 32 cases (54%), the stressor event was physical stress or a medical illness, and in 21 cases (35.6%), the stressor event was emotional stress. The in-hospital mortality rate was 8.5%. CONCLUSIONS In our heterogeneous study population, stress cardiomyopathy presented with a 3:2 female-to-male ratio, and dyspnea was the most common chief complaint. Stress cardiomyopathy exhibited a T wave inversion as the primary EKG abnormality. These findings differ from previous cases that have been reported, and further studies are needed.
Collapse
Affiliation(s)
- Francisco O Nascimento
- Division of Cardiology at Mount Sinai Heart Institute, Columbia University, Miami Beach, Florida, USA
| | | | | | | |
Collapse
|