1
|
Han W, Xiong N, Zhong R, Pan Z. CYP2C19 Poor Metabolizer Status and High System Inflammation Response Index are Independent Risk Factors for Premature Myocardial Infarction: A Hospital-Based Retrospective Study. Int J Gen Med 2024; 17:4959-4969. [PMID: 39494358 PMCID: PMC11529344 DOI: 10.2147/ijgm.s489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Objective Atherosclerosis (AS) is a sustained chronic vascular inflammatory response caused by lipid metabolism disorders and immune response disorders and is the main cause of premature (men ≤ 55 years old, women ≤ 65 years old) myocardial infarction (PMI). Cytochrome P450 2C19 (CYP2C19) (related to vascular function and lipid metabolism) and peripheral immune cell levels and plays an important role in the course of AS. The association CYP2C19 polymorphisms, comprehensive immunoinflammatory indices with PMI susceptibility is unclear. Methods This study included 485 PMI patients, and 639 age-matched non-PMI individuals as controls, from January 2019 to March 2024. The relationship between CYP2C19 polymorphisms, peripheral immunoinflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) and PMI risk were analyzed. Results The inflammatory indices levels in PMI patients were higher than those in controls (all p<0.05). The frequencies of the CYP2C19 *1/*2 and *2/*2 genotypes were higher, while the frequency of the *1/*1 genotype was lower in the PMI patients than those in controls. The cut-off values of TC, TG, LDL-C, PIV, SII, and SIRI were 5.065, 1.305, 2.805, 410.485, 869.645, and 1.495 for distinguishing PMI, respectively. Logistic regression analysis showed that male (odds ratio (OR): 1.607, 95% confidence interval (CI): 1.134-2.277, p=0.008), history of smoking (OR: 7.108, 95% CI: 4.351-11.614, p<0.001), diabetes mellitus (OR: 4.906, 95% CI: 3.333-7.223, p<0.001), CYP2C19 poor metabolizer (PM) (*2/*2, *2/*3, and *3/*3) (OR: 2.147, 95% CI: 1.279-3.603, p=0.004), and high TG (≥1.305 vs <1.305, OR: 2.598, 95% CI: 1.864-3.623, p<0.001) and SIRI level (≥1.495 vs <1.495, OR: 2.495, 95% CI: 1.432-4.349, p=0.001) were independent risk factors for PMI. Conclusion CYP2C19 PM phenotype, high SIRI level (≥1.495) and TG level (≥1.305), male, history of smoking, and diabetes mellitus were independently associated with PMI susceptibility.
Collapse
Affiliation(s)
- Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Renkai Zhong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhongyi Pan
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
2
|
Hokimoto S, Kaikita K, Yasuda S, Tsujita K, Ishihara M, Matoba T, Matsuzawa Y, Mitsutake Y, Mitani Y, Murohara T, Noda T, Node K, Noguchi T, Suzuki H, Takahashi J, Tanabe Y, Tanaka A, Tanaka N, Teragawa H, Yasu T, Yoshimura M, Asaumi Y, Godo S, Ikenaga H, Imanaka T, Ishibashi K, Ishii M, Ishihara T, Matsuura Y, Miura H, Nakano Y, Ogawa T, Shiroto T, Soejima H, Takagi R, Tanaka A, Tanaka A, Taruya A, Tsuda E, Wakabayashi K, Yokoi K, Minamino T, Nakagawa Y, Sueda S, Shimokawa H, Ogawa H. JCS/CVIT/JCC 2023 guideline focused update on diagnosis and treatment of vasospastic angina (coronary spastic angina) and coronary microvascular dysfunction. J Cardiol 2023; 82:293-341. [PMID: 37597878 DOI: 10.1016/j.jjcc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Affiliation(s)
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Japan
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, Japan
| | - Yoshiaki Mitsutake
- Division of Cardiovascular Medicine, Kurume University School of Medicine, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Hiroshi Suzuki
- Division of Cardiology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Yasuhiko Tanabe
- Department of Cardiology, Niigata Prefectural Shibata Hospital, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Nobuhiro Tanaka
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center, Japan
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Japan
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Takahiro Imanaka
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Japan
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Yasuhiro Nakano
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Japan
| | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | | | - Ryu Takagi
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Japan
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Etsuko Tsuda
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Japan
| | - Kohei Wakabayashi
- Division of Cardiology, Cardiovascular Center, Showa University Koto-Toyosu Hospital, Japan
| | - Kensuke Yokoi
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Toru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Shozo Sueda
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Japan
| | - Hiroaki Shimokawa
- Graduate School, International University of Health and Welfare, Japan
| | | |
Collapse
|
3
|
Cai N, Li C, Gu X, Zeng W, Zhong J, Liu J, Zeng G, Zhu J, Hong H. CYP2C19 loss-of-function is associated with increased risk of hypertension in a Hakka population: a case-control study. BMC Cardiovasc Disord 2023; 23:185. [PMID: 37024851 PMCID: PMC10080785 DOI: 10.1186/s12872-023-03207-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Genetic factors have a certain proportion in the risk factors of hypertension. The purpose was to investigate the relationship of cytochrome P450 2C19 (CYP2C19) polymorphisms with hypertension in Hakka population. METHODS The study included 1,872 hypertensive patients and 1,110 controls. The genotypes of CYP2C19 rs4244285 and rs4986893 of all individuals were detected and analyzed. RESULTS The genotype and allele distributions of CYP2C19 rs4244285 were significantly different between hypertension group and control group. The CYP2C19 *1/*1 genotype was the most predominant among the subjects (40.8%), followed by the CYP2C19 *1/*2 genotype (40.5%). The percentage of CYP2C19*1, *2, and *3 allele was 64.2%, 30.8%, and 5.0%, respectively. The proportion of intermediate metabolizers (IM) (49.3% vs. 42.9%), poor metabolizers (PM) (14.3% vs. 8.9%) (P < 0.001), and CYP2C19*2 allele (33.8% vs. 25.7%, P < 0.001) in hypertension group was significantly higher than that in control group. Multivariate logistic regression (adjusted for gender, age, smoking, and drinking) indicated that CYP2C19 *1/*2, *1/*3, and *2/*2 genotypes may increase susceptibility to hypertension. And the CYP2C19 IM genotype (IM vs. EM: OR 1.514, 95% CI: 1.291-1.775, P < 0.001), PM genotype (PM vs. EM: OR 2.120, 95% CI: 1.638-2.743, P < 0.001), IM + PM genotypes (IM + PM vs. EM: OR 1.617, 95% CI: 1.390-1.882, P < 0.001) may increase risk of hypertension. CONCLUSIONS CYP2C19 loss-of-function (IM, PM genotypes) is independent risk factor for hypertension susceptibility. Specifically, the risk genotypes include CYP2C19 *1/*2, *1/*3, and *2/*2.
Collapse
Affiliation(s)
- Nan Cai
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
- , No. 63 Huangtang Road, Meijiang District, Meizhou, China.
| | - Cunren Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Xianfang Gu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Wenfeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Jiawei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Jingfeng Liu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Guopeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Junxing Zhu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Haifeng Hong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
4
|
Kottilil S, Mathur P. The influence of inflammation on cardiovascular disease in women. Front Glob Womens Health 2022; 3:979708. [PMID: 36304737 PMCID: PMC9592850 DOI: 10.3389/fgwh.2022.979708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The onset of cardiovascular disease in women is almost a decade later than men, partly due to the protective effect of estrogen prior to menopause. Recently, it was noted that while there have been advances in improving the morbidity and mortality from CVD in women older than 55 years, the improvement in younger women has been stagnant. The mechanism behind this lag is unclear. This manuscript reviews the literature available on the sex-specific inflammatory response in the context of traditional and non-traditional cardiovascular disease risk factors. Our review suggests that women have a differential inflammatory response to various disease states that increases their risk for CVD and warrants a distinct prioritization from men when calculating cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Poonam Mathur
- Insitute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Watanabe A, Momo K, Tanaka K, Uchikura T, Kiryu Y, Niiyama K, Kodaira N, Matsuzaki A, Sasaki T. Identification of the Components of Proton Pump Inhibitors and Potassium-Competitive Acid Blocker That Lead to Cardiovascular Events in Working-Age Individuals: A 12-Month Retrospective Cohort Study Using a Large Claims Database. Biol Pharm Bull 2022; 45:1373-1377. [DOI: 10.1248/bpb.b22-00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ayako Watanabe
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University
| | - Kenji Momo
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University
| | - Katsumi Tanaka
- Department of Pharmacy, Showa University Koto Toyosu Hospital
| | | | - Yoshihiro Kiryu
- Department of Pharmacy, M&B Collaboration Medical corporation Hokuetsu Hospital
| | | | | | - Airi Matsuzaki
- Department of Pharmacy, Showa University Koto Toyosu Hospital
| | | |
Collapse
|
6
|
Jalali Z, Khademalhosseini M, Soltani N, Esmaeili Nadimi A. Smoking, alcohol and opioids effect on coronary microcirculation: an update overview. BMC Cardiovasc Disord 2021; 21:185. [PMID: 33858347 PMCID: PMC8051045 DOI: 10.1186/s12872-021-01990-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Smoking, heavy alcohol drinking and drug abuse are detrimental lifestyle factors leading to loss of million years of healthy life annually. One of the major health complications caused by these substances is the development of cardiovascular diseases (CVD), which accounts for a significant proportion of substance-induced death. Smoking and excessive alcohol consumption are related to the higher risk of acute myocardial infarction. Similarly, opioid addiction, as one of the most commonly used substances worldwide, is associated with cardiac events such as ischemia and myocardial infarction (MI). As supported by many studies, coronary artery disease (CAD) is considered as a major cause for substance-induced cardiac events. Nonetheless, over the last three decades, a growing body of evidence indicates that a significant proportion of substance-induced cardiac ischemia or MI cases, do not manifest any signs of CAD. In the absence of CAD, the coronary microvascular dysfunction is believed to be the main underlying reason for CVD. To date, comprehensive literature reviews have been published on the clinicopathology of CAD caused by smoking and opioids, as well as macrovascular pathological features of the alcoholic cardiomyopathy. However, to the best of our knowledge there is no review article about the impact of these substances on the coronary microvascular network. Therefore, the present review will focus on the current understanding of the pathophysiological alterations in the coronary microcirculation triggered by smoking, alcohol and opioids.
Collapse
Affiliation(s)
- Zahra Jalali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Morteza Khademalhosseini
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran
- Department of Pathology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narjes Soltani
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran
| | - Ali Esmaeili Nadimi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Building Number 1, Emam Ali Boulevard, P.O. Box: 77175-835, 7719617996, Rafsanjan, Iran.
- Department of Cardiology, School of Medicine, Rafsanjani University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
7
|
Godo S, Takahashi J, Yasuda S, Shimokawa H. Role of Inflammation in Coronary Epicardial and Microvascular Dysfunction. Eur Cardiol 2021; 16:e13. [PMID: 33897839 PMCID: PMC8054350 DOI: 10.15420/ecr.2020.47] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/16/2021] [Indexed: 01/09/2023] Open
Abstract
There is accumulating evidence highlighting a close relationship between inflammation and coronary microvascular dysfunction (CMD) in various experimental and clinical settings, with major clinical implications. Chronic low-grade vascular inflammation plays important roles in the underlying mechanisms behind CMD, especially in patients with coronary artery disease, obesity, heart failure with preserved ejection fraction and chronic inflammatory rheumatoid diseases. The central mechanisms of coronary vasomotion abnormalities comprise enhanced coronary vasoconstrictor reactivity, reduced endothelium-dependent and -independent coronary vasodilator capacity and increased coronary microvascular resistance, where inflammatory mediators and responses are substantially involved. How to modulate CMD to improve clinical outcomes of patients with the disorder and whether CMD management by targeting inflammatory responses can benefit patients remain challenging questions in need of further research. This review provides a concise overview of the current knowledge of the involvement of inflammation in the pathophysiology and molecular mechanisms of CMD from bench to bedside.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
8
|
Gautier-Veyret E, Truffot A, Bailly S, Fonrose X, Thiebaut-Bertrand A, Tonini J, Cahn JY, Stanke-Labesque F. Inflammation is a potential risk factor of voriconazole overdose in hematological patients. Fundam Clin Pharmacol 2018; 33:232-238. [PMID: 30306637 DOI: 10.1111/fcp.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Voriconazole (VRC) overdoses are frequent and expose patients at high risk of adverse effects. This case-control study performed in hematological patients who benefited from VRC therapeutic drug monitoring from January 2012 to December 2015 aimed to identify risk factors of VRC overdose. Pharmacogenetic, biological, and demographic parameters at the time of VRC trough concentration (Cmin ) were retrospectively collected from medical records. Cases (VRC overdose: defined by a VRC Cmin ≥ 4 mg/L; n = 31) were compared to controls (no VRC overdose: defined by VRC Cmin < 4 mg/L; n = 31) using nonparametric or chi-square tests followed by multivariable analysis. VRC overdoses were significantly associated with high CRP and bilirubin levels, intravenous administration, and age in univariable analysis. In contrast, the proportion of CYP genotypes (CYP2C19, CYP3A4, or CYP3A5, considered alone or combined in a combined genetic score) were not significantly different between patients who experienced a VRC overdose and those who did not. In multivariable analysis, the class of CRP level (defined by median CRP levels of 96 mg/L) was the sole independent risk factor of VRC overdose (P < 0.01). Patients with CRP levels > 96 mg/L) had a 27-fold (IC 95%: [6-106]) higher risk of VRC overdose than patients with CRP levels ≤ 96 mg/L. This study demonstrates that inflammatory status, assessed by CRP levels, is the main risk factor of VRC overdose in French hematological patients, whereas pharmacogenetic determinants do not appear to be involved.
Collapse
Affiliation(s)
- Elodie Gautier-Veyret
- Univ. Grenoble Alpes, HP2, Grenoble, F-38041, France.,INSERM U1042, Grenoble, 38041, France.,Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, Centre Hospitalier Universitaire des Alpes, Grenoble, 38043, France
| | - Aurélie Truffot
- Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, Centre Hospitalier Universitaire des Alpes, Grenoble, 38043, France
| | - Sébastien Bailly
- Univ. Grenoble Alpes, HP2, Grenoble, F-38041, France.,INSERM U1042, Grenoble, 38041, France.,Grenoble Alpes University Hospital, EFCR Laboratory, Pôle THORAX and VESSELS, Grenoble, 38043, France
| | - Xavier Fonrose
- Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, Centre Hospitalier Universitaire des Alpes, Grenoble, 38043, France
| | - Anne Thiebaut-Bertrand
- TIMC-TheREx, UMR 5525, CNRS, La Tronche, 38041, France.,Service d'Hématologie Clinique, Centre Hospitalier Universitaire des Alpes, Grenoble, 38043, France
| | - Julia Tonini
- Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, Centre Hospitalier Universitaire des Alpes, Grenoble, 38043, France
| | - Jean-Yves Cahn
- TIMC-TheREx, UMR 5525, CNRS, La Tronche, 38041, France.,Service d'Hématologie Clinique, Centre Hospitalier Universitaire des Alpes, Grenoble, 38043, France
| | - Françoise Stanke-Labesque
- Univ. Grenoble Alpes, HP2, Grenoble, F-38041, France.,INSERM U1042, Grenoble, 38041, France.,Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, Centre Hospitalier Universitaire des Alpes, Grenoble, 38043, France
| |
Collapse
|
9
|
Akasaka T, Sueta D, Arima Y, Tabata N, Takashio S, Izumiya Y, Yamamoto E, Tsujita K, Kojima S, Kaikita K, Kajiwara A, Morita K, Oniki K, Saruwatari J, Nakagawa K, Hokimoto S. CYP2C19 variants and epoxyeicosatrienoic acids in patients with microvascular angina. IJC HEART & VASCULATURE 2017; 15:15-20. [PMID: 28616567 PMCID: PMC5458130 DOI: 10.1016/j.ijcha.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/31/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Categorization as a cytochrome P450 (CYP) 2C19 poor metabolizer (PM) is reported to be an independent risk factor for cardiovascular disease. Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by CYP2C19 epoxygenases and anti-inflammatory properties, especially in microvascular tissues. We examined the impact of CYP2C19 polymorphisms and EETs on the patients with microvascular angina (MVA) caused by coronary microvascular dysfunction. METHODS AND RESULTS We examined CYP2C19 genotypes in patients with MVA (n = 81). MVA was defined as absence of coronary artery stenosis and epicardial spasms, and the presence of inversion of lactic acid levels between intracoronary and coronary sinuses in acetylcholine-provocation test or the adenosine-triphosphate-induced coronary flow reserve ratio was below 2.5. CYP2C19 PM have two loss-of-functon alleles (*2, *3). We measured serum dihydroxyeicosatrienoic acid (DHET) as representative EET metabolite. In MVA, the patients with CYP2C19 PM were 34.6% and high sense C-reactive protein (hs-CRP) levels in CYP2C19 PM were significantly higher than that of non-PM group (0.165 ± 0.116 vs. 0.097 ± 0.113 mg/dL, P = 0.026). Moreover, DHET levels in CYP2C19 PM were significantly lower than that of non-PM (10.4 ± 4.58 vs. 15.6 ± 11.1 ng/mL, P = 0.003 (11,12-DHET); 12.1 ± 3.79 vs. 17.3 ± 6.49 ng/mL, P = 0.019 (14,15-DHET)). CONCLUSIONS The decline of EET owing to CYP2C19 variants may affects coronary microvascular dysfunction via chronic inflammation.
Collapse
Affiliation(s)
- Tomonori Akasaka
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sunao Kojima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayami Kajiwara
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazunori Morita
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Hokimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Akasaka T, Sueta D, Arima Y, Tabata N, Takashio S, Izumiya Y, Yamamoto E, Yamamuro M, Tsujita K, Kojima S, Kaikita K, Kajiwara A, Morita K, Oniki K, Saruwatari J, Nakagawa K, Ogata Y, Matsui K, Hokimoto S. Association of CYP2C19 variants and epoxyeicosatrienoic acids on patients with microvascular angina. Am J Physiol Heart Circ Physiol 2016; 311:H1409-H1415. [DOI: 10.1152/ajpheart.00473.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023]
Abstract
Categorization as a cytochrome P450 (CYP) 2C19 poor metabolizer (PM) is reported to be an independent risk factor for cardiovascular disease. Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by CYP2C19 epoxygenases and anti-inflammatory properties, especially in microvascular tissues. We examined the association of CYP2C19 polymorphisms and EETs on microvascular angina (MVA) caused by coronary microvascular dysfunction. We examined CYP2C19 genotypes in patients with MVA ( n = 71) and healthy subjects as control ( n = 71). MVA was defined as the absence of coronary artery stenosis and epicardial spasms and the presence of inversion of lactic acid levels between intracoronary and coronary sinuses in acetylcholine-provocation test or the adenosine-triphosphate-induced coronary flow reserve ratio was below 2.5. CYP2C19 PM have two loss-of-functon alleles (*2, *3). We measured serum dihydroxyeicosatrienoic acid (DHET) as representative EET metabolite. MVA group showed significantly higher CYP2C19 PM incidence (35% vs. 16%; P = 0.007) and high sense C-reactive protein (hs-CRP) levels (0.127 ± 0.142 vs. 0.086 ± 0.097 mg/dl; P = 0.043) than those of controls. Moreover, in MVA group, hs-CRP levels in CYP2C19 PM were significantly higher than that of non-PM (0.180 ± 0.107 vs. 0.106 ± 0.149 mg/dl, P = 0.045). Multivariate analysis indicated that smoking, hypertension, high hs-CRP, and CYP2C19 PM are predictive factors for MVA. In MVA group, DHET levels for CYP2C19 PM were significantly lower than that of non-PM [10.9 ± 1.64 vs. 14.2 ± 5.39 ng/ml, P = 0.019 (11,12-DHET); 15.2 ± 4.39 vs. 17.9 ± 4.73 ng/ml, P = 0.025 (14,15-DHET)]. CYP2C19 variants are associated with MVA. The decline of EET-based defensive mechanisms owing to CYP2C19 variants may affect coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Tomonori Akasaka
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Megumi Yamamuro
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sunao Kojima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayami Kajiwara
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Kazunori Morita
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; and
| | - Yasuhiro Ogata
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto, Japan
| | - Kunihiko Matsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Hokimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|