1
|
Silva AF, Sousa-Nunes F, Faria-Costa G, Rodrigues I, Guimarães JT, Leite-Moreira A, Henriques-Coelho T, Negrão R, Moreira-Gonçalves D. Effects of chronic moderate alcohol consumption on right ventricle and pulmonary remodelling. Exp Physiol 2021; 106:1359-1372. [PMID: 33605491 DOI: 10.1113/ep088788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the consumption of a moderate amount of alcohol differentially impact the heart ventricles and pulmonary vasculature. What is the main finding and its importance? Moderate alcohol consumption for a short period of time impaired pulmonary vascular cellular renewal through an apoptosis resistance pattern that ultimately affected the right ventricular function and structure. These findings support the need for a deeper understanding of effects of moderate alcohol consumption on the overall cardiovascular and pulmonary systems. ABSTRACT Over the past decades, observational studies have supported an association between moderate alcohol consumption and a lower risk of cardiovascular disease and mortality. However, recent and more robust meta-analyses have raised concerns around the robustness of the evidence for the cardioprotective effects of alcohol. Also, studies of the functional, structural and molecular changes promoted by alcohol have focused primarily on the left ventricle, ignoring the fact that the right ventricle could adapt differently. The aim of this study was to evaluate the bi-ventricular impact of daily moderate alcohol intake, during a 4-week period, in a rodent model. Male Wistar rats were allowed to drink water (Control) or a 5.2% ethanol mixture (ETOH) for 4 weeks. At the end of the protocol bi-ventricular haemodynamic recordings were performed and samples collected for further histological and molecular analysis. ETOH ingestion did not impact cardiac function. However, it caused right ventricle hypertrophy, paralleled by an activation of molecular pathways responsible for cell growth (ERK1/2, AKT), proteolysis (MURF-1) and oxidative stress (NOX4, SOD2). Furthermore, ETOH animals also presented remodelling of the pulmonary vasculature with an increase in pulmonary arteries' medial thickness, which was characterized by increased expression of apoptosis-related proteins expression (BCL-XL, BAX and caspases). Moderate alcohol consumption for a short period of time impaired the lungs and the right ventricle early, before any change could be detected on the left ventricle. Right ventricular changes might be secondary to alcohol-induced pulmonary vasculature remodelling.
Collapse
Affiliation(s)
- Ana Filipa Silva
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Fábio Sousa-Nunes
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Gabriel Faria-Costa
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Ilda Rodrigues
- Departamento de Biomedicina - Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - João Tiago Guimarães
- Departamento de Biomedicina - Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Patologia Clínica, Centro Hospitalar Universitário São João, Al. Professor Hernâni Monteiro, Porto, Portugal.,Instituto de Saúde Pública da Universidade do Porto, Campo dos Mártires da Pátria, Porto, Portugal
| | - Adelino Leite-Moreira
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Tiago Henriques-Coelho
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Rita Negrão
- Departamento de Biomedicina - Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Centro de Atividade Física, Saúde e Lazer, Faculdade de Desporto da Universidade do Porto, R. Plácido Costa 91, Porto, Portugal
| |
Collapse
|
2
|
Nogueira-Ferreira R, Ferreira R, Padrão AI, Oliveira P, Santos M, Kavazis AN, Vitorino R, Moreira-Gonçalves D. One year of exercise training promotes distinct adaptations in right and left ventricle of female Sprague-Dawley rats. J Physiol Biochem 2019; 75:561-572. [PMID: 31620967 DOI: 10.1007/s13105-019-00705-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 09/04/2019] [Indexed: 01/15/2023]
Abstract
Aerobic exercise training induces a unique cardioprotective phenotype, but it is becoming clear that it does not promote the same structural, functional, and molecular adaptations in both ventricles. In the present study, we aimed to better characterize and compare the molecular pathways involved in the exercise-induced remodeling of both ventricles. Female Sprague-Dawley rats were randomly assigned to control and exercise groups. Animals in the exercise group were submitted to low-intensity treadmill exercise for 54 weeks. After the experimental period, biventricular hemodynamic analysis was performed and right and left ventricles were harvested for morphological and biochemical analyses. Data showed that long-term low-intensity exercise training improves cardiac function, especially left ventricular diastolic function; however, the expression of connexin-43, CCAAT-enhancer binding protein β, and c-kit did not change in none of the ventricles. In the right ventricle, long-term exercise training induced an increase of manganese superoxide dismutase and sirtuin 3 protein expression, suggestive of improved antioxidant capacity. Our results also support that long-term aerobic exercise training imposes greater metabolic remodeling to the right ventricle, mainly by increasing mitochondrial ability to produce ATP, with no association to estrogen-related receptor α regulation.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Rita Ferreira
- QOPNA & LAQV, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Isabel Padrão
- QOPNA & LAQV, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Paula Oliveira
- CITAB, Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-911, Vila Real, Portugal
| | - Manuel Santos
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | | | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal. .,CIAFEL, Faculdade de Desporto, Universidade do Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.
| |
Collapse
|
3
|
Ferreira R, Nogueira-Ferreira R, Trindade F, Vitorino R, Powers SK, Moreira-Gonçalves D. Sugar or fat: The metabolic choice of the trained heart. Metabolism 2018; 87:98-104. [PMID: 30077622 DOI: 10.1016/j.metabol.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
Abstract
Mammals respond to muscular exercise by increasing cardiac output to meet the increased demand for oxygen in the working muscles and it is well-established that regular bouts of exercise results in myocardial remodeling. Depending on exercise type, intensity and duration, these cardiac adaptations lead to changes in the energetic substrates required to sustain cardiac contractility. In contrast to the failing heart, fatty acids are the preferred substrate in the trained heart, though glucose metabolism is also enhanced to support oxidative phosphorylation. The participation of AMPK/eNOS and PPARα/PGC-1α pathways in the regulation of cardiac metabolism is well known but other players also contribute including sirtuins and integrins-mediated outside-in activation of FAK and other kinases. These regulatory players act by up-regulating fatty acid uptake, transport to mitochondria and oxidation, and glucose uptake via GLUT4. This exercise-induced increase in mitochondria metabolic flexibility is important to sustain the energetic demand associated with cardiomyocyte hypertrophy and hyperplasia promoted by IGF-1 and neuregulin-1-induced PI3K/Akt signaling. So, the timeless advice of Hippocrates "walking is the best medicine" seems to be justified by the promotion of mitochondrial health and, consequently, the beneficial metabolic remodeling of the heart.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Rita Nogueira-Ferreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, United States
| | - Daniel Moreira-Gonçalves
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Yang F, You X, Xu T, Liu Y, Ren Y, Liu S, Wu F, Xu Z, Zou L, Wang G. Screening and Function Analysis of MicroRNAs Involved in Exercise Preconditioning-Attenuating Pathological Cardiac Hypertrophy. Int Heart J 2018; 59:1069-1076. [DOI: 10.1536/ihj.17-498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Fan Yang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Xiaohua You
- Department of Cardiology, Changhai Hospital, The Second Military Medical University
| | - Tongyi Xu
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Yang Liu
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Yudan Ren
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Suxuan Liu
- Department of Cardiology, Changhai Hospital, The Second Military Medical University
| | - Feng Wu
- Department of Cardiology, 98th Military Hospital
| | - Zhiyun Xu
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Liangjian Zou
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Guokun Wang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| |
Collapse
|
5
|
Nogueira-Ferreira R, Ferreira-Pinto MJ, Silva AF, Vitorino R, Justino J, Costa R, Moreira-Gonçalves D, Quignard JF, Ducret T, Savineau JP, Leite-Moreira AF, Ferreira R, Henriques-Coelho T. HMGB1 down-regulation mediates terameprocol vascular anti-proliferative effect in experimental pulmonary hypertension. J Cell Physiol 2017; 232:3128-3138. [PMID: 28036116 DOI: 10.1002/jcp.25763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 11/07/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a poor prognosis. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in PAH pathophysiology, displaying a hyperproliferative, and apoptotic-resistant phenotype. In the present study, we evaluated the potential therapeutic role of terameprocol (TMP), an inhibitor of cellular proliferation and promoter of apoptosis, in a well-established pre-clinical model of PAH induced by monocrotaline (MCT) and studied the biological pathways modulated by TMP in PASMCs. Wistar rats injected with MCT or saline (SHAM group) were treated with TMP or vehicle. On day 21 after injection, we assessed bi-ventricular hemodynamics and cardiac and pulmonary morphometry. The effects of TMP on PASMCs were studied in a primary culture isolated from SHAM and MCT-treated rats, using an iTRAQ-based proteomic approach to investigate the molecular pathways modulated by this drug. In vivo, TMP significantly reduced pulmonary and cardiac remodeling and improved cardiac function in PAH. In vitro, TMP inhibited proliferation and induced apoptosis of PASMCs. A total of 65 proteins were differentially expressed in PASMCs from MCT rats treated with TMP, some of which involved in the modulation of transforming growth factor beta pathway and DNA transcription. Anti-proliferative effect of TMP seems to be explained, at least in part, by the down-regulation of the transcription factor HMGB1. Our findings support the beneficial role of TMP in PAH and suggest that it may be an effective therapeutic option to be considered in the clinical management of PAH.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Manuel J Ferreira-Pinto
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Ana Filipa Silva
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Joana Justino
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Raquel Costa
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| | - Jean-François Quignard
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Thomas Ducret
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Jean-Pierre Savineau
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Adelino F Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tiago Henriques-Coelho
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
6
|
Traynham CJ, Hullmann J, Koch WJ. "Canonical and non-canonical actions of GRK5 in the heart". J Mol Cell Cardiol 2016; 92:196-202. [PMID: 26829117 PMCID: PMC4789097 DOI: 10.1016/j.yjmcc.2016.01.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 01/13/2023]
Abstract
As the average world-wide lifespan continues to increase, heart failure (HF) has dramatically increased in incidence leading to the highest degree of mortality and morbidity of any disease presently studied. G protein-coupled receptors (GPCRs) play a prominent role in regulation of cardiovascular function. GPCRs are effectively "turned off" by GPCR kinases (GRKs) in a process known as "desensitization". GRKs 2 and 5 are highly expressed in the heart, and known to be upregulated in HF. Over the last 20years, the role of GRK2 in HF has been widely studied. However, until recently, the role of GRK5 in cardiac pathophysiology had yet to be elucidated. In the present review, we will focus on GRK5's role in the myocardium in normal physiology, and its apparent critical role in the progression of HF. Further, we will also present potential therapeutic strategies (i.e. small molecule inhibition, gene therapy) that may have potential in combating the deleterious effects of GRK5 in HF.
Collapse
Affiliation(s)
- Christopher J Traynham
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
7
|
Nogueira-Ferreira R, Moreira-Gonçalves D, Silva AF, Duarte JA, Leite-Moreira A, Ferreira R, Henriques-Coelho T. Exercise preconditioning prevents MCT-induced right ventricle remodeling through the regulation of TNF superfamily cytokines. Int J Cardiol 2015; 203:858-66. [PMID: 26599752 DOI: 10.1016/j.ijcard.2015.11.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Exercise training has been recognized as a non-pharmacological therapeutic approach in several chronic diseases; however it remains to be tested if exercise preconditioning can positively interfere with the natural history of pulmonary arterial hypertension (PAH). This is important since the majority of these patients are diagnosed at advanced stages of the disease, when right ventricle (RV) impairment is already present. OBJECTIVES In the current study, we evaluated the preventive effect of exercise preconditioning on RV failure secondary to PAH, with a focus on the signaling pathways modulated by pro-inflammatory cytokines from TNF superfamily. METHODS We analyzed the RV muscle from adult male Wistar rats exposed to a 4-week treadmill exercise training or sedentary regime, prior to the administration of monocrotaline (MCT) to induce PAH or with saline solution (controls). RESULTS Data indicate that exercise preconditioning prevented cardiac hypertrophy and RV diastolic dysfunction. At a molecular level, exercise modulated the TWEAK/NF-κB signaling axis and prevented the shift in MHC isoforms towards an increased expression of beta-MHC. Exercise preconditioning also prevented the increase of atrogin-1 expression, and induced a shift of MMP activity from MMP-9 to MMP-2 activity. CONCLUSIONS Altogether, data support exercise as a preventive strategy for the management of PAH, which is of particular relevance for the familial form of PAH that is manifested by greater severity or earlier onset.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal.
| | - Ana Filipa Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal; Department of Cardiothoracic Surgery, Hospital of São João, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tiago Henriques-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Traynham CJ, Cannavo A, Zhou Y, Vouga AG, Woodall BP, Hullmann J, Ibetti J, Gold JI, Chuprun JK, Gao E, Koch WJ. Differential Role of G Protein-Coupled Receptor Kinase 5 in Physiological Versus Pathological Cardiac Hypertrophy. Circ Res 2015; 117:1001-12. [PMID: 26515328 DOI: 10.1161/circresaha.115.306961] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
RATIONALE G protein-coupled receptor kinases (GRKs) are dynamic regulators of cellular signaling. GRK5 is highly expressed within myocardium and is upregulated in heart failure. Although GRK5 is a critical regulator of cardiac G protein-coupled receptor signaling, recent data has uncovered noncanonical activity of GRK5 within nuclei that plays a key role in pathological hypertrophy. Targeted cardiac elevation of GRK5 in mice leads to exaggerated hypertrophy and early heart failure after transverse aortic constriction (TAC) because of GRK5 nuclear accumulation. OBJECTIVE In this study, we investigated the role of GRK5 in physiological, swimming-induced hypertrophy (SIH). METHODS AND RESULTS Cardiac-specific GRK5 transgenic mice and nontransgenic littermate control mice were subjected to a 21-day high-intensity swim protocol (or no swim sham controls). SIH and specific molecular and genetic indices of physiological hypertrophy were assessed, including nuclear localization of GRK5, and compared with TAC. Unlike after TAC, swim-trained transgenic GRK5 and nontransgenic littermate control mice exhibited similar increases in cardiac growth. Mechanistically, SIH did not lead to GRK5 nuclear accumulation, which was confirmed in vitro as insulin-like growth factor-1, a known mediator of physiological hypertrophy, was unable to induce GRK5 nuclear translocation in myocytes. We found specific patterns of altered gene expression between TAC and SIH with GRK5 overexpression. Further, SIH in post-TAC transgenic GRK5 mice was able to preserve cardiac function. CONCLUSIONS These data suggest that although nuclear-localized GRK5 is a pathological mediator after stress, this noncanonical nuclear activity of GRK5 is not induced during physiological hypertrophy.
Collapse
Affiliation(s)
- Christopher J Traynham
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Alessandro Cannavo
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Yan Zhou
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Alexandre G Vouga
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Benjamin P Woodall
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jonathan Hullmann
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jessica Ibetti
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jessica I Gold
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - J Kurt Chuprun
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Erhe Gao
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Walter J Koch
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.).
| |
Collapse
|
9
|
Moreira-Gonçalves D, Henriques-Coelho T, Fonseca H, Ferreira R, Padrão AI, Santa C, Vieira S, Silva AF, Amado F, Leite-Moreira A, Duarte JA. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult. J Physiol 2015; 593:3885-97. [PMID: 26010517 DOI: 10.1113/jp270685] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and magnitude of the stimuli, may play a role in the development of an adaptive or maladaptive phenotype.
Collapse
Affiliation(s)
- Daniel Moreira-Gonçalves
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Tiago Henriques-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Hélder Fonseca
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Ana Isabel Padrão
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Cátia Santa
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Sara Vieira
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Filipa Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Amado
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiovascular Research Centre and Department of Cardiothoracic Surgery, Centro Hospitalar São João, Porto, Portugal
| | - José Alberto Duarte
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Padrão AI, Moreira-Gonçalves D, Oliveira PA, Teixeira C, Faustino-Rocha AI, Helguero L, Vitorino R, Santos LL, Amado F, Duarte JA, Ferreira R. Endurance training prevents TWEAK but not myostatin-mediated cardiac remodelling in cancer cachexia. Arch Biochem Biophys 2015; 567:13-21. [PMID: 25575785 DOI: 10.1016/j.abb.2014.12.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/09/2014] [Accepted: 12/29/2014] [Indexed: 12/15/2022]
Abstract
Strategies to prevent tumour burden-induced cardiac remodelling that might progress to heart failure are necessary to improve patients' health outcomes and tolerability to cancer therapies. Exercise has been suggested as a measure to prevent cardiac damage; however, its effectiveness on regulating cardiac remodelling secondary to cancer was never addressed. Using an animal model of mammary tumorigenesis, we studied the impact of 35weeks of endurance training on heart, focusing on the signalling pathways modulated by pro-inflammatory and wasting cytokines. The cardiac fibrosis and myofiber disorganization induced by tumour burden was paralleled by the increase of myostatin and TWEAK with the activation of signalling pathways involving Smad-3, NF-κB, TRAF-6 and atrogin-1. The activation of Akt/mTOR was observed in heart from rats with tumours, for which contributed the extracellular matrix. Endurance training prevented the increase of serum and cardiac TWEAK promoted by cancer, as well as the activation of NF-κB, TRAF6, atrogin-1 and p70S6K in heart. Data highlight the impact of exercise in the modulation of signalling pathways activated by wasting cytokines and the resulting outcomes on heart adaptation. Future studies focused on the cellular pathways underlying cardiac remodelling will assist in the development of exercise programs targeting cancer-related cardiac alterations.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula A Oliveira
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Catarina Teixeira
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana I Faustino-Rocha
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Luísa Helguero
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Francisco Amado
- QOPNA, School of Health Sciences, University of Aveiro, Portugal
| | | | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Ferreira R, Moreira-Gonçalves D, Azevedo AL, Duarte JA, Amado F, Vitorino R. Unraveling the exercise-related proteome signature in heart. Basic Res Cardiol 2014; 110:454. [PMID: 25475830 DOI: 10.1007/s00395-014-0454-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 12/15/2022]
Abstract
Exercise training is a well-known non-pharmacological strategy for the prevention and treatment of cardiovascular diseases. Despite the established phenotypic knowledge, the molecular signature of exercise-induced cardiac remodeling remains poorly characterized. The great majority of studies dedicated to this topic use conventional reductionist methods, which only allow analyzing individual protein candidates. Nowadays, several methodologies based on mass spectrometry are available and have been successfully applied for the characterization of heart proteome, representing an attractive approach for the wide characterization of the complex molecular networks that underlie exercise-induced cardiac remodeling. Still, few studies have used these methodologies to understand the impact of exercise training on the remodeling of cardiac proteome. The present study analyzes the few available data obtained from mass spectrometry (MS)-based proteomic studies assessing the impact of distinct types of exercise training on the protein profile of heart (left ventricle and isolated mitochondria) and the potential cross-tolerance between exercise training and diseases as myocardial infarction and obesity. Network analysis was performed with bioinformatics to integrate data from distinct research papers, based on distinct exercise training protocols, animal models and methodological approaches applied in the characterization of heart proteome. The analysis revealed that exercise training confers a unique proteome signature characterized by the up-regulation of lipid and organic metabolic processes, vasculogenesis and tissue regeneration. Data retrieved from this analysis also suggested that cardiac mitochondrial proteome is highly dynamic in response to exercise training due, in part, to the action of specific kinases as PKA and PKG. Regarding to the type of exercise, treadmill training seems to have a greater effect on the modulation of cardiac proteome than swimming. Data from the present review will certainly open new perspectives on cardiac proteomics and will help to envisage future studies targeting the identification of the regulatory mechanisms underlying cardiac adaptive and maladaptive remodeling.
Collapse
Affiliation(s)
- Rita Ferreira
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | |
Collapse
|
12
|
Is nitric oxide decrease observed with naphthoquinones in LPS stimulated RAW 264.7 macrophages a beneficial property? PLoS One 2011; 6:e24098. [PMID: 21887376 PMCID: PMC3162593 DOI: 10.1371/journal.pone.0024098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/30/2011] [Indexed: 11/24/2022] Open
Abstract
The search of new anti-inflammatory drugs has been a current preoccupation, due to the need of effective drugs, with less adverse reactions than those used nowadays. Several naphthoquinones (plumbagin, naphthazarin, juglone, menadione, diosquinone and 1,4-naphthoquinone), plus p-hydroquinone and p-benzoquinone were evaluated for their ability to cause a reduction of nitric oxide (NO) production, when RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS). Dexamethasone was used as positive control. Among the tested compounds, diosquinone was the only one that caused a NO reduction with statistical importance and without cytotoxicity: an IC25 of 1.09±0.24 µM was found, with 38.25±6.50% (p<0.001) NO reduction at 1.5 µM. In order to elucidate if this NO decrease resulted from the interference of diosquinone with cellular defence mechanisms against LPS or to its conversion into peroxynitrite, by reaction with superoxide radical formed by naphthoquinones redox cycling, 3-nitrotyrosine and superoxide determination was also performed. None of these parameters showed significant changes relative to control. Furthermore, diosquinone caused a decrease in the pro-inflammatory cytokines: tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). Therefore, according to the results obtained, diosquinone, studied for its anti-inflammatory potential for the first time herein, has beneficial effects in inflammation control. This study enlightens the mechanisms of action of naphthoquinones in inflammatory models, by checking for the first time the contribution of oxidative stress generated by naphthoquinones to NO reduction.
Collapse
|