1
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2024. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Harriot AD, Altair Morris T, Vanegas C, Kallenbach J, Pinto K, Joca HC, Moutin MJ, Shi G, Ursitti JA, Grosberg A, Ward CW. Detyrosinated microtubule arrays drive myofibrillar malformations in mdx muscle fibers. Front Cell Dev Biol 2023; 11:1209542. [PMID: 37691825 PMCID: PMC10485621 DOI: 10.3389/fcell.2023.1209542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Altered myofibrillar structure is a consequence of dystrophic pathology that impairs skeletal muscle contractile function and increases susceptibility to contraction injury. In murine Duchenne muscular dystrophy (mdx), myofibrillar alterations are abundant in advanced pathology (>4 months), an age where we formerly established densified microtubule (MT) arrays enriched in detyrosinated (deTyr) tubulin as negative disease modifiers impacting cell mechanics and mechanotransduction. Given the essential role of deTyr-enriched MT arrays in myofibrillar growth, maintenance, and repair, we examined the increased abundance of these arrays as a potential mechanism for these myofibrillar alterations. Here we find an increase in deTyr-tubulin as an early event in dystrophic pathology (4 weeks) with no evidence myofibrillar alterations. At 16 weeks, we show deTyr-enriched MT arrays significantly densified and co-localized to areas of myofibrillar malformation. Profiling the enzyme complexes responsible for deTyr-tubulin, we identify vasohibin 2 (VASH2) and small vasohibin binding protein (SVBP) significantly elevated in the mdx muscle at 4 weeks. Using the genetic increase in VASH2/SVBP expression in 4 weeks wild-type mice we find densified deTyr-enriched MT arrays that co-segregate with myofibrillar malformations similar to those in the 16 weeks mdx. Given that no changes in sarcomere organization were identified in fibers expressing sfGFP as a control, we conclude that disease-dependent densification of deTyr-enriched MT arrays underscores the altered myofibrillar structure in dystrophic skeletal muscle fibers.
Collapse
Affiliation(s)
- Anicca D. Harriot
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tessa Altair Morris
- Center for Complex Biological Systems, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States
| | - Camilo Vanegas
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jacob Kallenbach
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kaylie Pinto
- Department of Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Humberto C. Joca
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marie-Jo Moutin
- INSERM U1216 Centre National de la Recherche Scientifique, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Guoli Shi
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jeanine A. Ursitti
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna Grosberg
- Center for Complex Biological Systems, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, Sue and Bill Gross Stem Cell Research, University of California, Irvine, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, Sue and Bill Gross Stem Cell Research, University of California, Irvine, Irvine, CA, United States
| | - Christopher W. Ward
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Williams TD, Cacioppo R, Agrotis A, Black A, Zhou H, Rousseau A. Actin remodelling controls proteasome homeostasis upon stress. Nat Cell Biol 2022; 24:1077-1087. [PMID: 35739319 PMCID: PMC9276530 DOI: 10.1038/s41556-022-00938-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
When cells are stressed, bulk translation is often downregulated to reduce energy demands while stress-response proteins are simultaneously upregulated. To promote proteasome assembly and activity and maintain cell viability upon TORC1 inhibition, 19S regulatory-particle assembly chaperones (RPACs) are selectively translated. However, the molecular mechanism for such selective translational upregulation is unclear. Here, using yeast, we discover that remodelling of the actin cytoskeleton is important for RPAC translation following TORC1 inhibition. mRNA of the RPAC ADC17 is associated with actin cables and is enriched at cortical actin patches under stress, dependent upon the early endocytic protein Ede1. ede1∆ cells failed to induce RPACs and proteasome assembly upon TORC1 inhibition. Conversely, artificially tethering ADC17 mRNA to cortical actin patches enhanced its translation upon stress. These findings suggest that actin-dense structures such as cortical actin patches may serve as a translation platform for a subset of stress-induced mRNAs including regulators of proteasome homeostasis. Williams et al. report that, upon TORC1 inhibition in yeast, mRNA of the chaperone protein ADC17 is localized to cortical actin patches where its translation is enhanced upon stress.
Collapse
Affiliation(s)
- Thomas David Williams
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Roberta Cacioppo
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexander Agrotis
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ailsa Black
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Adrien Rousseau
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Abstract
Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.
Collapse
Affiliation(s)
- Emily F Warner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University School of Medicine, People's Republic of China (Y.L.)
| | - Xuan Li
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| |
Collapse
|
5
|
Microtubules orchestrate local translation to enable cardiac growth. Nat Commun 2021; 12:1547. [PMID: 33707436 PMCID: PMC7952726 DOI: 10.1038/s41467-021-21685-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
Hypertension, exercise, and pregnancy are common triggers of cardiac remodeling, which occurs primarily through the hypertrophy of individual cardiomyocytes. During hypertrophy, stress-induced signal transduction increases cardiomyocyte transcription and translation, which promotes the addition of new contractile units through poorly understood mechanisms. The cardiomyocyte microtubule network is also implicated in hypertrophy, but via an unknown role. Here, we show that microtubules are indispensable for cardiac growth via spatiotemporal control of the translational machinery. We find that the microtubule motor Kinesin-1 distributes mRNAs and ribosomes along microtubule tracks to discrete domains within the cardiomyocyte. Upon hypertrophic stimulation, microtubules redistribute mRNAs and new protein synthesis to sites of growth at the cell periphery. If the microtubule network is disrupted, mRNAs and ribosomes collapse around the nucleus, which results in mislocalized protein synthesis, the rapid degradation of new proteins, and a failure of growth, despite normally increased translation rates. Together, these data indicate that mRNAs and ribosomes are actively transported to specific sites to facilitate local translation and assembly of contractile units, and suggest that properly localized translation – and not simply translation rate – is a critical determinant of cardiac hypertrophy. In this work, we find that microtubule based-transport is essential to couple augmented transcription and translation to productive cardiomyocyte growth during cardiac stress. New contractile units are required during cardiac hypertrophy, though it remains unclear precisely where and how these new sarcomeres are added. Here the authors reveal that in the heart, microtubules spatiotemporally regulate mRNAs and ribosomes to build new sarcomeres, a role which is essential for growth.
Collapse
|
6
|
Schuldt M, Pei J, Harakalova M, Dorsch LM, Schlossarek S, Mokry M, Knol JC, Pham TV, Schelfhorst T, Piersma SR, Dos Remedios C, Dalinghaus M, Michels M, Asselbergs FW, Moutin MJ, Carrier L, Jimenez CR, van der Velden J, Kuster DWD. Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy. Circ Heart Fail 2021; 14:e007022. [PMID: 33430602 PMCID: PMC7819533 DOI: 10.1161/circheartfailure.120.007022] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital (M. Morky), University Medical Center Utrecht, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Tim Schelfhorst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Cris Dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Australia (C.d.R.)
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology (M.D.), Erasmus Medical Center Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thorax Center (M. Michels), Erasmus Medical Center Rotterdam, The Netherlands
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.), University College London, United Kingdom.,Health Data Research UK and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Marie-Jo Moutin
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, Grenoble, France (M.-J.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| |
Collapse
|
7
|
Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 2019; 244:1255-1272. [PMID: 31398994 DOI: 10.1177/1535370219868960] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are large (∼40,000 µm3), rod-shaped muscle cells that provide the working force behind each heartbeat. These highly structured cells are packed with dense cytoskeletal networks that can be divided into two groups—the contractile (i.e. sarcomeric) cytoskeleton that consists of filamentous actin-myosin arrays organized into myofibrils, and the non-sarcomeric cytoskeleton, which is composed of β- and γ-actin, microtubules, and intermediate filaments. Together, microtubules and intermediate filaments form a cross-linked scaffold, and these networks are responsible for the delivery of intracellular cargo, the transmission of mechanical signals, the shaping of membrane systems, and the organization of myofibrils and organelles. Microtubules are extensively altered as part of both adaptive and pathological cardiac remodeling, which has diverse ramifications for the structure and function of the cardiomyocyte. In heart failure, the proliferation and post-translational modification of the microtubule network is linked to a number of maladaptive processes, including the mechanical impediment of cardiomyocyte contraction and relaxation. This raises the possibility that reversing microtubule alterations could improve cardiac performance, yet therapeutic efforts will strongly benefit from a deeper understanding of basic microtubule biology in the heart. The aim of this review is to summarize the known physiological roles of the cardiomyocyte microtubule network, the consequences of its pathological remodeling, and to highlight the open and intriguing questions regarding cardiac microtubules. Impact statement Advancements in cell biological and biophysical approaches and super-resolution imaging have greatly broadened our view of tubulin biology over the last decade. In the heart, microtubules and microtubule-based transport help to organize and maintain key structures within the cardiomyocyte, including the sarcomere, intercalated disc, protein clearance machinery and transverse-tubule and sarcoplasmic reticulum membranes. It has become increasingly clear that post translational regulation of microtubules is a key determinant of their sub-cellular functionality. Alterations in microtubule network density, stability, and post-translational modifications are hallmarks of pathological cardiac remodeling, and modified microtubules can directly impede cardiomyocyte contractile function in various forms of heart disease. This review summarizes the functional roles and multi-leveled regulation of the cardiac microtubule cytoskeleton and highlights how refined experimental techniques are shedding mechanistic clarity on the regionally specified roles of microtubules in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Rivaud MR, Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Rothenberg E, Bezzina CR, Delmar M, Remme CA. Sodium Channel Remodeling in Subcellular Microdomains of Murine Failing Cardiomyocytes. J Am Heart Assoc 2017; 6:e007622. [PMID: 29222390 PMCID: PMC5779058 DOI: 10.1161/jaha.117.007622] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/13/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cardiac sodium channel (NaV1.5) dysfunction contributes to arrhythmogenesis during pathophysiological conditions. Nav1.5 localizes to distinct subcellular microdomains within the cardiomyocyte, where it associates with region-specific proteins, yielding complexes whose function is location specific. We herein investigated sodium channel remodeling within distinct cardiomyocyte microdomains during heart failure. METHODS AND RESULTS Mice were subjected to 6 weeks of transverse aortic constriction (TAC; n=32) to induce heart failure. Sham-operated on mice were used as controls (n=20). TAC led to reduced left ventricular ejection fraction, QRS prolongation, increased heart mass, and upregulation of prohypertrophic genes. Whole-cell sodium current (INa) density was decreased by 30% in TAC versus sham-operated on cardiomyocytes. On macropatch analysis, INa in TAC cardiomyocytes was reduced by 50% at the lateral membrane (LM) and by 40% at the intercalated disc. Electron microscopy and scanning ion conductance microscopy revealed remodeling of the intercalated disc (replacement of [inter-]plicate regions by large foldings) and LM (less identifiable T tubules and reduced Z-groove ratios). Using scanning ion conductance microscopy, cell-attached recordings in LM subdomains revealed decreased INa and increased late openings specifically at the crest of TAC cardiomyocytes, but not in groove/T tubules. Failing cardiomyocytes displayed a denser, but more stable, microtubule network (demonstrated by increased α-tubulin and Glu-tubulin expression). Superresolution microscopy showed reduced average NaV1.5 cluster size at the LM of TAC cells, in line with reduced INa. CONCLUSIONS Heart failure induces structural remodeling of the intercalated disc, LM, and microtubule network in cardiomyocytes. These adaptations are accompanied by alterations in NaV1.5 clustering and INa within distinct subcellular microdomains of failing cardiomyocytes.
Collapse
Affiliation(s)
- Mathilde R Rivaud
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands
- Division of Cardiology, New York University Medical Center, New York, NY
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Xianming Lin
- Division of Cardiology, New York University Medical Center, New York, NY
| | | | - Mingliang Zhang
- Division of Cardiology, New York University Medical Center, New York, NY
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU-School of Medicine, New York, NY
| | - Connie R Bezzina
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Mario Delmar
- Division of Cardiology, New York University Medical Center, New York, NY
| | - Carol Ann Remme
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
9
|
Lemcke H, Steinhoff G, David R. Gap junctional shuttling of miRNA — A novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal 2015; 27:2506-14. [DOI: 10.1016/j.cellsig.2015.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023]
|
10
|
|
11
|
Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y, Bache RJ. AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2013; 304:H749-58. [PMID: 23316058 DOI: 10.1152/ajpheart.00935.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell hypertrophy requires increased protein synthesis and expansion of the cytoskeletal networks that support cell enlargement. AMPK limits anabolic processes, such as protein synthesis, when energy supply is insufficient, but its role in cytoskeletal remodeling is not known. Here, we examined the influence of AMPK in cytoskeletal remodeling during cardiomyocyte hypertrophy, a clinically relevant condition in which cardiomyocytes enlarge but do not divide. In neonatal cardiomyocytes, activation of AMPK with 5-aminoimidazole carboxamide ribonucleotide (AICAR) or expression of constitutively active AMPK (CA-AMPK) attenuated cell area increase by hypertrophic stimuli (phenylephrine). AMPK activation had little effect on intermediate filaments or myofilaments but dramatically reduced microtubule stability, as measured by detyrosinated tubulin levels and cytoskeletal tubulin accumulation. Importantly, low-level AMPK activation limited cell expansion and microtubule growth independent of mTORC1 or protein synthesis repression, identifying a new mechanism by which AMPK regulates cell growth. Mechanistically, AICAR treatment increased Ser-915 phosphorylation of microtubule-associated protein 4 (MAP4), which reduces affinity for tubulin and prevents stabilization of microtubules (MTs). RNAi knockdown of MAP4 confirmed its critical role in cardiomyocyte MT stabilization. In support of a pathophysiological role for AMPK regulation of cardiac microtubules, AMPK α2 KO mice exposed to pressure overload (transverse aortic constriction; TAC) demonstrated reduced MAP4 phosphorylation and increased microtubule accumulation that correlated with the severity of contractile dysfunction. Together, our data identify the microtubule cytoskeleton as a sensitive target of AMPK activity, and the data suggest a novel role for AMPK in limiting accumulation and densification of microtubules that occurs in response to hypertrophic stress.
Collapse
Affiliation(s)
- John T Fassett
- Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Priester C, Braude JP, Morton LC, Kinsey ST, Watanabe WO, Dillaman RM. Ring bands in fish skeletal muscle: reorienting the myofibrils and microtubule cytoskeleton within a single cell. J Morphol 2012; 273:1246-56. [PMID: 22806937 DOI: 10.1002/jmor.20055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/04/2023]
Abstract
Skeletal muscle cells (fibers) contract by shortening their parallel subunits, the myofibrils. Here we show a novel pattern of myofibril orientation in white muscle fibers of large black sea bass, Centropristis striata. Up to 48% of the white fibers in fish >1168 g had peripheral myofibrils undergoing an ∼90(o) shift in orientation. The resultant ring band wrapped the middle of the muscle fibers and was easily detected with polarized light microscopy. Transmission electron microscopy showed that the reoriented myofibrils shared the cytoplasm with the central longitudinal myofibrils. A microtubule network seen throughout the fibers surrounded nuclei but was mostly parallel to the long-axis of the myofibrils. In the ring band portion of the fibers the microtubule cytoskeleton also shifted orientation. Sarcolemmal staining with anti-synapsin was the same in fibers with or without ring bands, suggesting that fibers with ring bands have normal innervation and contractile function. The ring bands appear to be related to body-mass or age, not fiber size, and also vary along the body, being more frequent at the midpoint of the anteroposterior axis. Similar structures have been reported in different taxa and appear to be associated with hypercontraction of fibers not attached to a rigid structure (bone) or with fibers with unusually weak links between the sarcolemma and cytoskeleton, as in muscular dystrophy. Fish muscle fibers are attached to myosepta, which are flexible and may allow for fibers to hypercontract and thus form ring bands. The consequences of such a ring band pattern might be to restrict the further expansion of the sarcolemma and protect it from further mechanical stress.
Collapse
Affiliation(s)
- Carolina Priester
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Jimenez AG, Kinsey ST. Nuclear DNA content variation associated with muscle fiber hypertrophic growth in fishes. J Comp Physiol B 2011; 182:531-40. [DOI: 10.1007/s00360-011-0635-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
|
14
|
Cheng G, Kasiganesan H, Baicu CF, Wallenborn JG, Kuppuswamy D, Cooper G. Cytoskeletal role in protection of the failing heart by β-adrenergic blockade. Am J Physiol Heart Circ Physiol 2011; 302:H675-87. [PMID: 22081703 DOI: 10.1152/ajpheart.00867.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Formation of a dense microtubule network that impedes cardiac contraction and intracellular transport occurs in severe pressure overload hypertrophy. This process is highly dynamic, since microtubule depolymerization causes striking improvement in contractile function. A molecular etiology for this cytoskeletal alteration has been defined in terms of type 1 and type 2A phosphatase-dependent site-specific dephosphorylation of the predominant myocardial microtubule-associated protein (MAP)4, which then decorates and stabilizes microtubules. This persistent phosphatase activation is dependent upon ongoing upstream activity of p21-activated kinase-1, or Pak1. Because cardiac β-adrenergic activity is markedly and continuously increased in decompensated hypertrophy, and because β-adrenergic activation of cardiac Pak1 and phosphatases has been demonstrated, we asked here whether the highly maladaptive cardiac microtubule phenotype seen in pathological hypertrophy is based on β-adrenergic overdrive and thus could be reversed by β-adrenergic blockade. The data in this study, which were designed to answer this question, show that such is the case; that is, β(1)- (but not β(2)-) adrenergic input activates this pathway, which consists of Pak1 activation, increased phosphatase activity, MAP4 dephosphorylation, and thus the stabilization of a dense microtubule network. These data were gathered in a feline model of severe right ventricular (RV) pressure overload hypertrophy in response to tight pulmonary artery banding (PAB) in which a stable, twofold increase in RV mass is reached by 2 wk after pressure overloading. After 2 wk of hypertrophy induction, these PAB cats during the following 2 wk either had no further treatment or had β-adrenergic blockade. The pathological microtubule phenotype and the severe RV cellular contractile dysfunction otherwise seen in this model of RV hypertrophy (PAB No Treatment) was reversed in the treated (PAB β-Blockade) cats. Thus these data provide both a specific etiology and a specific remedy for the abnormal microtubule network found in some forms of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Guangmao Cheng
- Gazes Cardiac Research Institute, PO Box 250773, Medical Univ. of South Carolina, 114 Doughty St., Charleston, SC 29403, USA
| | | | | | | | | | | |
Collapse
|
15
|
Priester C, Morton LC, Kinsey ST, Watanabe WO, Dillaman RM. Growth patterns and nuclear distribution in white muscle fibers from black sea bass, Centropristis striata: evidence for the influence of diffusion. ACTA ACUST UNITED AC 2011; 214:1230-9. [PMID: 21430198 DOI: 10.1242/jeb.053199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study investigated the influence of fiber size on the distribution of nuclei and fiber growth patterns in white muscle of black sea bass, Centropristis striata, ranging in body mass from 0.45 to 4840 g. Nuclei were counted in 1 μm optical sections using confocal microscopy of DAPIand Acridine-Orange-stained muscle fibers. Mean fiber diameter increased from 36±0.87 μm in the 0.45 g fish to 280±5.47 μm in the 1885 g fish. Growth beyond 2000 g triggered the recruitment of smaller fibers, thus significantly reducing mean fiber diameter. Nuclei in the smaller fibers were exclusively subsarcolemmal (SS), whereas in larger fibers nuclei were more numerous and included intermyofibrillar (IM) nuclei. There was a significant effect of body mass on nuclear domain size (F=118.71, d.f.=3, P<0.0001), which increased to a maximum in fish of medium size (282-1885 g) and then decreased in large fish (>2000 g). Although an increase in the number of nuclei during fiber growth can help preserve the myonuclear domain, the appearance of IM nuclei during hypertrophic growth seems to be aimed at maintaining short effective diffusion distances for nuclear substrates and products. If only SS nuclei were present throughout growth, the diffusion distance would increase in proportion to the radius of the fibers. These observations are consistent with the hypothesis that changes in nuclear distribution and fiber growth patterns are mechanisms for avoiding diffusion limitation during animal growth.
Collapse
Affiliation(s)
- Carolina Priester
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA.
| | | | | | | | | |
Collapse
|
16
|
The role of molecular microtubule motors and the microtubule cytoskeleton in stress granule dynamics. Int J Cell Biol 2011; 2011:939848. [PMID: 21760798 PMCID: PMC3132543 DOI: 10.1155/2011/939848] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.
Collapse
|
17
|
Kinsey ST, Locke BR, Dillaman RM. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle. J Exp Biol 2011; 214:263-74. [PMID: 21177946 PMCID: PMC3008633 DOI: 10.1242/jeb.047985] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 12/23/2022]
Abstract
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.
Collapse
Affiliation(s)
- Stephen T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915, USA.
| | | | | |
Collapse
|
18
|
Cheng G, Takahashi M, Shunmugavel A, Wallenborn JG, DePaoli-Roach AA, Gergs U, Neumann J, Kuppuswamy D, Menick DR, Cooper G. Basis for MAP4 dephosphorylation-related microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 2010; 285:38125-40. [PMID: 20889984 DOI: 10.1074/jbc.m110.148650] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased activity of Ser/Thr protein phosphatases types 1 (PP1) and 2A (PP2A) during maladaptive cardiac hypertrophy contributes to cardiac dysfunction and eventual failure, partly through effects on calcium metabolism. A second maladaptive feature of pressure overload cardiac hypertrophy that instead leads to heart failure by interfering with cardiac contraction and intracellular transport is a dense microtubule network stabilized by decoration with microtubule-associated protein 4 (MAP4). In an earlier study we showed that the major determinant of MAP4-microtubule affinity, and thus microtubule network density and stability, is site-specific MAP4 dephosphorylation at Ser-924 and to a lesser extent at Ser-1056; this was found to be prominent in hypertrophied myocardium. Therefore, in seeking the etiology of this MAP4 dephosphorylation, we looked here at PP2A and PP1, as well as the upstream p21-activated kinase 1, in maladaptive pressure overload cardiac hypertrophy. The activity of each was increased persistently during maladaptive hypertrophy, and overexpression of PP2A or PP1 in normal hearts reproduced both the microtubule network phenotype and the dephosphorylation of MAP4 Ser-924 and Ser-1056 seen in hypertrophy. Given the major microtubule-based abnormalities of contractile and transport function in maladaptive hypertrophy, these findings constitute a second important mechanism for phosphatase-dependent pathology in the hypertrophied and failing heart.
Collapse
Affiliation(s)
- Guangmao Cheng
- Gazes Cardiac Research Institute, Cardiology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chinnakkannu P, Samanna V, Cheng G, Ablonczy Z, Baicu CF, Bethard JR, Menick DR, Kuppuswamy D, Cooper G. Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 2010; 285:21837-48. [PMID: 20436166 DOI: 10.1074/jbc.m110.120709] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In severe pressure overload-induced cardiac hypertrophy, a dense, stabilized microtubule network forms that interferes with cardiocyte contraction and microtubule-based transport. This is associated with persistent transcriptional up-regulation of cardiac alpha- and beta-tubulin and microtubule-stabilizing microtubule-associated protein 4 (MAP4). There is also extensive microtubule decoration by MAP4, suggesting greater MAP4 affinity for microtubules. Because the major determinant of this affinity is site-specific MAP4 dephosphorylation, we characterized this in hypertrophied myocardium and then assessed the functional significance of each dephosphorylation site found by mimicking it in normal cardiocytes. We first isolated MAP4 from normal and pressure overload-hypertrophied feline myocardium; volume-overloaded myocardium, which has an equal degree and duration of hypertrophy but normal functional and cytoskeletal properties, served as a control for any nonspecific growth-related effects. After cloning cDNA-encoding feline MAP4 and obtaining its deduced amino acid sequence, we characterized by mass spectrometry any site-specific MAP4 dephosphorylation. Solely in pressure overload-hypertrophied myocardium, we identified striking MAP4 dephosphorylation at Ser-472 in the MAP4 N-terminal projection domain and at Ser-924 and Ser-1056 in the assembly-promoting region of the C-terminal microtubule-binding domain. Site-directed mutagenesis of MAP4 cDNA was then used to switch each serine to non-phosphorylatable alanine. Wild-type and mutated cDNAs were used to construct adenoviruses; microtubule network density, stability, and MAP4 decoration were assessed in normal cardiocytes following an equivalent level of MAP4 expression. The Ser-924 --> Ala MAP4 mutant produced a microtubule phenotype indistinguishable from that seen in pressure overload hypertrophy, such that Ser-924 MAP4 dephosphorylation during pressure overload hypertrophy may be central to this cytoskeletal abnormality.
Collapse
Affiliation(s)
- Panneerselvam Chinnakkannu
- Cardiology Division, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lomakin AY, Nadezhdina ES. Dynamics of nonmembranous cell components: Role of active transport along microtubules. BIOCHEMISTRY (MOSCOW) 2010; 75:7-18. [DOI: 10.1134/s0006297910010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Nadezhdina ES, Lomakin AJ, Shpilman AA, Chudinova EM, Ivanov PA. Microtubules govern stress granule mobility and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:361-71. [PMID: 20036288 DOI: 10.1016/j.bbamcr.2009.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 12/04/2009] [Accepted: 12/16/2009] [Indexed: 11/17/2022]
Abstract
Stress granules (SGs) are ribonucleoprotein (RNP)-containing assemblies that are formed in the cytoplasm in response to stress. Previously, we demonstrated that microtubule depolymerization inhibited SG formation. Here, we show that arsenate-induced SGs move throughout the cytoplasm in a microtubule-dependent manner, and microtubules are required for SG disassembly, but not for SG persistence. Analysis of SG movement revealed that SGs exhibited obstructed diffusion on an average, though sometimes SGs demonstrated rapid displacements. Microtubule depolymerization did not influence preformed SG number and size, but significantly reduced the average velocity of SG movement, the frequency of quick movement events, and the apparent diffusion coefficient of SGs. Actin filament disruption had no effect on the SG motility. In cycloheximide-treated cells SGs dissociated into constituent parts that then dissolved within the cytoplasm. Microtubule depolymerization inhibited cycloheximide-induced SG disassembly. However, microtubule depolymerization did not influence the dynamics of poly(A)-binding protein (PABP) in SGs, according to FRAP results. We suggest that the increase of SG size is facilitated by the transport of smaller SGs along microtubules with subsequent fusion of them. At least some protein components of SGs can exchange with the cytoplasmic pool independently of microtubules.
Collapse
Affiliation(s)
- Elena S Nadezhdina
- Institute of Protein Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Fassett JT, Xu X, Hu X, Zhu G, French J, Chen Y, Bache RJ. Adenosine regulation of microtubule dynamics in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2009; 297:H523-32. [PMID: 19525375 DOI: 10.1152/ajpheart.00462.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated alpha-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.
Collapse
Affiliation(s)
- John T Fassett
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
|