1
|
Wu XM, Qian C, Jiang F, Bao YX, Qian ZM, Ke Y. The involvement of nuclear factor-κB in astroprotection against ischemia-reperfusion injury by ischemia-preconditioned neurons. J Cell Physiol 2021; 236:4515-4527. [PMID: 33442879 DOI: 10.1002/jcp.30168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Ischemic preconditioned (IP) neurons protect astrocytes against ischemia/reperfusion (I/R)-induced injury by inhibiting oxidative stress. However, the relevant mechanisms are unknown. Based on the role of nuclear factor-κB (NF-κB) in cell survival and adaption to oxidative stress, we hypothesized that NF-κB might be associated with astroprotection induced by IP neurons via upregulation of antioxidant enzymes. Here, we investigated the effects of IP neurons on NF-κB activation, cell viability, reactive oxygen species (ROS), expression of antioxidant enzymes, erythropoietin (EPO), and tumor necrosis factor α (TNF-α), in the presence or absence of BAY11-7082 (an NF-κB inhibitor), anti-EPO, and anti-TNF-α antibodies, in astrocytes treated with or without I/R. We found that IP neurons could keep NF-κB activation at a relatively higher but beneficial level, and in turn, upregulated the activity of antioxidant enzymes and hence enhanced cell viability and reduced ROS in I/R treated astrocytes. The results collectively indicated that IP neurons are able to significantly inhibit the I/R-induced NF-κB overactivation, probably via EPO and TNF-α, being essential for IP neuron-induced astroprotection under the conditions of I/R. We concluded that NF-κB-mediated antioxidative stress is one of the mechanisms by which IP neurons protect astrocytes against I/R injury.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Fei Jiang
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
2
|
Li M, Xu S, Geng Y, Sun L, Wang R, Yan Y, Wang H, Li Y, Yi Q, Zhang Y, Hao J, Deng C, Li W, Xue L. The protective effects of L-carnitine on myocardial ischaemia-reperfusion injury in patients with rheumatic valvular heart disease undergoing CPB surgery are associated with the suppression of NF-κB pathway and the activation of Nrf2 pathway. Clin Exp Pharmacol Physiol 2019; 46:1001-1012. [PMID: 31393619 DOI: 10.1111/1440-1681.13155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
Abstract
Myocardial ischaemia-reperfusion injury (MIRI) is a main pathophysiologic change following CPB surgery. L-carnitine, a natural amino acid, is able to transport fatty acids for generating energy and has a protective effect on MIRI. We aim to investigate the protective effect of L-carnitine on MIRI in patients with rheumatic valvular heart disease (RVHD) performed CPB surgical operation and the underlying mechanism. In this study, patients were randomized to three groups. L-carnitine was added to the crystalloid cardioplegic solution for experimental group 1 (6 g/L) and experimental group 2 (12 g/L), whereas no L-carnitine was used in the control group. Our results showed that L-carnitine significantly attenuated myocardial injury after surgery in these patients. L-carnitine decreased serum markers of myocardial injury including CK-MB, cTnI, hs-cTnT and IMA. L-carnitine increased left ventricular ejection fraction (LVEF) but reduced wall motion score index (WMSI) after operation. L-carnitine also inhibited myeloperoxidase (MPO) activity and inflammatory cytokines in the myocardium of patients after unclamping the aorta. Additionally, L-carnitine increased levels of superoxide dismutase (SOD) and catalase (CAT) while decreased levels of malondialdehyde (MDA) and protein carbonyl content in the myocardium of patients after unclamping the aorta. Moreover, L-carnitine suppressed the activation of nuclear factor kappa B (NF-κB) and activated nuclear factor erythroid 2-related factor 2 (Nrf2). There was also no significant difference in these indices between two experimental groups after unclamping the aorta. Taken together, L-carnitine had a protective effect against CPB-induced MIRI in patients with RVHD, which might be related to its modulation of NF-κB and Nrf2 activities.
Collapse
Affiliation(s)
- Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Suochun Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Ruili Wang
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Haichen Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yongxin Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Qiuyue Yi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yongjian Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Junjun Hao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Wen Li
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Li Xue
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Kunst G, Klein AA. Peri-operative anaesthetic myocardial preconditioning and protection - cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia 2015; 70:467-82. [PMID: 25764404 PMCID: PMC4402000 DOI: 10.1111/anae.12975] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
Preconditioning has been shown to reduce myocardial damage caused by ischaemia–reperfusion injury peri-operatively. Volatile anaesthetic agents have the potential to provide myocardial protection by anaesthetic preconditioning and, in addition, they also mediate renal and cerebral protection. A number of proof-of-concept trials have confirmed that the experimental evidence can be translated into clinical practice with regard to postoperative markers of myocardial injury; however, this effect has not been ubiquitous. The clinical trials published to date have also been too small to investigate clinical outcome and mortality. Data from recent meta-analyses in cardiac anaesthesia are also not conclusive regarding intra-operative volatile anaesthesia. These inconclusive clinical results have led to great variability currently in the type of anaesthetic agent used during cardiac surgery. This review summarises experimentally proposed mechanisms of anaesthetic preconditioning, and assesses randomised controlled clinical trials in cardiac anaesthesia that have been aimed at translating experimental results into the clinical setting.
Collapse
Affiliation(s)
- G Kunst
- Department of Anaesthetics, King's College Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
4
|
Wang C, Hu SM, Xie H, Qiao SG, Liu H, Liu CF. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats. ACTA ACUST UNITED AC 2015; 48:528-36. [PMID: 25831209 PMCID: PMC4470312 DOI: 10.1590/1414-431x20143876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/07/2014] [Indexed: 01/23/2023]
Abstract
This study aimed to determine the role of mitochondrial adenosine
triphosphate-sensitive potassium (mitoKATP) channels and protein kinase C
(PKC)-ε in the delayed protective effects of sevoflurane preconditioning using
Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts
were randomly divided into 6 groups (n=9). The rats were exposed for 60 min to 2.5%
sevoflurane (the second window of protection group, SWOP group) or 33% oxygen
inhalation (I/R group) 24 h before coronary occlusion. The control group (CON) and
the sevoflurane group (SEVO) group were exposed to 33% oxygen and 2.5% sevoflurane
for 60 min, respectively, without coronary occlusion. The mitoKATP channel
inhibitor 5-hydroxydecanoate (5-HD) was given 30 min before sevoflurane
preconditioning (5-HD+SWOP group). Cardiac function indices, infarct sizes, serum
cardiac troponin I (cTnI) concentrations, and the expression levels of phosphorylated
PKC-ε (p-PKC-ε) and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε
expression was upregulated, caspase-8 expression was downregulated, cTnI
concentrations were decreased, and the infarcts were significantly smaller
(P<0.05) in the SWOP group compared with the I/R group. Cardiac function was
worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated,
cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group
(P<0.05) compared with the SWOP group. The results suggest that
mitoKATP channels are involved in the myocardial protective effects of
sevoflurane in preconditioning against I/R injury, by regulating PKC-ε
phosphorylation before ischemia, and by downregulating caspase-8 during
reperfusion.
Collapse
Affiliation(s)
- C Wang
- Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou, China
| | - S M Hu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - H Xie
- Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou, China
| | - S G Qiao
- Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou, China
| | - H Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Davis, CA, USA
| | - C F Liu
- Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Michaelis KA, Agboke F, Liu T, Han K, Muthu M, Galambos C, Yang G, Dennery PA, Wright CJ. IκBβ-mediated NF-κB activation confers protection against hyperoxic lung injury. Am J Respir Cell Mol Biol 2014; 50:429-38. [PMID: 24066808 DOI: 10.1165/rcmb.2013-0303oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Supplemental oxygen is frequently used in an attempt to improve oxygen delivery; however, prolonged exposure results in damage to the pulmonary endothelium and epithelium. Although NF-κB has been identified as a redox-responsive transcription factor, whether NF-κB activation exacerbates or attenuates hyperoxic lung injury is unclear. We determined that sustained NF-κB activity mediated by IκBβ attenuates lung injury and prevents mortality in adult mice exposed to greater than 95% O2. Adult wild-type mice demonstrated evidence of alveolar protein leak and 100% mortality by 6 days of hyperoxic exposure, and showed NF-κB nuclear translocation that terminated after 48 hours. Furthermore, these mice showed increased expression of NF-κB-regulated proinflammatory and proapoptotic cytokines. In contrast, mice overexpressing the NF-κB inhibitory protein, IκBβ (AKBI), demonstrated significant resistance to hyperoxic lung injury, with 50% surviving through 8 days of exposure. This was associated with NF-κB nuclear translocation that persisted through 96 hours of exposure. Although induction of NF-κB-regulated proinflammatory cytokines was not different between wild-type and AKBI mice, significant up-regulation of antiapoptotic proteins (BCL-2, BCL-XL) was found exclusively in AKBI mice. We conclude that sustained NF-κB activity mediated by IκBβ protects against hyperoxic lung injury through increased expression of antiapoptotic genes.
Collapse
Affiliation(s)
- Katherine A Michaelis
- 1 Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
McKenna S, Michaelis KA, Agboke F, Liu T, Han K, Yang G, Dennery PA, Wright CJ. Sustained hyperoxia-induced NF-κB activation improves survival and preserves lung development in neonatal mice. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1078-89. [PMID: 24748603 DOI: 10.1152/ajplung.00001.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxygen toxicity contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Neonatal mice exposed to hyperoxia develop a simplified lung structure that resembles BPD. Sustained activation of the transcription factor NF-κB and increased expression of protective target genes attenuate hyperoxia-induced mortality in adults. However, the effect of enhancing hyperoxia-induced NF-κB activity on lung injury and development in neonatal animals is unknown. We performed this study to determine whether sustained NF-κB activation, mediated through IκBβ overexpression, preserves lung development in neonatal animals exposed to hyperoxia. Newborn wild-type (WT) and IκBβ-overexpressing (AKBI) mice were exposed to hyperoxia (>95%) or room air from day of life (DOL) 0-14, after which all animals were kept in room air. Survival curves were generated through DOL 14. Lung development was assessed using radial alveolar count (RAC) and mean linear intercept (MLI) at DOL 3 and 28 and pulmonary vessel density at DOL 28. Lung tissue was collected, and NF-κB activity was assessed using Western blot for IκB degradation and NF-κB nuclear translocation. WT mice demonstrated 80% mortality through 14 days of exposure. In contrast, AKBI mice demonstrated 60% survival. Decreased RAC, increased MLI, and pulmonary vessel density caused by hyperoxia in WT mice were significantly attenuated in AKBI mice. These findings were associated with early and sustained NF-κB activation and expression of cytoprotective target genes, including vascular endothelial growth factor receptor 2. We conclude that sustained hyperoxia-induced NF-κB activation improves neonatal survival and preserves lung development. Potentiating early NF-κB activity after hyperoxic exposure may represent a therapeutic intervention to prevent BPD.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine A Michaelis
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Fadeke Agboke
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thanh Liu
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Kristie Han
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Guang Yang
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phyllis A Dennery
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado;
| |
Collapse
|
7
|
Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J Anesth 2014; 28:740-58. [PMID: 24610035 DOI: 10.1007/s00540-014-1805-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/04/2014] [Indexed: 01/12/2023]
Abstract
Inhalational anesthetics-induced organoprotection has received much research interest and has been consistently demonstrated in different models of organ damage, in particular, ischemia-reperfusion injury, which features prominently in the perioperative period and in cardiovascular events. The cellular mechanisms accountable for effective organoprotection over heart, brain, kidneys, and other vital organs have been elucidated in turn in the past two decades, including receptor stimulations, second-messenger signal relay and amplification, end-effector activation, and transcriptional modification. This review summarizes the signaling pathways and the molecular participants in inhalational anesthetics-mediated organ protection published in the current literature, comparing and contrasting the 'preconditioning' and 'postconditioning' phenomena, and the similarities and differences in mechanisms between organs. The salubrious effects of inhalational anesthetics on vital organs, if reproducible in human subjects in clinical settings, would be of exceptional clinical importance, but clinical studies with better design and execution are prerequisites for valid conclusions to be made. Xenon as the emerging inhalational anesthetic, and its organoprotective efficacy, mechanism, and relative advantages over other anesthetics, are also discussed.
Collapse
|
8
|
Liu Q, Wu H, Chim SM, Zhou L, Zhao J, Feng H, Wei Q, Wang Q, Zheng MH, Tan RX, Gu Q, Xu J, Pavlos N, Tickner J, Xu J. SC-514, a selective inhibitor of IKKβ attenuates RANKL-induced osteoclastogenesis and NF-κB activation. Biochem Pharmacol 2013; 86:1775-83. [PMID: 24091016 DOI: 10.1016/j.bcp.2013.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023]
Abstract
The RANKL-induced NF-κB signaling pathway is essential for osteoclastogenesis. This study aims to identify specific inhibitors targeting NF-κB signaling pathway, which might serve as useful small molecule inhibitors for the treatment and alleviation of osteoclast-mediated bone lytic diseases. By screening for compounds that selectively inhibit RANKL-induced NF-κB activation in RAW264.7 cells as monitored by luciferase reporter gene assay, we identified SC-514, a specific inhibitor of IKKβ, as a candidate compound targeting osteoclastogenesis. SC-514 dose-dependently inhibits RANKL-induced osteoclastogenesis with an IC50 of <5μM. At high concentrations, SC-514 (≥12.5μM) induced apoptosis and caspase 3 activation in RAW264.7 cells. Moreover, SC-514 specifically suppressed NF-κB activity owing to delayed RANKL-induced degradation of IκBα and inhibition of p65 nuclear translocation. Taken together, our results indicate that SC-514 impairs RANKL-induced osteoclastogenesis and NF-κB activation. Thus, targeting IKKβ by SC-514 presents as a potential treatment for osteoclast-related disorders such as osteoporosis and cancer-induced bone loss.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley 6009, Western Australia, Australia; Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Desflurane preconditioning induces oscillation of NF-κB in human umbilical vein endothelial cells. PLoS One 2013; 8:e66576. [PMID: 23799118 PMCID: PMC3684570 DOI: 10.1371/journal.pone.0066576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/07/2013] [Indexed: 12/02/2022] Open
Abstract
Background Nuclear factor kappa B (NF-κB) has been implicated in anesthetic preconditioning (APC) induced protection against anoxia and reoxygenation (A/R) injury. The authors hypothesized that desflurane preconditioning would induce NF-κB oscillation and prevent endothelial cells apoptosis. Methods A human umbilical vein endothelial cells (HUVECs) A/R injury model was used. A 30 minute desflurane treatment was initiated before anoxia. NF-κB inhibitor BAY11-7082 was administered in some experiments before desflurane preconditioning. Cells apoptosis was analyzed by flow cytometry using annexin V–fluorescein isothiocyanate staining and cell viability was evaluated by modified tertrozalium salt (MTT) assay. The cellular superoxide dismutases (SOD) activitiy were tested by water-soluble tetrazolium salt (WST-1) assay. NF-κB p65 subunit nuclear translocation was detected by immunofluorescence staining. Expression of inhibitor of NF-κB-α (IκBα), NF-κB p65 and cellular inhibitor of apoptosis 1 (c-IAP1), B-cell leukemia/lymphoma 2 (Bcl-2), cysteine containing aspartate specific protease 3 (caspases-3) and second mitochondrial-derived activator of caspase (SMAC/DIABLO) were determined by western blot. Results Desflurane preconditioning caused phosphorylation and nuclear translocation of NF-κB before anoxia, on the contrary, induced the synthesis of IκBα and inhibition of NF-κB after reoxygenation. Desflurane preconditioning up-regulated the expression of c-IAP1 and Bcl-2, blocked the cleavage of caspase-3 and reduced SMAC release, and decreased the cell death of HUVECs after A/R. The protective effect was abolished by BAY11-7082 administered before desflurane. Conclusions The results demonstrated that desflurane activated NF-κB during the preconditioning period and inhibited excessive activation of NF-κB in reperfusion. And the oscillation of NF-κB induced by desflurane preconditioning finally up-regulated antiapoptotic proteins expression and protected endothelial cells against A/R.
Collapse
|
10
|
Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-κB and upregulation of autophagy. J Anesth 2012; 27:251-60. [PMID: 23143013 DOI: 10.1007/s00540-012-1494-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE Delayed volatile anesthetic preconditioning (APC) can protect against myocardial ischemia/reperfusion (I/R) injury; the delayed phase is called the second window of protection (SWOP), but the underlying mechanism is unclear. Nuclear factor-κB (NF-κB) is involved in the myocardial protection conferred by APC in the acute phase; autophagy has been reported to confer apoptosis inhibition and infarction reduction. We hypothesized that APC initiates delayed cardioprotection against I/R injury via the activation of NF-kB and upregulation of autophagy, thus attenuating the inflammatory response and apoptosis METHODS After a rat I/R model was set up, left ventricular samples were obtained before I/R to assess NF-κB-DNA binding activity and microtubule-associated protein 1 light chain 3 (LC3) and cathepsin B protein expression, and to examine autophagosomes with a transmission electron microscope. Infarct size and the expressions of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and caspase-3 were measured at the end of 2-h reperfusion. RESULTS The infarct size was significantly reduced in the SWOP group (30 ± 3 %) when compared with that in the I/R group (47 ± 7 %, P < 0.05), and this finding was associated with increased NF-κB-DNA binding activity and autophagosomes. In addition, the expressions of LC3-II and cathepsin B were also up-regulated, and the expressions of TNF-α, IL-1β, and caspase-3 were attenuated in the SWOP group when compared with the findings in the I/R group. However, this protection was abolished by the administration of parthenolide (PTN) before sevoflurane inhalation, which resulted in an infarct size that was significantly increased (47 ± 5 %, P < 0.05 PTN + SWOP vs. SWOP group). CONCLUSION Delayed APC protected the rat heart from I/R injury. The underlying mechanisms may include NF-κB activation, upregulation of autophagy, and the attenuation of TNF-α, IL-1β, and caspase-3 expressions.
Collapse
|
11
|
Wang Y, Zhang ZZ, Wu Y, Zhan J, He XH, Wang YL. Honokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation. Exp Ther Med 2012; 5:315-319. [PMID: 23251290 PMCID: PMC3523945 DOI: 10.3892/etm.2012.766] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/18/2012] [Indexed: 11/12/2022] Open
Abstract
Honokiol, a potent radical scavenger, has been demonstrated to ameliorate cerebral infarction following ischemia/reperfusion (I/R) injury. However, its effects on myocardial I/R injury remain unclear. The present study aimed to examine the effects of honokiol on myocardial I/R injury and to investigate its potential cardioprotective mechanisms. Sprague-Dawley rats were pretreated with honokiol and exposed to a 30-min myocardial ischemia followed by 2-h coronary reperfusion. Myocardial I/R-induced infarct size and biochemical and histological changes were compared. The expression of nuclear factor κB(NF-κB; p65) was assessed by western blotting. Pretreatment with honokiol significantly reduced infarct size, and serum creatine kinase (CK) and lactate dehydrogenase (LDH) release compared with those in the I/R group following a 2-h reperfusion. The malondialdehyde (MDA) level, myeloperoxidase (MPO) activity, concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-6 and expression level of NF-κB were all reduced by honokiol pretreatment, while honokiol inhibited the decreases in superoxide dismutase (SOD) and catalase (CAT) activities. In addition, less neutrophil infiltration and histopathological damage in the myocardium were observed in the honokiol-pretreated group. These findings indicate that honokiol pretreatment diminished myocardial I/R injury through attenuation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | | | | | | | | | | |
Collapse
|
12
|
Meybohm P, Gruenewald M, Albrecht M, Müller C, Zitta K, Foesel N, Maracke M, Tacke S, Schrezenmeir J, Scholz J, Bein B. Pharmacological postconditioning with sevoflurane after cardiopulmonary resuscitation reduces myocardial dysfunction. Crit Care 2011; 15:R241. [PMID: 22011328 PMCID: PMC3334792 DOI: 10.1186/cc10496] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/07/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022] Open
Abstract
Introduction In this study, we sought to examine whether pharmacological postconditioning with sevoflurane (SEVO) is neuro- and cardioprotective in a pig model of cardiopulmonary resuscitation. Methods Twenty-two pigs were subjected to cardiac arrest. After 8 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started. After successful return of spontaneous circulation (N = 16), animals were randomized to either (1) propofol (CONTROL) anesthesia or (2) SEVO anesthesia for 4 hours. Neurological function was assessed 24 hours after return of spontaneous circulation. The effects on myocardial and cerebral damage, especially on inflammation, apoptosis and tissue remodeling, were studied using cellular and molecular approaches. Results Animals treated with SEVO had lower peak troponin T levels (median [IQR]) (CONTROL vs SEVO = 0.31 pg/mL [0.2 to 0.65] vs 0.14 pg/mL [0.09 to 0.25]; P < 0.05) and improved left ventricular systolic and diastolic function compared to the CONTROL group (P < 0.05). SEVO was associated with a reduction in myocardial IL-1β protein concentrations (0.16 pg/μg total protein [0.14 to 0.17] vs 0.12 pg/μg total protein [0.11 to 0.14]; P < 0.01), a reduction in apoptosis (increased procaspase-3 protein levels (0.94 arbitrary units [0.86 to 1.04] vs 1.18 arbitrary units [1.03 to 1.28]; P < 0.05), increased hypoxia-inducible factor (HIF)-1α protein expression (P < 0.05) and increased activity of matrix metalloproteinase 9 (P < 0.05). SEVO did not, however, affect neurological deficit score or cerebral cellular and molecular pathways. Conclusions SEVO reduced myocardial damage and dysfunction after cardiopulmonary resuscitation in the early postresuscitation period. The reduction was associated with a reduced rate of myocardial proinflammatory cytokine expression, apoptosis, increased HIF-1α expression and increased activity of matrix metalloproteinase 9. Early administration of SEVO may not, however, improve neurological recovery.
Collapse
Affiliation(s)
- Patrick Meybohm
- Department of Anaesthesiology and Intensive Care Medicine, Schleswig-Holstein University Hospital, Campus Kiel, Schwanenweg 21, D-24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mechanisms of chloride in cardiomyocyte anoxia-reoxygenation injury: the involvement of oxidative stress and NF-kappaB activation. Mol Cell Biochem 2011; 355:201-9. [DOI: 10.1007/s11010-011-0855-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
14
|
Lu X, Moore PG, Liu H, Schaefer S. Phosphorylation of ARC is a critical element in the antiapoptotic effect of anesthetic preconditioning. Anesth Analg 2011; 112:525-31. [PMID: 21233493 DOI: 10.1213/ane.0b013e318205689b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Transient exposure to volatile anesthetics before cardiac ischemia/reperfusion (I/R), termed anesthetic preconditioning, limits myocardial injury and inhibits apoptosis. Apoptosis repressor with caspase recruitment domain (ARC) is a novel protein that has been demonstrated to protect cardiomyocytes from apoptosis induced by I/R and is regulated by phosphorylation. We therefore hypothesized that the antiapoptotic effect of anesthetic preconditioning is, in part, mediated by phosphorylation of ARC. METHODS In the experiments we used a perfused rat heart model of sevoflurane anesthetic preconditioning and I/R. In addition to measures of left ventricular function, phosphorylation of ARC was measured with and without anesthetic preconditioning. Because the phosphorylation status of ARC is determined by calcineurin and protein kinase CK2, the role of ARC was defined by measuring calcineurin activity and using the calcineurin inhibitor FK506 and the ARC phosphorylation inhibitor 4,5,6,7-tetrabromobenzotrizole (TBB). RESULTS I/R without anesthetic preconditioning increased calcineurin and reduced ARC phosphorylation levels, whereas anesthetic preconditioning significantly improved functional recovery, decreased ischemic injury, limited the increase in calcineurin activity, increased the phosphorylation level of ARC, reduced cytochrome c release, and blocked the increase in caspase-8 after I/R. The effects of anesthetic preconditioning were mirrored by FK506 and abolished by TBB. CONCLUSION This study has identified a novel cardiac pathway in which anesthetic preconditioning prevents the increase in calcineurin after I/R, resulting in increased phosphorylated ARC and decreased markers of apoptosis.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, One Shields Avenue, TB 172, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
15
|
Wu LF, Li GP, Su JD, Pu ZJ, Feng JL, Ye YQ, Wei BL. Involvement of NF-kappaB activation in the apoptosis induced by extracellular adenosine in human hepatocellular carcinoma HepG2 cells. Biochem Cell Biol 2010; 88:705-14. [PMID: 20651843 DOI: 10.1139/o10-008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Adenosine can exhibit cytotoxic activity in vivo and in vitro, though its mechanisms are still uncertain. In this study, we investigated the adenosine-mediated apoptotic signaling pathway and the role of NF-kappaB in human hepatocellular carcinoma HepG2 cells. HepG2 cells were treated with different concentrations of adenosine for 12-48 h, and the effect of adenosine on cell proliferation was evaluated by MTT assay. The cytotoxicity of adenosine alone or in combination with an NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC), was also evaluated by MTT assay and the mode of cell death was detected by Hoechst 33342 staining. Cell cycle progress was performed by flow cytometry with PI staining. The protein expressions of Bcl-2, p53, NF-kappaB subunit p65, and caspase-3 were assayed by Western blot. Caspase-3 activity was measured by spectrophotomteric assay. The results showed that adenosine significantly reduced the viability of HepG2 cells in a dose- and time-dependent manner, with IC 50 (24 and 48 h) of 2.52 and 1.89 mmol x L(-1), respectively. The apoptotic index (percentage of sub-G1 phase) of HepG2 cells in adenosine treatment alone for 12 and 24 h or in combination with PDTC were 8.30%, 22.32% and 20.18%, 30.89%, respectively. All of them were higher than that in the control group (0.81%, p < 0.01). The characteristic changes of cell apoptosis (chromatin condensation and sub-G1 peak) were observed under fluorescent microscopy and flow cytometry. We also found that the apoptotic process triggered by adenosine was involved in G0-G1 cell-cycle arrest, enhanced the activity of caspase-3, upregulated p53 and NF-kappaB p65 expression, and downregulated Bcl-2 expression. Inhibition of NF-kappaB by PDTC decreased NF-kappaB p65 expression, enhanced cell apoptosis ratio, and increased caspase-3 activity. NF-kappaB may play an anti-apoptosis role in adenosine-induced HepG2 cytotoxicity.
Collapse
Affiliation(s)
- Ling-Fei Wu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China.
| | | | | | | | | | | | | |
Collapse
|