1
|
Kim A, Madara JC, Wu C, Andermann ML, Lowell BB. Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality. eLife 2021; 10:66609. [PMID: 34585668 PMCID: PMC8601670 DOI: 10.7554/elife.66609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically and functionally distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli. Fine-tuning the amount of water present in the body at any given time is a tight balancing act. The hormone vasopressin helps to ensure that organisms do not get too dehydrated by allowing water in the urine to be reabsorbed into the bloodstream. A group of vasopressin neurons in the brain trigger the release of the hormone if water levels get too low (as reflected by an increase in osmolality, the level of substances dissolved in a unit of blood). However, these cells also receive additional information that allows them to predict and respond to upcoming changes in water levels. For example, drinking water while dehydrated ‘switches off’ the neurons, even before osmolality is restored in the blood to normal levels. Eating, on the other hand, rapidly activates vasopressin neurons before the food is digested and blood osmolality increases as a result. How vasopressin neurons receive this ‘anticipatory’ information remains unclear. Kim et al. explored this question in mice by inhibiting different sets of brain cells one by one, and then examining whether the neurons could still exhibit anticipatory responses. This revealed a remarkable division of labor in the neural circuits that regulate vasopressin neurons: two completely different sets of neurons from distinct areas of the brain are dedicated to relaying anticipatory information about either water or food intake. These findings help to understand how healthy levels of water can be maintained in the body. Overall, they give a glimpse into the neural mechanisms that underlie anticipatory forms of regulation, which can also take place when hunger or thirst neurons ‘foresee’ that food or water will be consumed.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Chen Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| |
Collapse
|
2
|
King TL, Kline DD, Ruyle BC, Heesch CM, Hasser EM. Acute systemic hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the caudal ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1112-23. [PMID: 24049118 DOI: 10.1152/ajpregu.00280.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60-90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.
Collapse
Affiliation(s)
- T Luise King
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|
3
|
Whitaker AM, Sulzer JK, Molina PE. Augmented central nitric oxide production inhibits vasopressin release during hemorrhage in acute alcohol-intoxicated rodents. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1529-39. [PMID: 21849630 DOI: 10.1152/ajpregu.00035.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute alcohol intoxication (AAI) attenuates the AVP response to hemorrhage, contributing to impaired hemodynamic counter-regulation. This can be restored by central cholinergic stimulation, implicating disrupted signaling regulating AVP release. AVP is released in response to hemorrhage and hyperosmolality. Studies have demonstrated nitric oxide (NO) to play an inhibitory role on AVP release. AAI has been shown to increase NO content in the paraventricular nucleus. We hypothesized that the attenuated AVP response to hemorrhage during AAI is the result of increased central NO inhibition. In addition, we predicted that the increased NO tone during AAI would impair the AVP response to hyperosmolality. Conscious male Sprague-Dawley rats (300-325 g) received a 15-h intragastric infusion of alcohol (2.5 g/kg + 300 mg·kg(-1)·h(-1)) or dextrose prior to a 60-min fixed-pressure hemorrhage (∼40 mmHg) or 5% hypertonic saline infusion (0.05 ml·kg(-1)·min(-1)). AAI attenuated the AVP response to hemorrhage, which was associated with increased paraventricular NO content. In contrast, AAI did not impair the AVP response to hyperosmolality. This was accompanied by decreased paraventricular NO content. To confirm the role of NO in the alcohol-induced inhibition of AVP release during hemorrhage, the nitric oxide synthase inhibitor, nitro-l-arginine methyl ester (l-NAME; 250 μg/5 μl), was administered centrally prior to hemorrhage. l-NAME did not further increase AVP levels during hemorrhage in dextrose-treated animals; however, it restored the AVP response during AAI. These results indicate that AAI impairs the AVP response to hemorrhage, while not affecting the response to hyperosmolality. Furthermore, these data demonstrate that the attenuated AVP response to hemorrhage is the result of augmented central NO inhibition.
Collapse
Affiliation(s)
- Annie M Whitaker
- Louisiana State University Health Science Center, Department of Physiology and Alcohol and Drug Abuse, Center of Excellence, New Orleans, Louisiana 70112-1393, USA
| | | | | |
Collapse
|
4
|
Yamaguchi K, Hama H. Changes in vasopressin release and autonomic function induced by manipulating forebrain GABAergic signaling under euvolemia and hypovolemia in conscious rats. Endocr J 2011; 58:559-73. [PMID: 21532213 DOI: 10.1507/endocrj.k11e-002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The anteroventral third ventricular region (AV3V) is a pivotal area for osmotic responses and integration of autonomic functions. The purpose of this study was to investigate whether the gamma-aminobutyric acid (GABA)-ergic activity in the AV3V may be involved in the regulation of arginine vasopressin (AVP) secretion and related phenomena under the conditions with or without hypovolemia. Experiments were performed in conscious rats. We found that AV3V infusion with the GABA(A) receptor antagonist bicuculline in euvolemic rats caused prompt increases in plasma AVP, osmolality, glucose, arterial pressure and heart rate. The effects of the bicuculline infusion were abolished by prior infusion of a GABA(A) receptor agonist, muscimol. When repeated twice with a 10-min interval, removal of systemic blood (10 mL/kg body weight) lowered arterial pressure and enhanced plasma AVP, osmolality, glucose and angiotensin II. Muscimol infusion in the AV3V, but not in the cerebral ventricle, inhibited the responses of plasma AVP and glucose, despite having no effect in a sham hemorrhagic state. The inhibition of the AVP response by the muscimol infusion was also verified in rats given a combined stimulus of bleeding plus an osmotic load. In contrast, AV3V infusion with the GABA(B) receptor agonist baclofen tended to intensify the hemorrhagic responses of plasma AVP and glucose, despite its potency to prevent the hemorrhagic fall in arterial pressure. These results, taken together with our previous data, suggest that hypovolemic stimuli, like hyperosmotic stimuli, may promote AVP secretion by causing the inhibition of AV3V GABA(A)-ergic activity responsible for potentiation of glutamatergic activity.
Collapse
Affiliation(s)
- Ken'ichi Yamaguchi
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata 951-8510, Japan.
| | | |
Collapse
|
5
|
Cravo SL, Campos RR, Colombari E, Sato MA, Bergamaschi CM, Pedrino GR, Ferreira-Neto ML, Lopes OU. Role of the medulla oblongata in normal and high arterial blood pressure regulation: the contribution of Escola Paulista de Medicina - UNIFESP. AN ACAD BRAS CIENC 2010; 81:589-603. [PMID: 19722026 DOI: 10.1590/s0001-37652009000300021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 05/13/2009] [Indexed: 11/22/2022] Open
Abstract
Several forms of experimental evidence gathered in the last 37 years have unequivocally established that the medulla oblongata harbors the main neural circuits responsible for generating the vasomotor tone and regulating arterial blood pressure. Our current understanding of this circuitry derives mainly from the studies of Pedro Guertzenstein, a former student who became Professor of Physiology at UNIFESP later, and his colleagues. In this review, we have summarized the main findings as well as our collaboration to a further understanding of the ventrolateral medulla and the control of arterial blood pressure under normal and pathological conditions.
Collapse
Affiliation(s)
- Sergio L Cravo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Pedrino GR, Rosa DA, Korim WS, Cravo SL. Renal sympathoinhibition induced by hypernatremia: Involvement of A1 noradrenergic neurons. Auton Neurosci 2008; 142:55-63. [DOI: 10.1016/j.autneu.2008.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 05/16/2008] [Accepted: 06/23/2008] [Indexed: 11/26/2022]
|
7
|
Pedrino GR, Maurino I, de Almeida Colombari DS, Cravo SL. Role of catecholaminergic neurones of the caudal ventrolateral medulla in cardiovascular responses induced by acute changes in circulating volume in rats. Exp Physiol 2006; 91:995-1005. [PMID: 16916893 DOI: 10.1113/expphysiol.2006.034611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several findings suggest that catecholaminergic neurones in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. The present study sought to determine the effects of lesions of these neurones on the cardiovascular responses induced by changes in circulating volume. All experiments were performed in male Wistar rats (320-360 g). Medullary catecholaminergic neurones were lesioned by microinjection of anti-dopamine beta-hydroxylase-saporin (6.3 ng in 60 nl; SAP rats, n = 14) into the CVLM, whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n = 15). Two weeks later, rats were anaesthetized (urethane, 1.2 g kg(-1), i.v.), instrumented for measurement of mean arterial pressure (MAP), renal blood flow (RBF) and renal vascular conductance (RVC), and infused with hypertonic saline (HS; 3 m NaCl, 0.18 ml (100 g body weight)(-1), i.v.) or an isotonic solution (volume expansion, VE; 4% Ficoll, 1% of body weight, i.v.). In sham rats, HS induced sustained increases in RBF and RVC (155 +/- 7 and 145 +/- 6% of baseline, at 20 min after HS). In SAP rats, RBF responses to HS were blunted (125 +/- 6%) and RVC increases were abolished (108 +/- 5%) 20 min after HS. Isotonic solution increased RBF and RVC in sham rats (149 +/- 10 and 145 +/- 12% of baseline, respectively, at 20 min). These responses were reduced in SAP rats (131 +/- 6 and 126 +/- 5%, respectively, at 20 min). Pressor responses to HS were larger in SAP rats than in sham rats (17 +/- 5 versus 9 +/- 2 mmHg, at 20 min), whereas during VE these responses were similar in both groups (6 +/- 3 versus 4 +/- 6 mmHg, at 20 min). Immunohistochemical analysis indicates that microinjections of anti-DbetaH-saporin produced extensive destruction within the A1/C1 cell groups in the CVLM. These results suggest that catecholaminergic neurones mediate the cardiovascular responses to VE or increases in plasma sodium levels.
Collapse
Affiliation(s)
- Gustavo Rodrigues Pedrino
- Department of Physiology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
8
|
Dinh TT, Flynn FW, Ritter S. Hypotensive hypovolemia and hypoglycemia activate different hindbrain catecholamine neurons with projections to the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 291:R870-9. [PMID: 16675637 DOI: 10.1152/ajpregu.00094.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the involvement of hindbrain catecholamine neurons in hypovolemia-induced secretion of AVP, we injected antidopamine beta-hydroxylase saporin (DSAP) or unconjugated saporin (SAP) control solution into the hypothalamic paraventricular nucleus (PVH) of anesthetized rats to retrogradely lesion catecholamine neurons innervating magnocellular areas of the hypothalamus. Subsequently, hypotensive hypovolemia was induced by remote blood withdrawal (4.5 ml, 1 ml/min) using an intra-atrial catheter. Blood was sampled at 2, 5, 20, and 50 min after onset of blood withdrawal. The AVP response was severely impaired by DSAP. Peak responses at 50 min were 51 pg/ml in SAP control and 17 pg/ml in DSAP-lesioned rats, indicating the importance of catecholamine neurons for this response. We also measured AVP responses to osmotic challenge induced by administration of hypertonic saline (1 M, 15 ml/kg, sc) and to insulin-induced hypoglycemia. Osmotic challenge increased AVP levels, but the response was not impaired by DSAP, indicating that AVP neurons were not damaged by the DSAP injection. Insulin-induced hypoglycemia did not increase AVP levels in either DSAP- or SAP-treated rats. However, the same dose of insulin increased food intake and corticosterone secretion in SAP controls, and these responses were profoundly impaired by DSAP. Thus catecholamine neurons are required for both the AVP response to hypotensive hypovolemia and for feeding and corticosterone responses to hypoglycemia. Lack of an AVP response to insulin-induced hypoglycemia in intact rats therefore indicates that responses to hypovolemia and hypoglycemia are mediated by different catecholamine neurons under distinct sensory controls.
Collapse
Affiliation(s)
- Thu T Dinh
- Programs in Neuroscience, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
9
|
Grindstaff RJ, Grindstaff RR, Sullivan MJ, Cunningham JT. Role of the locus ceruleus in baroreceptor regulation of supraoptic vasopressin neurons in the rat. Am J Physiol Regul Integr Comp Physiol 2000; 279:R306-19. [PMID: 10896895 DOI: 10.1152/ajpregu.2000.279.1.r306] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to identify the source of baroreceptor-related noradrenergic innervation of the diagonal band of Broca (DBB). Male Sprague-Dawley rats underwent sinoaortic denervation (SAD, n = 13) or sham SAD surgery (n = 13). We examined Fos expression produced by baroreceptor activation and dopamine-beta-hydroxylase immunofluorescence in hindbrain regions that contain noradrenergic neurons. Baroreceptors were stimulated by increasing blood pressure >40 mmHg with phenylephrine (10 microgram. kg(-1). min(-1) iv) in sham SAD and SAD rats. Controls were infused with 0.9% saline. Only the locus ceruleus (LC) demonstrated a baroreceptor-dependent increase in Fos immunoreactivity in dopamine-beta-hydroxylase-positive neurons. In a second experiment, normal rats received rhodamine-labeled microsphere injections in the DBB (n = 12) before phenylephrine or vehicle infusion. In these experiments, only the LC consistently contained Fos-positive cells after phenylephrine infusion that were retrogradely labeled from the DBB. Finally, we lesioned the LC with ibotenic acid and obtained extracellular recordings from identified vasopressin neurons in the supraoptic nucleus. LC lesions significantly reduced the number of vasopressin neurons that were inhibited by acute baroreceptor stimulation. Together, these results suggest that noradrenergic neurons in the LC participate in the baroreflex activation of the DBB and may thus be important in the baroreflex inhibition of vasopressin-releasing neurons in the supraoptic nucleus.
Collapse
Affiliation(s)
- R J Grindstaff
- Department of Physiology and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
10
|
Abstract
In vivo microdialysis was used to measure extracellular concentrations of norepinephrine in the diagonal band of Broca (DBB) during changes in blood pressure in conscious rats. Dialysate norepinephrine concentration was significantly increased during acute hypertension (280 +/- 40% of control), but was not changed by hypotensive hemorrhage. These results are consistent with the proposal that noradrenergic innervation of the DBB is selectively activated by increased blood pressure.
Collapse
Affiliation(s)
- S L Bealer
- Department of Physiology and Biophysics, University of Tennessee, Memphis 38163, USA
| |
Collapse
|