1
|
Butler AS, Ascione R, Marrion NV, Harmer SC, Hancox JC. In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition. Sci Rep 2024; 14:3185. [PMID: 38326449 PMCID: PMC10850090 DOI: 10.1038/s41598-024-53571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, > 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p < 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.
Collapse
Affiliation(s)
- Andrew S Butler
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, BS2 8HW, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
3
|
Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev 2016; 96:3-17. [PMID: 25980938 DOI: 10.1016/j.addr.2015.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cells (PSCs) represent an attractive source of cardiomyocytes with potential applications including disease modeling, drug discovery and safety screening, and novel cell-based cardiac therapies. Insights from embryology have contributed to the development of efficient, reliable methods capable of generating large quantities of human PSC-cardiomyocytes with cardiac purities ranging up to 90%. However, for human PSCs to meet their full potential, the field must identify methods to generate cardiomyocyte populations that are uniform in subtype (e.g. homogeneous ventricular cardiomyocytes) and have more mature structural and functional properties. For in vivo applications, cardiomyocyte production must be highly scalable and clinical grade, and we will need to overcome challenges including graft cell death, immune rejection, arrhythmogenesis, and tumorigenic potential. Here we discuss the types of human PSCs, commonly used methods to guide their differentiation into cardiomyocytes, the phenotype of the resultant cardiomyocytes, and the remaining obstacles to their successful translation.
Collapse
|
4
|
Mukherjee R, Rivers WT, Ruddy JM, Matthews RG, Koval CN, Plyler RA, Chang EI, Patel RK, Kern CB, Stroud RE, Spinale FG. Long-term localized high-frequency electric stimulation within the myocardial infarct: effects on matrix metalloproteinases and regional remodeling. Circulation 2010; 122:20-32. [PMID: 20566951 DOI: 10.1161/circulationaha.110.936872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Disruption of the balance between matrix metalloproteinases (MMP) and MMP inhibitors (TIMPs) within a myocardial infarct (MI) contributes to left ventricular wall thinning and changes in regional stiffness at the MI region. This study tested the hypothesis that a targeted regional approach through localized high-frequency stimulation (LHFS) using low-amplitude electric pulses instituted within a formed MI scar would alter MMP/TIMP levels and prevent MI thinning. METHODS AND RESULTS At 3 weeks after MI, pigs were randomized for LHFS (n=7; 240 bpm, 0.8 V, 0.05-ms pulses) or were left unstimulated (UNSTIM; n=10). At 4 weeks after MI, left ventricular wall thickness (echocardiography; 0.89+/-0.07 versus 0.67+/-0.08 cm; P<0.05) and regional stiffness (piezoelectric crystals; 14.70+/-2.08 versus 9.11+/-1.24; P<0.05) were higher with LHFS than in UNSTIM. In vivo interstitial MMP activity (fluorescent substrate cleavage; 943+/-59 versus 1210+/-72 U; P<0.05) in the MI region was lower with LHFS than in UNSTIM. In the MI region, MMP-2 levels were lower and TIMP-1 and collagen levels were higher with LHFS than in UNSTIM (all P<0.05). Transforming growth factor-beta receptor 1 and phosphorylated SMAD-2/3 levels within the MI region were higher with LHFS than in UNSTIM. Electric stimulation (4 Hz) of isolated fibroblasts resulted in reduced MMP-2 and MT1-MMP levels but increased TIMP-1 levels compared with unstimulated fibroblasts. CONCLUSIONS These unique findings demonstrate that LHFS of the MI region altered left ventricular wall thickness and material properties, likely as a result of reduced regional MMP activity. Thus, LHFS may provide a novel means to favorably modify left ventricular remodeling after MI.
Collapse
Affiliation(s)
- Rupak Mukherjee
- Medical University of South Carolina, Charleston, 29425, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Spruill LS, McDermott PJ. Role of the 5'-untranslated region in regulating translational efficiency of specific mRNAs in adult cardiocytes. FASEB J 2009; 23:2879-87. [PMID: 19417087 DOI: 10.1096/fj.08-128447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been hypothesized that translational efficiency is determined by the amount of secondary structure in the 5'-untranslated region (5'-UTR) of mRNA. Here, we examined whether specific 5'-UTRs with excessive secondary structure selectively regulate translational efficiency in adult cardiocytes. Recombinant adenoviruses were generated to express reporter mRNAs consisting of the 5'-UTR derived from c-jun or ornithine decarboxylase (ODC) fused to beta-galactosidase (betaGal) coding sequence. Each adenovirus expressed GFP mRNA as a control for 5'-UTRs with minimal secondary structure. Subsequently, cardiocytes were electrically stimulated to contract at 1 Hz to accelerate protein synthesis as compared to quiescent controls. Translational efficiency was calculated by measuring protein expression as a function of mRNA levels. Translational efficiency of c-jun/betaGal mRNA increased significantly by 3.7-fold in contracting vs. quiescent cardiocytes, but ODC/betaGal mRNA was unchanged. Contraction increased c-jun/betaGal mRNA levels in polyribosomes by 2.3-fold, which indicates that translational efficiency was enhanced by mobilization. A short, unstructured 5'-UTR was sufficient for efficient translation of betaGal mRNA in quiescent and contracting cardiocytes. GFP mRNA produced similar results. These studies demonstrate that the 5'-UTR functions as a determinant of translational efficiency of specific mRNAs, such as c-jun, that regulate growth of the adult cardiocyte.
Collapse
Affiliation(s)
- Laura S Spruill
- Gazes Cardiac Research Institute, Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | | |
Collapse
|
6
|
Scholz D, Baicu CF, Tuxworth WJ, Xu L, Kasiganesan H, Menick DR, Cooper G. Microtubule-dependent distribution of mRNA in adult cardiocytes. Am J Physiol Heart Circ Physiol 2008; 294:H1135-44. [PMID: 18178719 DOI: 10.1152/ajpheart.01275.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synthesis of myofibrillar proteins in the diffusion-restricted adult cardiocyte requires microtubule-based active transport of mRNAs as part of messenger ribonucleoprotein particles (mRNPs) to translation sites adjacent to nascent myofibrils. This is especially important for compensatory hypertrophy in response to hemodynamic overloading. The hypothesis tested here is that excessive microtubule decoration by microtubule-associated protein 4 (MAP4) after cardiac pressure overloading could disrupt mRNP transport and thus hypertrophic growth. MAP4-overexpressing and pressure-overload hypertrophied adult feline cardiocytes were infected with an adenovirus encoding zipcode-binding protein 1-enhanced yellow fluorescent protein fusion protein, which is incorporated into mRNPs, to allow imaging of these particles. Speed and distance of particle movement were measured via time-lapse microscopy. Microtubule depolymerization was used to study microtubule-based transport and distribution of mRNPs. Protein synthesis was assessed as radioautographic incorporation of [3H]phenylalanine. After microtubule depolymerization, mRNPs persist only perinuclearly and apparent mRNP production and protein synthesis decrease. Reestablishing microtubules restores mRNP production and transport as well as protein synthesis. MAP4 overdecoration of microtubules via adenovirus infection in vitro or following pressure overloading in vivo reduces the speed and average distance of mRNP movement. Thus cardiocyte microtubules are required for mRNP transport and structural protein synthesis, and MAP4 decoration of microtubules, whether directly imposed or accompanying pressure-overload hypertrophy, causes disruption of mRNP transport and protein synthesis. The dense, highly MAP4-decorated microtubule network seen in severe pressure-overload hypertrophy both may cause contractile dysfunction and, perhaps even more importantly, may prevent a fully compensatory growth response to hemodynamic overloading.
Collapse
Affiliation(s)
- Dimitri Scholz
- Gazes Cardiac Research Institute, Cardiology Division, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Heidi Au HT, Cheng I, Chowdhury MF, Radisic M. Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials 2007; 28:4277-93. [PMID: 17604100 PMCID: PMC2039774 DOI: 10.1016/j.biomaterials.2007.06.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
In contractile tissues such as myocardium, functional properties are directly related to the cellular orientation and elongation. Thus, tissue engineering of functional cardiac patches critically depends on our understanding of the interaction between multiple guidance cues such as topographical, adhesive or electrical. The main objective of this study was to determine the interactive effects of contact guidance and electrical field stimulation on elongation and orientation of fibroblasts and cardiomyocytes, major cell populations of the myocardium. Polyvinyl surfaces were abraded using lapping paper with grain size 1-80 microm, resulting in V-shaped abrasions with the average abrasion peak-to-peak width in the range from 3 to 13 microm, and the average depth in the range from 140 to 700 nm (AFM). The surfaces with abrasions 13 microm wide and 700 nm deep, exhibited the strongest effect on neonatal rat cardiomyocyte elongation and orientation as well as statistically significant effect on orientation of fibroblasts, thus they were utilized for electrical field stimulation. Electrical field stimulation was performed using a regime of relevance for heart tissue in vivo as well as for cardiac tissue engineering. Stimulation (square pulses, 1 ms duration, 1 Hz, 2.3 or 4.6 V/cm) was initiated 24 h after cell seeding and maintained for additional 72 h. The cover slips were positioned between the carbon rod electrodes such that the abrasions were either parallel or perpendicular to the field lines. Non-abraded surfaces were utilized as controls. Field stimulation did not affect cell viability. The presence of a well-developed contractile apparatus in neonatal rat cardiomyocytes (staining for cardiac Troponin I and actin filaments) was identified in the groups cultivated on abraded surfaces in the presence of field stimulation. Overall we observed that (i) fibroblast and cardiomyocyte elongation on non-abraded surfaces was significantly enhanced by electrical field stimulation, (ii) electrical field stimulation promoted orientation of fibroblasts in the direction perpendicular to the field lines when the abrasions were also placed perpendicular to the field lines and (iii) topographical cues were a significantly stronger determinant of cardiomyocyte orientation than the electrical field stimulation. The orientation and elongation response of cardiomyocytes was completely abolished by inhibition of actin polymerization (Cytochalasin D) and only partially by inhibition of phosphatidyl-inositol 3 kinase (PI3K) pathway (LY294002).
Collapse
Affiliation(s)
| | - Irene Cheng
- Department of Chemical Engineering and Applied Chemistry
| | | | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry
- Institute of Biomaterials and Biomedical Engineering
- Heart & Stroke/Richard Lewar Centre of Excellence
| |
Collapse
|
8
|
Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 2004; 101:18129-34. [PMID: 15604141 PMCID: PMC539727 DOI: 10.1073/pnas.0407817101] [Citation(s) in RCA: 618] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.
Collapse
Affiliation(s)
- Milica Radisic
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-342, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tuxworth WJ, Saghir AN, Spruill LS, Menick DR, McDermott PJ. Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5'-untranslated region of mRNA. Biochem J 2004; 378:73-82. [PMID: 14629199 PMCID: PMC1223941 DOI: 10.1042/bj20031027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/31/2003] [Accepted: 11/20/2003] [Indexed: 11/17/2022]
Abstract
In adult cardiocytes, eIF4E (eukaryotic initiation factor 4E) activity and protein synthesis are increased concomitantly in response to stimuli that induce hypertrophic growth. We tested the hypothesis that increases in eIF4E activity selectively improve the translational efficiency of mRNAs that have an excessive amount of secondary structure in the 5'-UTR (5'-untranslated region). The activity of eIF4E was modified in primary cultures of adult cardiocytes using adenoviral gene transfer to increase either the amount of eIF4E or the extent of endogenous eIF4E phosphorylation. Subsequently, the effects of eIF4E on translational efficiency were assayed following adenoviral-mediated expression of luciferase reporter mRNAs that were either 'stronger' (less structure in the 5'-UTR) or 'weaker' (more structure in the 5'-UTR) with respect to translational efficiency. The insertion of G+C-rich repeats into the 5'-UTR doubled the predicted amount of secondary structure and was sufficient to reduce translational efficiency of the reporter mRNA by 48+/-13%. Translational efficiency of the weaker reporter mRNA was not significantly improved by overexpression of wild-type eIF4E when compared with the stronger reporter mRNA. In contrast, overexpression of the eIF4E kinase Mnk1 [MAP (mitogen-activated protein) kinase signal-integrating kinase 1] was sufficient to increase the translational efficiency of either reporter mRNA, independent of the amount of secondary structure in their respective 5'-UTRs. The increases in translational efficiency produced by Mnk1 occurred in association with corresponding decreases in mRNA levels. These findings indicate that the positive effect of eIF4E phosphorylation on translational efficiency in adult cardiocytes is coupled with the stability of mRNA.
Collapse
Affiliation(s)
- William J Tuxworth
- Department of Medicine, the Gazes Cardiac Research Institute, Medical University of South Carolina, and the Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | | | | | | | | |
Collapse
|
10
|
Kuramochi Y, Lim CC, Guo X, Colucci WS, Liao R, Sawyer DB. Myocyte contractile activity modulates norepinephrine cytotoxicity and survival effects of neuregulin-1β. Am J Physiol Cell Physiol 2004; 286:C222-9. [PMID: 14522821 DOI: 10.1152/ajpcell.00312.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study is to test the hypothesis that mechanical and electrical activity in adult rat ventricular myocytes (ARVM) alters responses to proapoptotic and prosurvival ligands. The effects of electrical stimulation on myocyte survival, stress signaling, response to β-adrenergic receptor (β-AR)-stimulated apoptosis, and neuregulin-1β (NRG) were examined. Electrical stimulation (6.6 V/cm; 0, 2, and 5 Hz; 2-ms duration; alternating polarity) of ARVM resulted in more than 70% capture. Although ARVM paced for 48 h showed higher mitochondrial uptake of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide ( P < 0.05, 0 vs. 2 and 5 Hz), electrical stimulation had little effect on cell survival assessed by trypan blue uptake, CPK release, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. Electrical stimulation for 24 h did not induce stress response (heat shock protein 70, 90) nor stress kinase (Erk, JNK, p38) activation. NRG stimulation of Erk and Akt was similar between paced and quiescent cells. Pacing sensitized myocytes to β-AR-stimulated JNK phosphorylation and cell death with 0.1 μM norepinephrine (NE) in paced myocytes causing equivalent cytotoxicity to 10 μM NE in quiescent cells. NRG suppressed β-AR-induced apoptosis through a phosphatidylinositol-3-kinase-dependent pathway in both paced and quiescent cells, although it is overwhelmed by high-NE concentration in paced cells. Thus myocyte contractility modulates both NE cytotoxicity as well as the cytoprotective effect of NRG. These results demonstrate the feasibility and importance of using electrically paced cardiomyocytes in primary culture when examining the signaling pathways of cell survival.
Collapse
Affiliation(s)
- Yukio Kuramochi
- Whitaker Cardiovascular Institute and Cardiovascular Divisions, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
11
|
Zhang XQ, Song J, Rothblum LI, Lun M, Wang X, Ding F, Dunn J, Lytton J, McDermott PJ, Cheung JY. Overexpression of Na+/Ca2+ exchanger alters contractility and SR Ca2+ content in adult rat myocytes. Am J Physiol Heart Circ Physiol 2001; 281:H2079-88. [PMID: 11668069 DOI: 10.1152/ajpheart.2001.281.5.h2079] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.
Collapse
Affiliation(s)
- X Q Zhang
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania 17822-2619, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saghir AN, Tuxworth WJ, Hagedorn CH, McDermott PJ. Modifications of eukaryotic initiation factor 4F (eIF4F) in adult cardiocytes by adenoviral gene transfer: differential effects on eIF4F activity and total protein synthesis rates. Biochem J 2001; 356:557-66. [PMID: 11368785 PMCID: PMC1221869 DOI: 10.1042/0264-6021:3560557] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In adult feline cardiocytes, increases in eukaryotic initiation factor 4F (eIF4F) activity are correlated with accelerated rates of total protein synthesis produced in response to increased load. Adenoviral gene transfer was employed to increase either eIF4F complex formation or the phosphorylation of eIF4E on Ser-209. To simulate load,cardiocytes were electrically stimulated to contract (2 Hz,5 ms pulses). Non-stimulated cardiocytes were used as controls.Adenovirus-mediated overexpression of wild-type eIF4E increased the total eIF4E pool by 120-140% above endogenous levels after 24 h and produced a corresponding increase in eIF4F content.However, it did not accelerate total protein synthesis rates inquiescent cardiocytes; neither did it potentiate the increase produced by contraction. To modify the affinity of eIF4F, cardiocytes were infected with a mutant (eIF4E/W56F) with a decreased binding affinity for the mRNA cap. Overexpression of eIF4E/W56F increased the quantity of eIF4F but the rate of total protein synthesis was decreased inquiescent and contracting cardiocytes. Overexpression of a mutant that blocked eIF4E phosphorylation (eIF4E/S209A) increased the quantity ofeIF4F without any significant effect on total protein synthesis rates in quiescent or contracting cardiocytes. Overexpression of the eIF4Ekinase Mnk-1 increased eIF4E phosphorylation without a corresponding increase in eIF4F complex formation or in the rate of total protein synthesis. We conclude the following: (1) eIF4F assembly is increased by raising eIF4E levels via adenoviral gene transfer; (2) the capbinding affinity of eIF4F is a rate-limiting determinant for total protein synthesis rates; and (3) increases in the quantity of eIF4Falone or in eIF4E phosphorylation are not sufficient to accelerate total protein synthesis rates.
Collapse
Affiliation(s)
- A N Saghir
- Department of Medicine, Strom Thurmond Biomedical ResearchBuilding, Room 303, 114 Doughty Street, Charleston, SC 29403, USA
| | | | | | | |
Collapse
|
13
|
Kaye D, Pimental D, Prasad S, Mäki T, Berger HJ, McNeil PL, Smith TW, Kelly RA. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 1996; 97:281-91. [PMID: 8567946 PMCID: PMC507016 DOI: 10.1172/jci118414] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased mechanical activity could lead to a hypertrophic response in cardiac myocytes.
Collapse
Affiliation(s)
- D Kaye
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|