1
|
Stone C, Harris DD, Broadwin M, Kanuparthy M, Nho JW, Yalamanchili K, Hamze J, Abid MR, Sellke FW. Semaglutide Improves Myocardial Perfusion and Performance in a Large Animal Model of Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2025; 45:285-297. [PMID: 39665144 PMCID: PMC11748899 DOI: 10.1161/atvbaha.124.321850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Coronary artery disease is the leading cause of death worldwide. It imposes an enormous symptomatic burden on patients, leaving many with residual disease despite optimal procedural therapy and up to one-thirds with debilitating angina amenable neither to procedures, nor to current pharmacological options. Semaglutide (SEM), a GLP-1 (glucagon-like peptide 1) agonist originally approved for management of diabetes, has garnered substantial attention for its capacity to attenuate cardiovascular risk. Although subgroup analyses in patients indicate promise, studies explicitly designed to isolate the impact of SEM on the sequelae of coronary artery disease, independently of comorbid diabetes or obesity, are lacking. METHODS Yorkshire swine (n=17) underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce coronary artery disease. Oral SEM was initiated postoperatively at 1.5 mg and scaled up in 2 weeks to 3 mg in treatment animals (n=8) for a total of 5 weeks, while control animals (n=9) received no drug. All then underwent myocardial harvest with acquisition of perfusion and functional data using microsphere injection and pressure-volume loop catheterization. Immunoblotting, immunohistochemistry, and immunofluorescence were performed on the most ischemic myocardial segments for mechanistic elucidation. RESULTS SEM animals exhibited improved left ventricular ejection fraction, both at rest and during rapid myocardial pacing (both P<0.03), accompanied by increased perfusion to the most ischemic myocardial region at rest and during rapid pacing (both P<0.03); reduced perivascular and interstitial fibrosis (both P<0.03); and apoptosis (P=0.008). These changes were associated with increased activation of the endothelial-protective AMPK (AMP-activated protein kinase) pathway (P=0.005), coupled with downstream increases in eNOS (endothelial NO synthase; P=0.014). CONCLUSIONS This study reveals the capacity of oral SEM to augment cardiac function in the chronically ischemic heart in a highly translational large animal model, likely through AMPK-mediated improvement in endothelial function and perfusion to the ischemic myocardium.
Collapse
Affiliation(s)
- Christopher Stone
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - Dwight D. Harris
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - Mark Broadwin
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | | | - Ju-Woo Nho
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | | | - Jad Hamze
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - M. Ruhul Abid
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - Frank W. Sellke
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| |
Collapse
|
2
|
Stone CR, Harris DD, Broadwin M, Kanuparthy M, Nho JW, Yalamanchili K, Hamze J, Abid MR, Sellke FW. Semaglutide Improves Myocardial Perfusion and Performance in a Large Animal Model of Coronary Artery Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608191. [PMID: 39211263 PMCID: PMC11361037 DOI: 10.1101/2024.08.15.608191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Coronary artery disease (CAD) is the leading cause of death worldwide. It imposes an enormous symptomatic burden on patients, leaving many with residual disease despite optimal procedural therapy, and up to 1/3 with debilitating angina amenable neither to procedures, nor to current pharmacologic options. Semaglutide, a glucagon-like peptide 1 agonist originally approved for management of diabetes, has garnered substantial attention for its capacity to attenuate cardiovascular risk. Although subgroup analyses in patients indicate promise, studies explicitly designed to isolate the impact of semaglutide on the sequelae of CAD, independently of comorbid diabetes or obesity, are lacking. Approach and Results Yorkshire swine (n=17) underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce CAD. Oral semaglutide was initiated postoperatively at 1.5 mg and scaled up in 2 weeks to 3 mg in treatment animals (SEM, n=8) for a total of 5 weeks, while control animals (CON, n=9) received no drug. All then underwent myocardial harvest with acquisition of perfusion and functional data using microsphere injection and pressure-volume loop catheterization. Immunoblotting, immunohistochemistry, and immunofluorescence were performed on the most ischemic myocardial segments for mechanistic elucidation. SEM animals exhibited improved left ventricular ejection fraction, both at rest and during rapid myocardial pacing (both p<0.03), accompanied by increased perfusion to the most ischemic myocardial region at rest and during rapid pacing (both p<0.03); reduced perivascular and interstitial fibrosis (both p <0.03); and apoptosis (p=0.008). These changes were associated with increased activation of the endothelial-protective AMPK pathway (p=0.005), coupled with downstream increases in endothelial nitric oxide synthase (p=0.014). Conclusion This study is the first to reveal the capacity of oral semaglutide to augment cardiac function in the chronically ischemic heart in a highly translational large animal model, likely through AMPK-mediated improvement in endothelial function and perfusion to the ischemic myocardium.
Collapse
|
3
|
Stone CR, Harris DD, Broadwin M, Kanuparthy M, Sabe SA, Xu C, Feng J, Abid MR, Sellke FW. Crafting a Rigorous, Clinically Relevant Large Animal Model of Chronic Myocardial Ischemia: What Have We Learned in 20 Years? Methods Protoc 2024; 7:17. [PMID: 38392691 PMCID: PMC10891802 DOI: 10.3390/mps7010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The past several decades have borne witness to several breakthroughs and paradigm shifts within the field of cardiovascular medicine, but one component that has remained constant throughout this time is the need for accurate animal models for the refinement and elaboration of the hypotheses and therapies crucial to our capacity to combat human disease. Numerous sophisticated and high-throughput molecular strategies have emerged, including rational drug design and the multi-omics approaches that allow extensive characterization of the host response to disease states and their prospective resolutions, but these technologies all require grounding within a faithful representation of their clinical context. Over this period, our lab has exhaustively tested, progressively refined, and extensively contributed to cardiovascular discovery on the basis of one such faithful representation. It is the purpose of this paper to review our porcine model of chronic myocardial ischemia using ameroid constriction and the subsequent myriad of physiological and molecular-biological insights it has allowed our lab to attain and describe. We hope that, by depicting our methods and the insight they have yielded clearly and completely-drawing for this purpose on comprehensive videographic illustration-other research teams will be empowered to carry our work forward, drawing on our experience to refine their own investigations into the pathogenesis and eradication of cardiovascular disease.
Collapse
Affiliation(s)
- Christopher R. Stone
- Department of Cardiothoracic Surgery, The Warren Alpert School of Medicine at Brown University, Providence, RI 02903, USA; (D.D.H.); (M.B.); (M.K.); (S.A.S.); (C.X.); (J.F.); (M.R.A.); (F.W.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zebrowski DC, Becker R, Engel FB. Towards regenerating the mammalian heart: challenges in evaluating experimentally induced adult mammalian cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 2016; 310:H1045-54. [PMID: 26921436 DOI: 10.1152/ajpheart.00697.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/23/2016] [Indexed: 12/19/2022]
Abstract
In recent years, there has been a dramatic increase in research aimed at regenerating the mammalian heart by promoting endogenous cardiomyocyte proliferation. Despite many encouraging successes, it remains unclear if we are any closer to achieving levels of mammalian cardiomyocyte proliferation for regeneration as seen during zebrafish regeneration. Furthermore, current cardiac regenerative approaches do not clarify whether the induced cardiomyocyte proliferation is an epiphenomena or responsible for the observed improvement in cardiac function. Moreover, due to the lack of standardized protocols to determine cardiomyocyte proliferation in vivo, it remains unclear if one mammalian regenerative factor is more effective than another. Here, we discuss current methods to identify and evaluate factors for the induction of cardiomyocyte proliferation and challenges therein. Addressing challenges in evaluating adult cardiomyocyte proliferation will assist in determining 1) which regenerative factors should be pursued in large animal studies; 2) if a particular level of cell cycle regulation presents a better therapeutic target than another (e.g., mitogenic receptors vs. cyclins); and 3) which combinatorial approaches offer the greatest likelihood of success. As more and more regenerative studies come to pass, progress will require a system that not only can evaluate efficacy in an objective manner but can also consolidate observations in a meaningful way.
Collapse
Affiliation(s)
- David C Zebrowski
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Song W, Wang X. The role of TGFβ1 and LRG1 in cardiac remodelling and heart failure. Biophys Rev 2015; 7:91-104. [PMID: 28509980 PMCID: PMC4322186 DOI: 10.1007/s12551-014-0158-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a life-threatening condition that carries a considerable emotional and socio-economic burden. As a result of the global increase in the ageing population, sedentary life-style, increased prevalence of risk factors, and improved survival from cardiovascular events, the incidence of heart failure will continue to rise. Despite the advances in current cardiovascular therapies, many patients are not suitable for or may not benefit from conventional treatments. Thus, more effective therapies are required. Transforming growth factor (TGF) β family of cytokines is involved in heart development and dys-regulated TGFβ signalling is commonly associated with fibrosis, aberrant angiogenesis and accelerated progression into heart failure. Therefore, a potential therapeutic pathway is to modulate TGFβ signalling; however, broad blockage of TGFβ signalling may cause unwanted side effects due to its pivotal role in tissue homeostasis. We found that leucine-rich α-2 glycoprotein 1 (LRG1) promotes blood vessel formation via regulating the context-dependent endothelial TGFβ signalling. This review will focus on the interaction between LRG1 and TGFβ signalling, their involvement in the pathogenesis of heart failure, and the potential for LRG1 to function as a novel therapeutic target.
Collapse
Affiliation(s)
- Weihua Song
- Division of Metabolic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Research Techno Plaza, X-Frontiers Block, Level 4, 50 Nan yang Drive, Singapore, 637553, Singapore
| | - Xiaomeng Wang
- Division of Metabolic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Research Techno Plaza, X-Frontiers Block, Level 4, 50 Nan yang Drive, Singapore, 637553, Singapore. .,Division of Cell Biology in Health and Disease, Institute of Molecular and Cell Biology, Singapore Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore. .,Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
6
|
Myocardial drug distribution generated from local epicardial application: potential impact of cardiac capillary perfusion in a swine model using epinephrine. J Control Release 2014; 194:257-65. [PMID: 25234821 DOI: 10.1016/j.jconrel.2014.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/25/2014] [Accepted: 09/06/2014] [Indexed: 01/27/2023]
Abstract
Prior studies in small mammals have shown that local epicardial application of inotropic compounds drives myocardial contractility without systemic side effects. Myocardial capillary blood flow, however, may be more significant in larger species than in small animals. We hypothesized that bulk perfusion in capillary beds of the large mammalian heart not only enhances drug distribution after local release, but also clears more drug from the tissue target than in small animals. Epicardial (EC) drug releasing systems were used to apply epinephrine to the anterior surface of the left heart of swine in either point-sourced or distributed configurations. Following local application or intravenous (IV) infusion at the same dose rates, hemodynamic responses, epinephrine levels in the coronary sinus and systemic circulation, and drug deposition across the ventricular wall, around the circumference and down the axis, were measured. EC delivery via point-source release generated transmural epinephrine gradients directly beneath the site of application extending into the middle third of the myocardial thickness. Gradients in drug deposition were also observed down the length of the heart and around the circumference toward the lateral wall, but not the interventricular septum. These gradients extended further than might be predicted from simple diffusion. The circumferential distribution following local epinephrine delivery from a distributed source to the entire anterior wall drove drug toward the inferior wall, further than with point-source release, but again, not to the septum. This augmented drug distribution away from the release source, down the axis of the left ventricle, and selectively toward the left heart follows the direction of capillary perfusion away from the anterior descending and circumflex arteries, suggesting a role for the coronary circulation in determining local drug deposition and clearance. The dominant role of the coronary vasculature is further suggested by the elevated drug levels in the coronary sinus effluent. Indeed, plasma levels, hemodynamic responses, and myocardial deposition remote from the point of release were similar following local EC or IV delivery. Therefore, the coronary vasculature shapes the pharmacokinetics of local myocardial delivery of small catecholamine drugs in large animal models. Optimal design of epicardial drug delivery systems must consider the underlying bulk capillary perfusion currents within the tissue to deliver drug to tissue targets and may favor therapeutic molecules with better potential retention in myocardial tissue.
Collapse
|
7
|
Chilian WM, Penn MS, Pung YF, Dong F, Mayorga M, Ohanyan V, Logan S, Yin L. Coronary collateral growth--back to the future. J Mol Cell Cardiol 2011; 52:905-11. [PMID: 22210280 DOI: 10.1016/j.yjmcc.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 01/17/2023]
Abstract
The coronary collateral circulation is critically important as an adaptation of the heart to prevent the damage from ischemic insults. In their native state, collaterals in the heart would be classified as part of the microcirculation, existing as arterial-arterial anastomotic connections in the range of 30 to 100 μM in diameter. However, these vessels also show a propensity to remodel into components of the macrocirculation and can become arteries larger than 1000 μM in diameter. This process of outward remodeling is critically important in the adaptation of the heart to ischemia because the resistance to blood flow is inversely related to the fourth power of the diameter of the vessel. Thus, an expansion of a vessel from 100 to 1000 μM would reduce resistance (in this part of the circuit) to a negligible amount and enable delivery of flow to the region at risk. Our goal in this review is to highlight the voids in understanding this adaptation to ischemia-the growth of the coronary collateral circulation. In doing so we discuss the controversies and unknown aspects of the causal factors that stimulate growth of the collateral circulation, the role of genetics, and the role of endogenous stem and progenitor cells in the context of the normal, physiological situation and under more pathological conditions of ischemic heart disease or with some of the underlying risk factors, e.g., diabetes. The major conclusion of this review is that there are many gaps in our knowledge of coronary collateral growth and this knowledge is critical before the potential of stimulating collateralization in the hearts of patients can be realized. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
Affiliation(s)
- William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Khanna O, Moya ML, Opara EC, Brey EM. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J Biomed Mater Res A 2011; 95:632-40. [PMID: 20725969 DOI: 10.1002/jbm.a.32883] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alginate microcapsules coated with a permselective poly-L-ornithine (PLO) membrane have been investigated for the encapsulation and transplantation of islets as a treatment for type 1 diabetes. The therapeutic potential of this approach could be improved through local stimulation of microvascular networks to meet mass transport demands of the encapsulated cells. Fibroblast growth factor-1 (FGF-1) is a potent angiogenic factor with optimal effect occurring when it is delivered in a sustained manner. In this article, a technique is described for the generation of multilayered alginate microcapsules with an outer alginate layer that can be used for the delivery of FGF-1. The influence of alginate concentration and composition (high mannuronic acid (M) or guluronic acid (G) content) on outer layer size and stability, protein encapsulation efficiency, and release kinetics was investigated. The technique results in a stable outer layer of alginate with a mean thickness between 113 and 164 μm, increasing with alginate concentration and G-content. The outer layer was able to encapsulate and release FGF-1 for up to 30 days, with 1.25% of high G alginate displaying the most sustained release. The released FGF-1 retained its biologic activity in the presence of heparin, and the addition of the outer layer did not alter the permselectivity of the PLO coat. This technique could be used to generate encapsulation systems that deliver proteins to stimulate local neovascularization around encapsulated islets.
Collapse
Affiliation(s)
- Omaditya Khanna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
9
|
Le KN, Hwang CW, Tzafriri AR, Lovich MA, Hayward A, Edelman ER. Vascular regeneration by local growth factor release is self-limited by microvascular clearance. Circulation 2009; 119:2928-35. [PMID: 19470891 DOI: 10.1161/circulationaha.108.823609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The challenge of angiogenesis science is that stable sustained vascular regeneration in humans has not been realized despite promising preclinical findings. We hypothesized that angiogenic therapies powerfully self-regulate by dynamically altering tissue characteristics. Induced neocapillaries increase drug clearance and limit tissue retention and subsequent angiogenesis even in the face of sustained delivery. METHODS AND RESULTS We quantified how capillary flow clears fibroblast growth factor after local epicardial delivery. Fibroblast growth factor spatial loading was significantly reduced with intact coronary perfusion. Penetration and retention decreased with transendothelial permeability, a trend diametrically opposite to intravascular delivery, in which factor delivery depends on vascular leak, but consistent with a continuum model of drug transport in perfused tissues. Model predictions of fibroblast growth factor sensitivity to manipulations of its diffusivity and transendothelial permeability were validated by conjugation to sucrose octasulfate. Induction of neocapillaries adds pharmacokinetic complexity. Sustained local fibroblast growth factor delivery in vivo produced a burst of neovascularization in ischemic myocardium but was followed by drug washout and a 5-fold decrease in fibroblast growth factor penetration depth. CONCLUSIONS The very efficacy of proangiogenic compounds enhances their clearance and abrogates their pharmacological benefit. This self-limiting property of angiogenesis may explain the failures of promising proangiogenic therapies.
Collapse
Affiliation(s)
- Kha N Le
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Room E25-442, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Lin H, Lin S, Qu J, Xiao J, Huang Y, Xiao Y, Fu X, Yang Y, Li X. Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia-reperfusion injury in rats. J Cell Mol Med 2009; 14:1998-2005. [PMID: 19432810 PMCID: PMC3823281 DOI: 10.1111/j.1582-4934.2009.00786.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The development of non-invasive ocular drug delivery systems is of practical importance in the treatment of retinal disease. In this study, we evaluated the efficacy of transactivator of transcription protein transduction domain (TAT-PTD, TAT(49-57)) as a vehicle to deliver acidic FGF (aFGF) to retina in rats. TAT-conjugated aFGF-His (TAT-aFGF-His) exhibited efficient penetration into the retina following topical administration to the ocular surface. Immunochemical staining with anti-His revealed that TAT-aFGF-His proteins were readily found in the retina (mainly in the ganglion cell layer) at 30 min. and remained detectable for at least 8 hrs after administration. In contrast, His(+) proteins were undetectable in the retina after topical administration of aFGF-His, indicating that aFGF-His cannot penetrate the ocular barrier. Furthermore, TAT-aFGF-His, but not aFGF-His, mediated significant protection against retinal ischemia-reperfusion (IR) injury. After IR injury, retina from TAT-aFGF-His-treated rats showed better-maintained inner retinal layer structure, reduced apoptosis of retinal ganglion cells and improved retinal function compared to those treated with aFGF-His or PBS. These results indicate that conjugation of TAT to aFGF-His can markedly improve the ability of aFGF-His to penetrate the ocular barrier without impairing its biological function. Thus, TAT(49-57) provides a potential vehicle for efficient drug delivery in the treatment of retinal disease.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering of Zhejiang Province, School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lin S, Xu H, Xiao J, Liu Y, Zhang Y, Cai L, Li X, Tan Y. Combined Use of Acid Fibroblast Growth Factor, Granulocyte Colony-stimulating Factor and Zinc Sulphate Accelerates Diabetic Ulcer Healing. JOURNAL OF HEALTH SCIENCE 2009; 55:910-922. [DOI: 10.1248/jhs.55.910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Affiliation(s)
- Shaoqiang Lin
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Hengwu Xu
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Jian Xiao
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Yanlong Liu
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Yi Zhang
- The Chinese-American Research Institute for Diabetic Complications
| | - Lu Cai
- The Chinese-American Research Institute for Diabetic Complications
- Department of Pediatrics, the University of Louisville
| | - Xiaokun Li
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
- Department of Pediatrics, the University of Louisville
| |
Collapse
|
12
|
Sodha NR, Boodhwani M, Clements RT, Feng J, Xu SH, Sellke FW. Coronary microvascular dysfunction in the setting of chronic ischemia is independent of arginase activity. Microvasc Res 2007; 75:238-46. [PMID: 17707069 PMCID: PMC2289769 DOI: 10.1016/j.mvr.2007.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/21/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic myocardial ischemia induces endothelial dysfunction in the coronary microcirculation resulting in impaired nitric oxide signaling. This dysfunction has wide-ranging effects including impaired tissue perfusion and is implicated in impairment of the angiogenic process in settings of endothelial dysfunction. We hypothesized chronic myocardial ischemia results in increased activity of Arginase I, diminishing bioavailability of l-arginine, the substrate for endothelial nitric oxide production. METHODS Chronic myocardial ischemia was induced for 7-weeks in 6 Yucatan miniswine utilizing an ameroid constrictor placed around the left circumflex coronary artery. Ischemic and non-ischemic tissue was harvested at the 7-week time point. Expression of Arginase I, eNOS, and phospho-eNOS was assessed utilizing Western blotting. Arginase activity was measured. Immunofluorescent staining assessed expression of Arginase I between ischemic and non-ischemic microvessels. Coronary microvascular relaxation studies were performed. RESULTS Arginase I expression, activity, and staining was similar between ischemic and non-ischemic territories. Significant impairments in coronary microvascular relaxation were observed in microvessels from the ischemic territory in response to endothelial-dependent agents but remained similar between territories in response to endothelial independent agents. Regression analysis between arginase activity and degree of microvascular vasorelaxation demonstrated no significant correlation. CONCLUSIONS Coronary microvascular dysfunction in the setting of chronic myocardial ischemia occurs independently of Arginase I activity and expression. Alternative therapeutic strategies focusing away from arginine may be need for the treatment of this dysfunction.
Collapse
Affiliation(s)
- Neel R. Sodha
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Munir Boodhwani
- Division of Cardiac Surgery, Ottawa Heart Institute, University of Ottawa, Ottawa, ON
| | - Richard T. Clements
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jun Feng
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shu Hua Xu
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Post MJ, Laham RJ, Kuntz RE, Novicki D, Simons M. The effect of intracoronary fibroblast growth factor-2 on restenosis after primary angioplasty or stent placement in a pig model of atherosclerosis. Clin Cardiol 2006; 25:271-8. [PMID: 12058790 PMCID: PMC6653872 DOI: 10.1002/clc.4960250606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Therapeutic angiogenesis, if combined with primary percutaneous transluminal coronary angioplasty or stent placement, could improve the outcome of patients suffering from multifocal coronary disease. HYPOTHESIS Because of the concern that angiogenic growth factors might promote restenosis, we studied the effect of a single intracoronary administration of recombinant fibroblast growth factor (rFGF)-2 on restenosis after balloon angioplasty and stent placement in a pig model of coronary atherosclerosis. METHODS In 24 Yucatan minipigs, coronary lesions were induced by arterial injury and 3 months of atherogenic diet. After 3 months, repeat catheterization was performed with balloon dilation or stent placement at the injured sites, with a follow-up of 6 weeks. Results were monitored using quantitative angiography, intravascular ultrasound (IVUS), and histomorphometry. RESULTS Intracoronary rFGF-2 2 microg/kg did not affect neointima formation or remodeling in this model. A small but significant aggravation of late lumen loss was observed in the reference segments of the rFGF-2-treated group. Angiographic and echographic late lumen loss, intimal hyperplasia, and arterial remodeling, as well as histologic neointima were all similar in the rFGF-2- and the vehicle-treated group. Confirming earlier studies from our group and those of others, stented arteries compared with balloon-dilated arteries had increased angiographic late lumen loss, a trend toward increased intimal hyperplasia and decreased remodeling. CONCLUSION We conclude that rFGF-2 does not aggravate restenosis after balloon dilation or stenting in this pig model of coronary atherosclerosis. Future combinations of angioplasty and therapeutic angiogenesis in a single session should be pursued as a feasible and safe strategy.
Collapse
Affiliation(s)
- Mark J Post
- Dartmouth Medical School, Hanover, New Hampshire, USA.
| | | | | | | | | |
Collapse
|
14
|
Sun F, Sánchez FM, Crisóstomo V, Luis L, Usón J, Maynar M. Subxiphoid access to normal pericardium with micropuncture set: technical feasibility study in pigs. Radiology 2005; 238:719-24. [PMID: 16371586 DOI: 10.1148/radiol.2382042182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was performed with approval from the ethics committee for animal research of the local government. The purpose of the study was to evaluate the technical feasibility of a technique for subxiphoid access to the normal pericardial space with a micropuncture set in 10 large white pigs. With fluoroscopic guidance, a fine needle was inserted through a subxiphoid approach into the anterior mediastinal space to puncture the pericardium, and a micropuncture set was placed in the pericardial space successfully in all animals without complications. Necropsy at 24 hours did not reveal hemomediastinum, hemopericardium, or laceration of the pericardium. Results of the experiments in animals indicated that the technique was feasible and safe.
Collapse
Affiliation(s)
- Fei Sun
- Center for Minimally Invasive Surgery, Campus Universitario, Avenida de la Universidad, s/n, 10071 Cáceres, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE Tissue engineering seeks to replace and regrow damaged or diseased tissues and organs from either cells resident in the surrounding tissue or cells transplanted to the tissue site. The purpose of this review is to present the application of polymeric delivery systems for growth factor delivery in tissue engineering. METHODS Growth factors direct the phenotype of both differentiated and stem cells, and methods used to deliver these molecules include the development of systems to deliver the protein itself, genes encoding the factor, or cells secreting the factor. RESULTS Results in animal models and clinical trials indicate that these approaches may be successfully used to promote the regeneration of numerous tissue types. CONCLUSIONS Controlling the dose, location, and duration of these factors through polymeric delivery strategies will dictate their utility in tissue regeneration.
Collapse
Affiliation(s)
- Ruth R Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
16
|
Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:355-63. [PMID: 10027394 PMCID: PMC1850015 DOI: 10.1016/s0002-9440(10)65282-0] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/1998] [Indexed: 11/19/2022]
Abstract
Diabetes is a major risk factor for coronary and peripheral artery diseases. Although diabetic patients often present with advanced forms of these diseases, it is not known whether the compensatory mechanisms to vascular ischemia are affected in this condition. Accordingly, we sought to determine whether diabetes could: 1) impair the development of new collateral vessel formation in response to tissue ischemia and 2) inhibit cytokine-induced therapeutic neovascularization. Hindlimb ischemia was created by femoral artery ligation in nonobese diabetic mice (NOD mice, n = 20) and in control C57 mice (n = 20). Hindlimb perfusion was evaluated by serial laser Doppler studies after the surgery. In NOD mice, measurement of the Doppler flow ratio between the ischemic and the normal limb indicated that restoration of perfusion in the ischemic hindlimb was significantly impaired. At day 14 after surgery, Doppler flow ratio in the NOD mice was 0.49+/-0.04 versus 0.73+/-0.06 for the C57 mice (P< or =0.005). This impairment in blood flow recovery persisted throughout the duration of the study with Doppler flow ratio values at day 35 of 0.50+/-0.05 versus 0.90+/-0.07 in the NOD and C57 mice, respectively (P< or =0.001). CD31 immunostaining confirmed the laser Doppler data by showing a significant reduction in capillary density in the NOD mice at 35 days after surgery (302+/-4 capillaries/mm2 versus 782+/-78 in C57 mice (P< or =0.005). The reduction in neovascularization in the NOD mice was the result of a lower level of vascular endothelial growth factor (VEGF) in the ischemic tissues, as assessed by Northern blot, Western blot and immunohistochemistry. The central role of VEGF was confirmed by showing that normal levels of neovascularization (compared with C57) could be achieved in NOD mice that had been supplemented for this growth factor via intramuscular injection of an adenoviral vector encoding for VEGF. We conclude that 1) diabetes impairs endogenous neovascularization of ischemic tissues; 2) the impairment in new blood vessel formation results from reduced expression of VEGF; and 3) cytokine supplementation achieved by intramuscular adeno-VEGF gene transfer restores neovascularization in a mouse model of diabetes.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Genetic Therapy
- Genetic Vectors
- Hindlimb/blood supply
- Hindlimb/pathology
- Immunoenzyme Techniques
- Injections, Intramuscular
- Ischemia/pathology
- Ischemia/physiopathology
- Ischemia/therapy
- Laser-Doppler Flowmetry
- Lymphokines/genetics
- Lymphokines/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/therapy
- RNA, Messenger/biosynthesis
- Regional Blood Flow
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- A Rivard
- Department of Medicine (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | | | | | | | |
Collapse
|