1
|
Bayona C, Olaizola-Rodrigo C, Sharko V, Ashrafi M, Barrio JD, Doblaré M, Monge R, Ochoa I, Oliván S. A Novel Multicompartment Barrier-Free Microfluidic Device Reveals the Impact of Extracellular Matrix Stiffening and Temozolomide on Immune-Tumor Interactions in Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409229. [PMID: 39901479 DOI: 10.1002/smll.202409229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Indexed: 02/05/2025]
Abstract
The immune system plays a crucial role in shaping the glioblastoma tumor microenvironment, characterized by its complexity and dynamic interactions. Understanding the tumor-immune crosstalk is essential for advancing cancer research and therapeutic development. Here, a novel multicompartment, barrier-free microfluidic device is presented that overcomes the limitations of existing models by enabling direct tumor-immune interactions without physical barriers, preserving natural immune cell infiltration. This platform supports the independent and simultaneous culture of tumor and immune cells, replicating the healthy-tumoral stroma interface, and allows investigating the effect of matrix stiffness and chemotherapy on both populations. The findings reveal that increased collagen concentration promotes tumor invasiveness while impairing immune cell infiltration. Additionally, temozolomide treatment reduces immune cell motility but enhances anti-tumor immune responses. These insights highlight the critical roles of extracellular matrix mechanics and chemotherapy in tumor progression and immune modulation, establishing this device as a powerful tool for studying glioblastoma-immune dynamics and evaluating therapeutic strategies.
Collapse
Affiliation(s)
- Clara Bayona
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain
| | - Claudia Olaizola-Rodrigo
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- BEOnChip S.L., Zaragoza, 50018, Spain
| | - Vira Sharko
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain
| | - Mehran Ashrafi
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain
| | - Jesús Del Barrio
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Manuel Doblaré
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Department of Organic Chemistry, Zaragoza, 50009, Spain
| | | | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Department of Organic Chemistry, Zaragoza, 50009, Spain
| | - Sara Oliván
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, 50009, Spain
| |
Collapse
|
2
|
Van Os L, Engelhardt B, Guenat OT. Integration of immune cells in organs-on-chips: a tutorial. Front Bioeng Biotechnol 2023; 11:1191104. [PMID: 37324438 PMCID: PMC10267470 DOI: 10.3389/fbioe.2023.1191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Viral and bacterial infections continue to pose significant challenges for numerous individuals globally. To develop novel therapies to combat infections, more insight into the actions of the human innate and adaptive immune system during infection is necessary. Human in vitro models, such as organs-on-chip (OOC) models, have proven to be a valuable addition to the tissue modeling toolbox. The incorporation of an immune component is needed to bring OOC models to the next level and enable them to mimic complex biological responses. The immune system affects many (patho)physiological processes in the human body, such as those taking place during an infection. This tutorial review introduces the reader to the building blocks of an OOC model of acute infection to investigate recruitment of circulating immune cells into the infected tissue. The multi-step extravasation cascade in vivo is described, followed by an in-depth guide on how to model this process on a chip. Next to chip design, creation of a chemotactic gradient and incorporation of endothelial, epithelial, and immune cells, the review focuses on the hydrogel extracellular matrix (ECM) to accurately model the interstitial space through which extravasated immune cells migrate towards the site of infection. Overall, this tutorial review is a practical guide for developing an OOC model of immune cell migration from the blood into the interstitial space during infection.
Collapse
Affiliation(s)
- Lisette Van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Hammel JH, Cook SR, Belanger MC, Munson JM, Pompano RR. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu Rev Biomed Eng 2021; 23:461-491. [PMID: 33872520 PMCID: PMC8277680 DOI: 10.1146/annurev-bioeng-082420-124920] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.
Collapse
Affiliation(s)
- Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| |
Collapse
|
4
|
Hornung A, Sbarrato T, Garcia-Seyda N, Aoun L, Luo X, Biarnes-Pelicot M, Theodoly O, Valignat MP. A Bistable Mechanism Mediated by Integrins Controls Mechanotaxis of Leukocytes. Biophys J 2019; 118:565-577. [PMID: 31928762 DOI: 10.1016/j.bpj.2019.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022] Open
Abstract
Recruitment of leukocytes from blood vessels to inflamed zones is guided by biochemical and mechanical stimuli, with the mechanisms only partially deciphered. Here, we studied the guidance by the flow of primary human effector T lymphocytes crawling on substrates coated with ligands of integrins lymphocyte function-associated antigen 1 (LFA-1) (αLβ2) and very late antigen 4 (VLA-4) (α4β1). We reveal that cells segregate in two populations of opposite orientation for combined adhesion and show that decisions of orientation rely on a bistable mechanism between LFA-1-mediated upstream and VLA-4-mediated downstream phenotypes. At the molecular level, bistability results from a differential front-rear polarization of both integrin affinities, combined with an inhibiting cross talk of LFA-1 toward VLA-4. At the cellular level, direction is determined by the passive, flow-mediated orientation of the nonadherent cell parts, the rear uropod for upstream migration, and the front lamellipod for downstream migration. This chain of logical events provides a comprehensive mechanism of guiding, from stimuli to cell orientation.
Collapse
Affiliation(s)
| | - Thomas Sbarrato
- Aix Marseille University, CNRS, INSERM, LAI, Marseille, France
| | | | - Laurene Aoun
- Aix Marseille University, CNRS, INSERM, LAI, Marseille, France
| | - Xuan Luo
- Aix Marseille University, CNRS, INSERM, LAI, Marseille, France
| | | | | | | |
Collapse
|
5
|
Ed Rainger G, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, Lordkipanidzé M, Nash GB. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets 2015. [PMID: 26196409 PMCID: PMC4673595 DOI: 10.3109/09537104.2015.1064881] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Besides their role in the formation of thrombus during haemostasis, it is becoming clear that platelets contribute to a number of other processes within the vasculature. Indeed, the integrated function of the thrombotic and inflammatory systems, which results in platelet-mediated recruitment of leukocytes, is now considered to be of great importance in the propagation, progression and pathogenesis of atherosclerotic disease of the arteries. There are three scenarios by which platelets can interact with leukocytes: (1) during haemostasis, when platelets adhere to and are activated on sub-endothelial matrix proteins exposed by vascular damage and then recruit leukocytes to a growing thrombus. (2) Platelets adhere to and are activated on stimulated endothelial cells and then bridge blood borne leukocytes to the vessel wall and. (3) Adhesion between platelets and leukocytes occurs in the blood leading to formation of heterotypic aggregates prior to contact with endothelial cells. In the following review we will not discuss leukocyte recruitment during haemostasis, as this represents a physiological response to tissue trauma that can progress, at least in its early stages, in the absence of inflammation. Rather we will deal with scenarios 2 and 3, as these pathways of platelet–leukocyte interactions are important during inflammation and in chronic inflammatory diseases such as atherosclerosis. Indeed, these interactions mean that leukocytes possess means of adhesion to the vessel wall under conditions that may not normally be permissive of leukocyte–endothelial cell adhesion, meaning that the disease process may be able to bypass the regulatory pathways which would ordinarily moderate the inflammatory response.
Collapse
Affiliation(s)
- G Ed Rainger
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The Medical School, The University of Birmingham , Birmingham , UK and
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Akenhead ML, Horrall NM, Rowe D, Sethu P, Shin HY. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions. J Biomech Eng 2015; 137:2336772. [PMID: 26065495 DOI: 10.1115/1.4030824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 11/08/2022]
Abstract
Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s(-1) shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).
Collapse
|
7
|
Hanlon SD, Smith CW, Sauter MN, Burns AR. Integrin-dependent neutrophil migration in the injured mouse cornea. Exp Eye Res 2014; 120:61-70. [PMID: 24462632 DOI: 10.1016/j.exer.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/12/2013] [Accepted: 01/04/2014] [Indexed: 12/25/2022]
Abstract
As an early responder to an inflammatory stimulus, neutrophils (PMNs) must exit the vasculature and migrate through the extravascular tissue to the site of insult, which is often remote from the point of extravasation. Following a central epithelial corneal abrasion, PMNs recruited from the peripheral limbal vasculature migrate into the avascular corneal stroma. In vitro studies suggest PMN locomotion over 2-D surfaces is dependent on integrin binding while migration within 3-D matrices can be integrin-independent. Electron micrographs of injured mouse corneas show migrating PMNs make extensive surface contact not only with collagen fibrils in the extracellular matrix (ECM), but also keratocytes. Evidence supporting involvement of integrins in corneal inflammation has prompted research and development of integrin blocking agents for use as anti-inflammatory therapies. However, the role of integrin binding (cell-cell; cell-ECM) during stromal migration in the inflamed cornea has previously not been clearly defined. In this study in vivo time lapse imaging sequences provided the means to quantify cell motility while observing PMN interactions with keratocytes and other stromal components in the living eye. The relative contribution of β1, β2 and β3 integrins to PMN locomotion in the inflamed mouse cornea was investigated using blocking antibodies against the respective integrins. Of the 3 integrin families (β1, β2 and β3) investigated for their potential role in PMN migration, only β1 antibody blockade produced a significant, but partial, reduction in PMN motility. The preferential migration of PMNs along the keratocyte network was not affected by integrin blockade. Hence, the dominant mechanism for PMN motility within the corneal stroma appears to be integrin-independent as does the restriction of PMN migration paths to the keratocyte network.
Collapse
Affiliation(s)
- Samuel D Hanlon
- College of Optometry, University of Houston, Houston, TX, USA.
| | - C Wayne Smith
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marika N Sauter
- College of Optometry, University of Houston, Houston, TX, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res 2013; 355:375-96. [PMID: 24297047 DOI: 10.1007/s00441-013-1753-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
There is a critical need to identify molecules that modulate the biology of neutrophils because activated neutrophils, though necessary for host defense, cause exuberant tissue damage through production of reactive oxygen species and increased lifespan. Angiostatin, an endogenous anti-angiogenic cleavage product of plasminogen, binds to integrin αvβ3, ATP synthase and angiomotin and its expression is increased in inflammatory conditions. We test the hypothesis that angiostatin inhibits neutrophil activation, induces apoptosis and blocks recruitment in vivo and in vitro. The data show immuno-reactivity for plasminogen/angiostatin in resting neutrophils. Angiostatin conjugated to FITC revealed that angiostatin was endocytozed by activated mouse and human neutrophils in a lipid raft-dependent fashion. Co-immunoprecipitation of human neutrophil lysates, confocal microscopy of isolated mouse and human neutrophils and functional blocking experiments showed that angiostatin complexes with flotillin-1 along with integrin αvβ3 and ATP synthase. Angiostatin inhibited fMLP-induced neutrophil polarization, as well as caused inhibition of hsp-27 phosphorylation and stabilization of microtubules. Angiostatin treatment, before or after LPS-induced neutrophil activation, inhibited phosphorylation of p38 and p44/42 MAPKs, abolished reactive oxygen species production and released the neutrophils from suppressed apoptosis, as indicated by expression of activated caspase-3 and morphological evidence of apoptosis. Finally, intravital microscopy and myeloperoxidase assay showed inhibition of neutrophil recruitment in post-capillary venules of TNFα-treated cremaster muscle in mouse. These in vitro and in vivo data demonstrate angiostatin as a broad deactivator and silencer of neutrophils and an inhibitor of their migration. These data potentially open new avenues for the development of anti-inflammatory drugs.
Collapse
|
9
|
Valignat MP, Theodoly O, Gucciardi A, Hogg N, Lellouch AC. T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophys J 2013; 104:322-31. [PMID: 23442854 DOI: 10.1016/j.bpj.2012.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/01/2012] [Accepted: 12/05/2012] [Indexed: 01/13/2023] Open
Abstract
As they leave the blood stream and travel to lymph nodes or sites of inflammation, T lymphocytes are captured by the endothelium and migrate along the vascular wall to permissive sites of transmigration. These processes take place under the influence of hemodynamic shear stress; therefore, we investigated how migrational speed and directionality are influenced by variations in shear stress. We examined human effector T lymphocytes on intercellular adhesion molecule 1 (ICAM-1)-coated surfaces under the influence of shear stresses from 2 to 60 dyn.cm(-2). T lymphocytes were shown to respond to shear stress application by a rapid (30 s) and fully reversible orientation of their migration against the fluid flow without a change in migration speed. Primary T lymphocytes migrating on ICAM-1 in the presence of uniformly applied SDF-1α were also found to migrate against the direction of shear flow. In sharp contrast, neutrophils migrating in the presence of uniformly applied fMLP and leukemic HSB2 T lymphocytes migrating on ICAM-1 alone oriented their migration downstream, with the direction of fluid flow. Our findings suggest that, in addition to biochemical cues, shear stress is a contributing factor to leukocyte migration directionality.
Collapse
Affiliation(s)
- Marie-Pierre Valignat
- Laboratoire d'Adhésion Cellulaire et Inflammation, Aix Marseille Université, CNRS UMR7333, Marseille, France.
| | | | | | | | | |
Collapse
|
10
|
Abstract
During angiogenesis, αv integrins are overexpressed on the endothelial cell surface to facilitate the growth and survival of newly forming vessels. Accordingly, blocking αv integrin function by disrupting ligand binding can produce an antiangiogenic effect. Although the integrin ectodomain regulates ligand binding specificity, the short cytoplasmic tail facilitates intracellular signaling pathways through the recruitment and activation of specific kinases and signaling intermediates. This in turn controls endothelial cell adhesion, morphology, migration, invasion, proliferation, and survival. These same integrin-mediated signaling pathways are exploited in cancer to promote the invasiveness and survival of tumor cells and to manipulate the host microenvironment to provide ample blood vessel and stromal resources to support tumor growth and metastatic spread. Because expression of αv integrins on distinct cell types contributes to cancer growth, αv integrin antagonists have the potential to disrupt multiple aspects of disease progression.
Collapse
Affiliation(s)
- Sara M Weis
- Moores UCSD Cancer Center, and University of California, San Diego, La Jolla, California 92093-0803, USA; Department of Pathology, University of California, San Diego, La Jolla, California 92093-0803, USA
| | | |
Collapse
|
11
|
Burton VJ, Butler LM, McGettrick HM, Stone PC, Jeffery HC, Savage CO, Rainger GE, Nash GB. Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture. Exp Cell Res 2010; 317:276-92. [PMID: 21056557 PMCID: PMC3025349 DOI: 10.1016/j.yexcr.2010.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 12/25/2022]
Abstract
We investigated the migration of human leukocytes through endothelial cells (EC), and particularly their underlying basement membrane (BM). EC were cultured for 20 days on 3 μm-pore filters or collagen gels to form a distinct BM, and then treated with tumour necrosis factor-α, interleukin-1β or interferon-γ. Neutrophil migration through the cytokine-treated EC and BM was delayed for 20-day compared to 4-day cultures. The BM alone obstructed chemotaxis of neutrophils, and if fresh EC were briefly cultured on stripped BM, there was again a hold-up in migration. In studies with lymphocytes and monocytes, we could detect little hold-up of migration for 20-day versus 4-day cultures, in either the filter- or gel-based models. Direct microscopic observations showed that BM also held-up neutrophil migration under conditions of flow. Treatment of upper and/or lower compartments of filters with antibodies against integrins, showed that neutrophil migration through the endothelial monolayer was dependent on β2-integrins, but not β1- or β3-integrins. Migration from the subendothelial compartment was supported by β1- and β2-integrins for all cultures, but blockade of β3-integrin only inhibited migration effectively for 20-day cultures. Flow cytometry indicated that there was no net increase in expression of β1- or β3-integrins during neutrophil migration, and that their specific subendothelial function was likely dependent on turnover of integrins during migration. These studies show that BM is a distinct barrier to migration of human neutrophils, and that β3-integrins are particularly important in crossing this barrier. The lesser effect of BM on lymphocytes and monocytes supports the concept that crossing the BM is a separate, leukocyte-specific, regulated step in migration.
Collapse
Affiliation(s)
- Victoria J Burton
- Centre for Cardiovascular Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ambravaneswaran V, Wong IY, Aranyosi AJ, Toner M, Irimia D. Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integr Biol (Camb) 2010; 2:639-47. [PMID: 20676444 PMCID: PMC3001269 DOI: 10.1039/c0ib00011f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The directional migration of human neutrophils in classical chemotaxis assays is often described as a "biased random walk" implying significant randomness in speed and directionality. However, these experiments are inconsistent with in vivo observations, where neutrophils can navigate effectively through complex tissue microenvironments towards their targets. Here, we demonstrate a novel biomimetic assay for neutrophil chemotaxis using enclosed microfluidic channels. Remarkably, under these enclosed conditions, neutrophils recapitulate the highly robust and efficient navigation observed in vivo. In straight channels, neutrophils undergo sustained, unidirectional motion towards a chemoattractant source. In more complex maze-like geometries, neutrophils are able to select the most direct route over 90% of the time. Finally, at symmetric bifurcations, neutrophils split their leading edge into two sections and a "tug of war" ensues. The competition between the two new leading edges is ultimately resolved by stochastic, symmetry-breaking behavior. This behavior is suggestive of directional decision-making localized at the leading edge and a signaling role played by the cellular cytoskeleton.
Collapse
Affiliation(s)
- Vijayakrishnan Ambravaneswaran
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Ian Y Wong
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Alexander J Aranyosi
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| |
Collapse
|
13
|
Abstract
Prolonged exposure to fluid shear stress alters leukocyte functions associated with the immune response. We examined the initial response of freshly isolated human leukocytes to fluid shear stress under high magnification. Adherent leukocytes exhibit a rapid biomechanical response to physiological levels of fluid shear stress. After passive displacement in the direction of a constant fluid shear stress, adherent leukocytes actively recoil back in the opposite direction of the fluid flow. Recoil is observed within seconds of the applied fluid shear stress. Simultaneously, fluid shear stress induces a stiffening of the cell. The immediate cell displacement in response to a step increase in fluid shear stress is greatly attenuated in subsequent steps compared to the initial fluid shear stress step. Recoil is not mediated by actin polymerization-dependent mechanisms, as cytochalasin D had no effect on this early response. However, stiffening was determined in part by an intact actin cytoskeleton. Inhibiting myosin force generation with ML-7 abolished the recoil and stiffening responses, implicating force generation by myosin as an important contributor to the early leukocyte response to fluid shear stress. This initial shear stress response may be particularly important in facilitating leukocyte attachment under sustained fluid shear stress by the flowing blood in the microcirculation.
Collapse
|
14
|
Smith LA, Aranda-Espinoza H, Haun JB, Hammer DA. Interplay between shear stress and adhesion on neutrophil locomotion. Biophys J 2006; 92:632-40. [PMID: 17071667 PMCID: PMC1751380 DOI: 10.1529/biophysj.105.079418] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukocyte locomotion over the lumen of inflamed endothelial cells is a critical step, following firm adhesion, in the inflammatory response. Once firmly adherent, the cell will spread and will either undergo diapedesis through individual vascular endothelial cells or will migrate to tight junctions before extravasating to the site of injury or infection. Little is known about the mechanisms of neutrophil spreading or locomotion, or how motility is affected by the physical environment. We performed a systematic study to investigate the effect of the type of adhesive ligand and shear stress on neutrophil motility by employing a parallel-plate flow chamber with reconstituted protein surfaces of E-selectin, E-selectin/PECAM-1, and E-selectin/ICAM-1. We find that the level and type of adhesive ligand and the shear rate are intertwined in affecting several metrics of migration, such as the migration velocity, random motility, index of migration, and the percentage of cells moving in the direction of flow. On surfaces with high levels of PECAM-1, there is a near doubling in random motility at a shear rate of 180 s(-1) compared to the motility in the absence of flow. On surfaces with ICAM-1, neutrophil random motility exhibits a weaker response to shear rate, decreasing slightly when shear rate is increased from static conditions to 180 s(-1), and is only slightly higher at 1000 s(-1) than in the absence of flow. The random motility increases with increasing surface concentrations of E-selectin and PECAM-1 under static and flow conditions. Our findings illustrate that the endothelium may regulate neutrophil migration in postcapillary venules through the presentation of various adhesion ligands at sites of inflammation.
Collapse
Affiliation(s)
- Lee A Smith
- Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
15
|
Coughlin MF, Schmid-Schönbein GW. Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys J 2005; 87:2035-42. [PMID: 15345579 PMCID: PMC1304606 DOI: 10.1529/biophysj.104.042192] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that circulating leukocytes respond to physiological levels of fluid shear stress. This study was designed to examine the shear stress response of individual leukocytes adhering passively to a glass surface. Human leukocytes were exposed to a step fluid shear stress with amplitude between 0.2 and 4 dyn/cm(2) and duration between 1 and 20 min. The response of the cells was determined in the form of projected cell area measurements by high-resolution observation before, during, and after fluid shear application. All cells selected initially had a round morphology. After application of fluid shear many cells projected pseudopodia and spread on the glass surface. The number of leukocytes responding with pseudopod projection and the extent of cell spreading increased with increasing amplitude and duration of fluid shear stress. Pseudopod projection after exposure to a step fluid shear occurs following a delay that is insensitive to the shear stress amplitude and duration. Leukocytes that did not project pseudopodia and spread in response to low shear stress could be shown to respond to a second shear step of higher amplitude. The spreading response requires an intact actin network and activated myosin molecules. Depleting the cell glycocalyx with protease treatment enhances the spreading response in sheared leukocytes. These results indicate that passive leukocytes respond to fluid shear stress with active pseudopod projection and cell spreading. This behavior may contribute to cell spreading on endothelium and other cells as well as to transendothelial migration of leukocytes in the microcirculation.
Collapse
Affiliation(s)
- Mark F Coughlin
- Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California, San Diego, La Jolla, California 92093-0412, USA.
| | | |
Collapse
|
16
|
Sugihara-Seki M, Schmid-Schönbein GW. The Fluid Shear Stress Distribution on the Membrane of Leukocytes in the Microcirculation. J Biomech Eng 2003; 125:628-38. [PMID: 14618922 DOI: 10.1115/1.1611515] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 μm diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 μm diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively.
Collapse
Affiliation(s)
- Masako Sugihara-Seki
- Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan.
| | | |
Collapse
|
17
|
Friedl P, Borgmann S, Bröcker E. Amoeboid leukocyte crawling through extracellular matrix: lessons from the
Dictyostelium
paradigm of cell movement. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.4.491] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Peter Friedl
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Stefan Borgmann
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| | - Eva‐B. Bröcker
- Cell Migration Laboratory, Department of Dermatology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Bhattacharya S, Patel R, Sen N, Quadri S, Parthasarathi K, Bhattacharya J. Dual signaling by the alpha(v)beta(3)-integrin activates cytosolic PLA(2) in bovine pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1049-56. [PMID: 11290530 DOI: 10.1152/ajplung.2001.280.5.l1049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitronectin, which ligates the alpha(v)beta(3)-integrin, increases both lung capillary permeability and lung endothelial Ca(2+). In stable monolayers of bovine pulmonary artery endothelial cells (BPAECs) viewed with confocal microscopy, multimeric vitronectin aggregated the apically located alpha(v)beta(3)-integrin. This caused arachidonate release that was inhibited by pretreating the monolayers with the anti-alpha(v)beta(3) monoclonal antibody (MAb) LM609. No inhibition occurred in the presence of the isotypic MAb PIF6, which recognizes the integrin alpha(v)beta(5). Vitronectin also caused membrane translocation and phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) as well as tyrosine phosphorylation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) 2. The cPLA(2) inhibitor arachidonyl trifluoromethylketone, the tyrosine kinase inhibitor genistein, and the MAPK kinase inhibitor PD-98059 all blocked the induced arachidonate release. PD-98059 did not inhibit the increase of cytosolic Ca(2+) or cPLA(2) translocation, although it blocked tyrosine phosphorylation of ERK2. Moreover, although the intracellular Ca(2+) chelator MAPTAM also inhibited arachidonate release, it did not inhibit tyrosine phosphorylation of ERK2. These findings indicate that ligation of apical alpha(v)beta(3) in BPAECs caused ERK2 activation and an increase of intracellular Ca(2+), both conjointly required for cPLA(2) activation and arachidonate release. This is the first instance of a tyrosine phosphorylation-initiated "two-hit" signaling pathway that regulates an integrin-induced proinflammatory response.
Collapse
Affiliation(s)
- S Bhattacharya
- Department of Pediatrics, College of Physicians and Surgeons and St. Luke's Roosevelt Hospital Center, Columbia University, New York, New York 10019, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Schroeckh V, Hortschansky P, Fricke S, Luckenbach GA, Riesenberg D. Expression of soluble, recombinant alphavbeta3 integrin fragments in Escherichia coli. Microbiol Res 2000; 155:165-77. [PMID: 11061185 DOI: 10.1016/s0944-5013(00)80030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
No prokaryotic expression of integrin alphavbeta3 has been reported so far. We report here the expression of C-terminally truncated alphavbeta3 receptors in E. coli considering the known features required for dimerization and ligand binding. The expressed protein was insoluble despite of the addition of 'solubilizers' to the culture medium. Osmotic stress conditions combined with added exogenous solutes resulted in a small part of soluble receptor. The alphavbeta3 variants were purified from inclusion bodies or from soluble cytoplasmic maltose binding protein fusions. Heterodimerization of the subunits was proved by immunoprecipitation assays. Receptor-ligand binding was found to depend on the concentration. A competition assay with RGD peptides referred to unspecific receptor-ligand interaction. The latter fact was consistent with the finding that soluble receptors did not bind on RGD peptide-coupled sepharose (GRGDSPK sepharose).
Collapse
Affiliation(s)
- V Schroeckh
- Dept. Appl. Microbiol., Hans Knoell Institute for Natural Products Research, Jena, Germany.
| | | | | | | | | |
Collapse
|
20
|
Shive MS, Salloum ML, Anderson JM. Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections. Proc Natl Acad Sci U S A 2000; 97:6710-5. [PMID: 10823909 PMCID: PMC18711 DOI: 10.1073/pnas.110463197] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms underlying problematic cardiovascular device-associated infections are not understood. Because the outcome of the acute response to infection is largely dependent on the function of neutrophils, the persistence of these infections suggests that neutrophil function may be compromised because of cellular responses to shear stress. A rotating disk system was used to generate physiologically relevant shear stress levels (0-18 dynes/cm(2); 1 dyne = 10 microN) at the surface of a polyetherurethane urea film. We demonstrate that shear stress diminishes phagocytic ability in neutrophils adherent to a cardiovascular device material, and causes morphological and biochemical alterations that are consistent with those described for apoptosis. Complete neutrophil apoptosis occurred at shear stress levels above 6 dynes/cm(2) after only 1 h. Morphologically, these cells displayed irreversible cytoplasmic and nuclear condensation while maintaining intact membranes. Analysis of neutrophil area and filamentous actin content demonstrated concomitant decreases in both cell area and actin content with increasing levels of shear stress. Neutrophil phagocytosis of adherent bacteria decreased with increasing shear stress. Biochemical alterations included membrane phosphatidylserine exposure and DNA fragmentation, as evaluated by in situ annexin V and terminal deoxynucleotidyltransferase-mediated dUTP end labeling (TUNEL) assays, respectively. The potency of the shear-stress effect was emphasized by comparative inductive studies with adherent neutrophils under static conditions. The combination of tumor necrosis factor-alpha and cycloheximide was ineffective in inducing >21% apoptosis after 3 h. These findings suggest a mechanism through which shear stress plays an important role in the development of bacterial infections at the sites of cardiovascular device implantation.
Collapse
Affiliation(s)
- M S Shive
- Department of Biomedical Engineering and Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|