1
|
Agrawal V, Zhong XZ, Chen JJ. Generating dynamic carbon-dioxide traces from respiration-belt recordings: Feasibility using neural networks and application in functional magnetic resonance imaging. FRONTIERS IN NEUROIMAGING 2023; 2:1119539. [PMID: 37554640 PMCID: PMC10406216 DOI: 10.3389/fnimg.2023.1119539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION In the context of functional magnetic resonance imaging (fMRI), carbon dioxide (CO2) is a well-known vasodilator that has been widely used to monitor and interrogate vascular physiology. Moreover, spontaneous fluctuations in end-tidal carbon dioxide (PETCO2) reflects changes in arterial CO2 and has been demonstrated as the largest physiological noise source for denoising the low-frequency range of the resting-state fMRI (rs-fMRI) signal. However, the majority of rs-fMRI studies do not involve CO2 recordings, and most often only heart rate and respiration are recorded. While the intrinsic link between these latter metrics and CO2 led to suggested possible analytical models, they have not been widely applied. METHODS In this proof-of-concept study, we propose a deep-learning (DL) approach to reconstruct CO2 and PETCO2 data from respiration waveforms in the resting state. RESULTS We demonstrate that the one-to-one mapping between respiration and CO2 recordings can be well predicted using fully convolutional networks (FCNs), achieving a Pearson correlation coefficient (r) of 0.946 ± 0.056 with the ground truth CO2. Moreover, dynamic PETCO2 can be successfully derived from the predicted CO2, achieving r of 0.512 ± 0.269 with the ground truth. Importantly, the FCN-based methods outperform previously proposed analytical methods. In addition, we provide guidelines for quality assurance of respiration recordings for the purposes of CO2 prediction. DISCUSSION Our results demonstrate that dynamic CO2 can be obtained from respiration-volume using neural networks, complementing the still few reports in DL of physiological fMRI signals, and paving the way for further research in DL based bio-signal processing.
Collapse
Affiliation(s)
- Vismay Agrawal
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada
| | - Xiaole Z. Zhong
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - J. Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Chen JJ, Gauthier CJ. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Front Physiol 2021; 12:657362. [PMID: 33841190 PMCID: PMC8027080 DOI: 10.3389/fphys.2021.657362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.
Collapse
Affiliation(s)
- J Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
3
|
Morgan BJ, Reichmuth KJ, Peppard PE, Finn L, Barczi SR, Young T, Nieto FJ. Effects of sleep-disordered breathing on cerebrovascular regulation: A population-based study. Am J Respir Crit Care Med 2010; 182:1445-52. [PMID: 20639438 PMCID: PMC3029932 DOI: 10.1164/rccm.201002-0313oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/15/2010] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Cerebrovascular regulation is impaired in patients with moderate to severe obstructive sleep apnea; however, it is unknown whether this impairment exists in individuals with less severe sleep-disordered breathing. OBJECTIVES To test the hypothesis that cerebrovascular responses to hypercapnia are attenuated in a nonclinical population-based cohort. METHODS A rebreathing test that raised end-tidal CO₂ tension by 10 mm Hg was performed during wakefulness in 373 participants of the Wisconsin Sleep Cohort. MEASUREMENTS AND MAIN RESULTS We measured cerebral flow velocity (transcranial Doppler ultrasound); heart rate (electrocardiogram); blood pressure (photoplethysmograph); ventilation (pneumotachograph); and end-tidal CO₂ (expired gas analysis). Cerebrovascular CO₂ responsiveness was quantified as the slope of the linear relationship between flow velocity and end-tidal CO₂ during rebreathing. Linear regression analysis was performed using cerebrovascular CO₂ responsiveness as the outcome variable. Main independent variables were the apnea-hypopnea index and the mean level of arterial oxygen saturation during sleep. We observed a positive correlation between cerebrovascular CO₂ responsiveness and the mean level of oxygen saturation during sleep that was statistically significant in unadjusted analysis and after adjustment for known confounders and the increase in arterial pressure during rebreathing. Each 5% decrease in Sa(O₂) during sleep predicted a decrease in cerebrovascular reactivity of 0.4 ± 0.2 cm/second/mm Hg P(ET)CO₂. In contrast, the negative correlation between cerebrovascular CO₂ responsiveness and apnea-hypopnea index was statistically significant only in the unadjusted analysis. CONCLUSIONS Hypercapnic vasodilation in the cerebral circulation is blunted in individuals with sleep-disordered breathing. This impairment is correlated with hypoxemia during sleep.
Collapse
Affiliation(s)
- Barbara J Morgan
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Middleton Veterans Administration Hospital, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Reichmuth KJ, Dopp JM, Barczi SR, Skatrud JB, Wojdyla P, Hayes D, Morgan BJ. Impaired vascular regulation in patients with obstructive sleep apnea: effects of continuous positive airway pressure treatment. Am J Respir Crit Care Med 2009; 180:1143-50. [PMID: 19745203 DOI: 10.1164/rccm.200903-0393oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Impaired endothelium-dependent vasodilation has been documented in patients with sleep apnea. This impairment may result in blood flow dysregulation during apnea-induced fluctuations in arterial blood gases. OBJECTIVES To test the hypothesis that hypoxic and hypercapnic vasodilation in the forearm and cerebral circulation are impaired in patients with sleep apnea. METHODS We exposed 20 patients with moderate to severe sleep apnea and 20 control subjects, to isocapnic hypoxia and hyperoxic hypercapnia. A subset of 14 patients was restudied after treatment with continuous positive airway pressure. MEASUREMENTS AND MAIN RESULTS Cerebral flow velocity (transcranial Doppler), forearm blood flow (venous occlusion plethysmography), arterial pressure (automated sphygmomanometry), oxygen saturation (pulse oximetry), ventilation (pneumotachograph), and end-tidal oxygen and carbon dioxide tensions (expired gas analysis) were measured during three levels of hypoxia and two levels of hypercapnia. Cerebral vasodilator responses to hypoxia (-0.65 +/- 0.44 vs. -1.02 +/- 0.72 [mean +/- SD] units/% saturation; P = 0.03) and hypercapnia (2.01 +/- 0.88 vs. 2.57 +/- 0.89 units/mm Hg; P = 0.03) were smaller in patients versus control subjects. Hypoxic vasodilation in the forearm was also attenuated (-0.05 +/- 0.09 vs. -0.10 +/- 0.09 unit/% saturation; P = 0.04). Hypercapnia did not elicit forearm vasodilation in either group. Twelve weeks of continuous positive airway pressure treatment enhanced hypoxic vasodilation in the cerebral circulation (-0.83 +/- 0.32 vs. -0.46 +/- 0.29 units/% saturation; P = 0.01) and forearm (-0.19 +/- 0.15 vs. -0.02 +/- 0.08 units/% saturation; P = 0.003), and hypercapnic vasodilation in the brain showed a trend toward improvement (2.24 +/- 0.78 vs. 1.76 +/- 0.64 units/mm Hg; P = 0.06). CONCLUSIONS Vasodilator responses to chemical stimuli in the cerebral circulation and the forearm are impaired in many patients with obstructive sleep apnea. Some of these impairments can be improved with continuous positive airway pressure.
Collapse
Affiliation(s)
- Kevin J Reichmuth
- Departments of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison and Middleton Veterans Administration Hospital, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Ainslie PN, Ashmead JC, Ide K, Morgan BJ, Poulin MJ. Differential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans. J Physiol 2005; 566:613-24. [PMID: 15890697 PMCID: PMC1464750 DOI: 10.1113/jphysiol.2005.087320] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The relative importance of CO2 and sympathetic stimulation in the regulation of cerebral and peripheral vasculatures has not been previously studied in humans. We investigated the effect of sympathetic activation, produced by isometric handgrip (HG) exercise, on cerebral and femoral vasculatures during periods of isocapnia and hypercapnia. In 14 healthy males (28.1 +/- 3.7 (mean +/- S.D.) years), we measured flow velocity (VP; transcranial Doppler ultrasound) in the middle cerebral artery during euoxic isocapnia (ISO, +1 mmHg above rest) and two levels of euoxic hypercapnia (HC5, end-tidal P(CO(2)), P(ET,CO2), = +5 mmHg above ISO; HC10, P(ET,CO2) = +10 above ISO). Each P(ET,CO2) level was maintained for 10 min using the dynamic end-tidal forcing technique, during which increases in sympathetic activity were elicited by a 2-min HG at 30% of maximal voluntary contraction. Femoral blood flow (FBF; Doppler ultrasound), muscle sympathetic nerve activity (MSNA; microneurography) and mean arterial pressure (MAP; Portapres) were also measured. Hypercapnia increased VP and FBF by 5.0 and 0.6% mmHg-1, respectively, and MSNA by 20-220%. Isometric HG increased MSNA by 50% and MAP by 20%, with no differences between ISO, HC5 and HC10. During the ISO HG there was an increase in cerebral vascular resistance (CVR; 20 +/- 11%), while VP remained unchanged. During HC5 and HC10 HG, VP increased (13% and 14%, respectively), but CVR was unchanged. In contrast, HG-induced sympathetic stimulation increased femoral vascular resistance (FVR) during ISO, HC5 and HC10 (17-41%), while there was a general decrease in FBF below ISO. The HG-induced increases in MSNA were associated with increases in FVR in all conditions (r = 0.76-0.87), whereas increases in MSNA were associated with increases in CVR only during ISO (r = 0.91). In summary, in the absence of hypercapnia, HG exercise caused cerebral vasoconstriction, myogenically and/or neurally, which was reflected by increases in CVR and a maintained VP. In contrast, HG increased FVR during conditions of ISO, HC5 and HC10. Therefore, the cerebral circulation is more responsive to alterations in PCO2, and less responsive to sympathetic stimulation than the femoral circulation.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology & Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
6
|
Xu HL, Koenig HM, Ye S, Feinstein DL, Pelligrino DA. Influence of the glia limitans on pial arteriolar relaxation in the rat. Am J Physiol Heart Circ Physiol 2004; 287:H331-9. [PMID: 14962837 DOI: 10.1152/ajpheart.00831.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether damage to the glia limitans (GL), via exposure to the gliotoxin l-alpha-aminoadipic acid (l-alphaAAA), alters hypercapnia-induced pial arteriolar dilation in vivo. Anesthetized female rats were prepared with closed cranial windows. Pial arteriolar diameters were measured using intravital microscopy. l-alphaAAA (2 mM) was injected into the space under the cranial windows 24 h before the study, and injury to the GL was confirmed by light microscopy. l-alphaAAA was associated with a reduction in pial arteriolar CO(2) reactivity to 40-50% of the level seen in vehicle-treated controls, with no further reduction in the CO(2) response after nitric oxide (NO) synthase (NOS) inhibition via N(omega)-nitro-l-arginine (l-NNA). Subsequent blockade of prostanoid synthesis, via indomethacin (Indo), reduced CO(2) reactivity to 10-15% of normal. In vehicle-treated controls, l-NNA, followed by Indo, reduced the response to approximately 50% and then to 15-20% of the normocapnic value, respectively. On the other hand, l-alphaAAA had no effect on vascular responses to the endothelium-dependent vasodilator acetylcholine or the NO donor SNAP and did not alter cortical somatosensory evoked responses. This indicates an absence of any direct l-alphaAAA actions on pial arterioles or influence on neuronal transmission. Furthermore, l-alphaAAA did not alter the vasodilation elicited by topical application of an acidic artificial cerebrospinal fluid solution, suggesting that the GL influences the pial arteriolar relaxation elicited by hypercapnic, but not local extracellular (EC), acidosis. That differences exist in the mechanisms mediating hypercapnia- versus EC acidosis-induced pial arteriolar dilations was further exemplified by the finding that topical application of a neuronal NOS (nNOS)-selective blocker (ARR-17477) reduced the response to hypercapnia (by approximately 65%) but not the response to EC acidosis. Disruption of GL gap junctional communication, using an antisense oligodeoxynucleotide (ODN) connexin43 knockdown approach, was accompanied by a 33% lower CO(2) reactivity versus missense ODN-treated controls. These results suggest that the GL contribution to the hypercapnic vascular response appears to involve the NO-dependent component rather than the prostanoid-dependent component and may involve gap junctional communication. We speculate that the GL may act to facilitate the spread, to pial vessels, of hypercapnia-induced vasodilating signals arising in the comparatively few scattered nNOS neurons that lie well beneath the GL.
Collapse
Affiliation(s)
- H L Xu
- Neuroanesthesia Research Laboratory, Department of Anesthesiology, University of Illinois, 900 S. Ashland Ave., Molecular Biology Research Bldg., Rm. 4314, M/C513, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
7
|
Peng X, Carhuapoma JR, Bhardwaj A, Alkayed NJ, Falck JR, Harder DR, Traystman RJ, Koehler RC. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am J Physiol Heart Circ Physiol 2002; 283:H2029-37. [PMID: 12384482 DOI: 10.1152/ajpheart.01130.2000] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Application of glutamate to glial cell cultures stimulates the formation and release of epoxyeicosatrienoic acids (EETs) from arachidonic acid by cytochome P-450 epoxygenases. Epoxygenase inhibitors reduce the cerebral vasodilator response to glutamate and N-methyl-D-aspartate. We tested the hypothesis that epoxygenase inhibitors reduce the somatosensory cortical blood flow response to whisker activation. In chloralose-anesthetized rats, percent changes in cortical perfusion over whisker barrel cortex were measured by laser-Doppler flowmetry during whisker stimulation. Two pharmacologically distinct inhibitors were superfused subdurally: 1) N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), an epoxygenase substrate inhibitor; and 2) miconazole, a reversible cytochrome P-450 inhibitor acting on the heme moiety. Superfusion with 5 micromol/l MS-PPOH decreased the hyperemic response to whisker stimulation by 28% (from 25 +/- 9 to 18 +/- 7%, means +/- SD, n = 8). With 20 micromol/l MS-PPOH superfusion, the response was decreased by 69% (from 28 +/- 9% to 9 +/- 4%, n = 8). Superfusion with 20 micromol/l miconazole decreased the flow response by 67% (from 31 +/- 6% to 10 +/- 3%, n = 8). Subsequent superfusion with vehicle restored the response to 26 +/- 11%. Indomethacin did not prevent MS-PPOH inhibition of the flow response, suggesting that EET-related vasodilation was not dependent solely on cyclooxygenase metabolism of 5,6-EET. Neither MS-PPOH nor miconazole changed baseline flow, reduced the blood flow response to an adenosine A(2) agonist, or decreased somatosensory evoked potentials. The marked reduction of the cortical flow response to whisker stimulation with two different types of epoxygenase inhibitors indicates that EETs play an important role in the physiological coupling of blood flow to neural activation.
Collapse
Affiliation(s)
- Xinqi Peng
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Blalock 1404-E, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW. Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol Heart Circ Physiol 2002; 283:H406-11. [PMID: 12063315 DOI: 10.1152/ajpheart.00007.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the mechanism of EDHF-mediated dilation to bradykinin (BK) in piglet pial arteries. Topically applied BK (3 micromol/l) induced vasodilation (62 +/- 12%) after the administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) and indomethacin, which was inhibited by endothelial impairment or by the BK(2) receptor antagonist HOE-140 (0.3 micromol/l). Western blotting showed the presence of BK(2) receptors in brain cortex and pial vascular tissue samples. The cytochrome P-450 antagonist miconazole (20 micromol/l) and the lipoxygenase inhibitors baicalein (10 micromol/l) and cinnamyl-3,4-dyhydroxy-alpha-cyanocinnamate (1 micromol/l) failed to reduce the BK-induced dilation. However, the H(2)O(2) scavenger catalase (400 U/ml) abolished the response (from 54 +/- 11 to 0 +/- 2 microm; P < 0.01). The ATP-dependent K(+) (K(ATP)) channel inhibitor glibenclamide (10 micromol/l) had a similar effect as well (from 54 +/- 11 to 16 +/- 5 microm; P < 0.05). Coapplication of the Ca(2+)-dependent K(+) channel inhibitors charybdotoxin (0.1 micromol/l) and apamin (0.5 micromol/l) failed to reduce the response. We conclude that H(2)O(2) mediates the non-nitric oxide-, non-prostanoid-dependent vasorelaxation to BK in the piglet pial vasculature. The response is mediated via BK(2) receptors and the opening of K(ATP) channels.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|