1
|
Burboa PC, Gaete PS, Shu P, Araujo PA, Beuve AV, Durán WN, Contreras JE, Lillo MA. Endothelial TRPV4/Cx43 Signaling Complex Regulates Vasomotor Tone in Resistance Arteries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604930. [PMID: 39091840 PMCID: PMC11291137 DOI: 10.1101/2024.07.25.604930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using β-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Priscila A. Araujo
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Annie V. Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| |
Collapse
|
2
|
CGRP signalling inhibits NO production through pannexin-1 channel activation in endothelial cells. Sci Rep 2019; 9:7932. [PMID: 31138827 PMCID: PMC6538758 DOI: 10.1038/s41598-019-44333-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Blood flow distribution relies on precise coordinated control of vasomotor tone of resistance arteries by complex signalling interactions between perivascular nerves and endothelial cells. Sympathetic nerves are vasoconstrictors, whereas endothelium-dependent NO production provides a vasodilator component. In addition, resistance vessels are also innervated by sensory nerves, which are activated during inflammation and cause vasodilation by the release of calcitonin gene-related peptide (CGRP). Inflammation leads to superoxide anion (O2• -) formation and endothelial dysfunction, but the involvement of CGRP in this process has not been evaluated. Here we show a novel mechanistic relation between perivascular sensory nerve-derived CGRP and the development of endothelial dysfunction. CGRP receptor stimulation leads to pannexin-1-formed channel opening and the subsequent O2• --dependent connexin-based hemichannel activation in endothelial cells. The prolonged opening of these channels results in a progressive inhibition of NO production. These findings provide new therapeutic targets for the treatment of the inflammation-initiated endothelial dysfunction.
Collapse
|
3
|
Golub AS, Song BK, Pittman RN. Muscle contraction increases interstitial nitric oxide as predicted by a new model of local blood flow regulation. J Physiol 2014; 592:1225-35. [PMID: 24445318 DOI: 10.1113/jphysiol.2013.267302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The prevailing metabolic theory of local blood flow regulation suggests the dilatation of arterioles in response to tissue hypoxia via the emission of multiple metabolic vasodilators by parenchymal cells. We have proposed a mechanism of regulation, built from well-known components, which assumes that arterioles are normally dilated in metabolically active tissues, due to the emission of NO by the endothelium of microvessels. Regulation of local blood flow aims at preventing an excessive supply of oxygen (O2) and glucose to the tissue and thus provides an adequate supply, in contrast to the metabolic regulation theory which requires permanent hypoxia to generate the metabolic vasodilators. The mediator of the restrictive signal is superoxide anion (O2(-)) released by membrane NAD(P)H oxidases into the interstitial space, where it neutralizes NO at a diffusion-limited rate. This model predicts that the onset of muscle contraction will lead to the cessation of O2(-) production, which will cause an elevation of interstitial NO concentration and an increase in fluorescence of the NO probe DAF-FM after its conversion to DAF-T. The time course of DAF-T fluorescence in contracting muscle is predicted by also considering the washout from the muscle of the interstitially loaded NO indicator. Experiments using pulse fluorimetry confirmed an increase in the interstitial concentration of NO available for reaction with DAF-FM during bouts of muscle contraction. The sharp increase in interstitial [NO] is consistent with the hypothesis that the termination of the neutralizing superoxide flow into the interstitium is associated with the activation of mitochondria and a reduction of the interstitial oxygen tension. The advantage of the new model is its ability to explain the interaction of metabolic activity and local blood flow through the adequate delivery of glucose and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 E. Marshall Street, PO Box 980551, Richmond, VA 23298-0551, USA.
| | | | | |
Collapse
|
4
|
Figueroa XF, González DR, Puebla M, Acevedo JP, Rojas-Libano D, Durán WN, Boric MP. Coordinated endothelial nitric oxide synthase activation by translocation and phosphorylation determines flow-induced nitric oxide production in resistance vessels. J Vasc Res 2013; 50:498-511. [PMID: 24217770 PMCID: PMC3910107 DOI: 10.1159/000355301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. METHODS In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca(2+). RESULTS Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3-5-min) that peaked during the first 15 s, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation and dissociation from Cav-1 depended on extracellular Ca(2+), while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. CONCLUSIONS In intact resistance vessels, changes in flow induce NO production by transient Ca(2+)-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca(2+)-independent PI3K-Akt-mediated phosphorylation.
Collapse
Affiliation(s)
- Xavier F. Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P. Acevedo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Rojas-Libano
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Walter N. Durán
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, N.J., USA
| | - Mauricio P. Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Jiang Q, Zhou Z, Wang L, Wang L, Yue F, Wang J, Song L. A scallop nitric oxide synthase (NOS) with structure similar to neuronal NOS and its involvement in the immune defense. PLoS One 2013; 8:e69158. [PMID: 23922688 PMCID: PMC3724850 DOI: 10.1371/journal.pone.0069158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/05/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. METHODOLOGY In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot(-1), and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot(-1), respectively, P < 0.01). CONCLUSIONS These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α.
Collapse
Affiliation(s)
- Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
7
|
Kar S, Kavdia M. Modeling of biopterin-dependent pathways of eNOS for nitric oxide and superoxide production. Free Radic Biol Med 2011; 51:1411-27. [PMID: 21742028 PMCID: PMC3184605 DOI: 10.1016/j.freeradbiomed.2011.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH(4)) is oxidized to dihydrobiopterin, which competes with BH(4) for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH(4) to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O(2)(•-) production to understand the roles of BH(4) availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O(2)(•-), ONOO(-), O(2), CO(2), and BH(4) were also modeled. The model predicted that a lower [BH(4)]/[TBP] ratio decreased NO production but increased O(2)(•-) production from eNOS. The NO and O(2)(•-) production rates were independent above 1.5μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH(4)]/[TBP] ratio, and a supplementation of BH(4) might be effective only when the [BH(4)]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
8
|
Modulation of NO bioavailability by temporal variation of the cell-free layer width in small arterioles. Ann Biomed Eng 2010; 39:1012-23. [PMID: 21120696 DOI: 10.1007/s10439-010-0216-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
The cell-free layer exhibits dynamic characteristics in the time domain that may be capable of altering nitric oxide (NO) bioavailability in small arterioles. However, this effect has not been fully elucidated. This study utilized a computational model on NO transport to predict how temporal variations in the layer width could modulate NO bioavailability in the arterioles. Data on the layer width was acquired from high-speed video recordings in arterioles (ID = 48.4 ± 1.8 μm) of the rat cremaster muscle. We found that when wall shear stress response was not considered, the layer variability could lead to a slight decrease (1.6-6.6%) in NO bioavailability that was independent of transient changes in NO scavenging rate. Conversely, the transient response in wall shear stress and NO production rate played a dominant role in reversing this decline such that a significant augmentation (5.3-21.0%) in NO bioavailability was found with increasing layer variability from 24.6 to 63.8%. This study highlighted the importance of the temporal changes in wall shear stress and NO production rate caused by the layer width variations in prediction of NO bioavailability in arterioles.
Collapse
|
9
|
Véliz LP, González FG, Duling BR, Sáez JC, Boric MP. Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo. Am J Physiol Heart Circ Physiol 2008; 295:H1056-H1066. [PMID: 18599597 DOI: 10.1152/ajpheart.00266.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e(-/-)). In the cheek pouch, topical tumor necrosis factor-alpha (TNF-alpha; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-alpha-glycyrrhetinic acid (AGA; 75 microM) or 18-beta-glycyrrhetinic acid (50 microM) abolished the TNF-alpha-induced increase in LAV and LPV; carbenoxolone (75 microM) or oleamide (100 microM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent. None of these GJ blockers modified venular diameter, blood flow, or leukocyte rolling. In contrast, glycyrrhizin (75 microM), a non-GJ blocker analog of AGA, was devoid of effect. Interestingly, when AGA was removed 90 min after TNF-alpha stimulation, LAV started to rise at a similar rate as in control. Conversely, application of AGA 90 min after TNF-alpha reduced the number of previously adhered cells. In WT mice, intrascrotal injection of TNF-alpha (0.5 microg/0.3 ml) increased LAV (fourfold) and LPV (threefold) compared with saline-injected controls. In contrast to the observations in WT animals, TNF-alpha stimulation did not increase LAV or LPV in Cx43e(-/-) mice. These results demonstrate an important role for GJ communication in leukocyte adhesion and transmigration during acute inflammation in vivo and further suggest that endothelial Cx43 is key in these processes.
Collapse
Affiliation(s)
- Loreto P Véliz
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. B. O'Higgins 340, P.O. Box Casilla 114-D, Santiago, Chile
| | | | | | | | | |
Collapse
|
10
|
Galeano M, Altavilla D, Bitto A, Minutoli L, Calò M, Lo Cascio P, Polito F, Giugliano G, Squadrito G, Mioni C, Giuliani D, Venuti FS, Squadrito F. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 2006; 34:1139-46. [PMID: 16484928 DOI: 10.1097/01.ccm.0000206468.18653.ec] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Erythropoietin interacts with vascular endothelial growth factor (VEGF) and stimulates endothelial cell mitosis and motility; thus it may be of importance in the complex phenomenon of wound healing. The purpose of this study was to investigate the effect of recombinant human erythropoietin (rHuEPO) on experimental burn wounds. DESIGN Randomized experiment. SETTING Research laboratory. SUBJECTS C57BL/6 male mice weighing 25-30 g. INTERVENTIONS Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second degree burn. Animals were randomized to receive either rHuEPO (400 units/kg/day for 14 days in 100 microL subcutaneously) or its vehicle alone (100 microl/day distilled water for 14 days subcutaneously). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of neoangiogenesis by immunohistochemistry, and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, measurement of VEGF wound content (enzyme-linked immunosorbent assay), expression (Western blot) of endothelial and inducible nitric oxide synthases, and determination of wound nitric oxide (NO) products. MEASUREMENTS AND MAIN RESULTS rHuEPO increased burn wound reepithelialization and reduced the time to final wound closure. These effects were completely abated by a passive immunization with specific antibodies against erythropoietin. rHuEPO improved healing of burn wound through increased epithelial proliferation, maturation of the extracellular matrix, and angiogenesis. The hematopoietic factor augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31. Furthermore, rHuEPO enhanced the wound content of VEGF caused a marked expression of endothelial and inducible nitric oxide synthases and increased wound content of nitric oxide products. CONCLUSIONS Our study suggests that rHuEPO may be an effective therapeutic approach to improve clinical outcomes after thermal injury.
Collapse
Affiliation(s)
- Mariarosaria Galeano
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Altavilla D, Galeano M, Bitto A, Minutoli L, Squadrito G, Seminara P, Venuti FS, Torre V, Calò M, Colonna M, Lo Cascio P, Giugliano G, Scuderi N, Mioni C, Leone S, Squadrito F. LIPID PEROXIDATION INHIBITION BY RAXOFELAST IMPROVES ANGIOGENESIS AND WOUND HEALING IN EXPERIMENTAL BURN WOUNDS. Shock 2005; 24:85-91. [PMID: 15988325 DOI: 10.1097/01.shk.0000168523.37796.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the effects of raxofelast, a lipid peroxidation inhibitor, in an experimental model of burn wounds. C57BL/6 male mice of 25-30 g were immersed in 80 degrees C water for 10 seconds to achieve a partial-thickness scald burn. Animals received intraperitoneally either raxofelast (20 mg/kg/day for 14 days in 100 microL) or its vehicle alone (100 microL/day for 14 days). On day 14, burn areas were used for measuring conjugated dienes, reduced glutathione levels, histological damage, neoangiogenesis by immunohistochemistry and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, VEGF wound content, endothelial and inducible nitric oxide synthase (eNOS and iNOS) expression and wound nitrite content. Raxofelast decreased tissue conjugated dienes (vehicle 6.1 +/- 1.4 DeltaABS/mg protein; raxofelast 3.7 +/- 0.8 DeltaABS/mg protein), prevented tissue glutathione consumption (vehicle 3.2 +/- 0.9 micromol/g protein; raxofelast 6.7 +/- 1.8 mumol/g protein), increased epithelial proliferation, extracellular matrix maturation, and augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31 (vehicle 9.4 +/- 1.1 integrated intensity; raxofelast 14.8 +/- 1.8 integrated intensity). Furthermore, raxofelast enhanced VEGF wound content (vehicle 1.4 +/- 0.4 pg/mg protein; raxofelast 2.4 +/- 0.6 pg/mg protein), caused a marked expression of eNOS (vehicle 16.1 +/- 3 integrated intensity; raxofelast 26.2 +/- 4 integrated intensity) and iNOS (vehicle 9.1 +/- 1.8 integrated intensity; raxofelast 16.2 +/- 3.5 integrated intensity) and increased wound nitrite content. Lipid peroxidation inhibition by raxofelast may be an effective therapeutic approach to improve clinical outcomes after thermal injury.
Collapse
Affiliation(s)
- Domenica Altavilla
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang CH, Tsai PS, Lee JJ, Huang CH, Huang CJ. NF-kappaB inhibitors stabilize the mRNA of high-affinity type-2 cationic amino acid transporter in LPS-stimulated rat liver. Acta Anaesthesiol Scand 2005; 49:468-76. [PMID: 15777294 DOI: 10.1111/j.1399-6576.2005.00660.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Induction of inducible nitric oxide synthase (iNOS) results in nitric oxide (NO) overproduction during endotoxemia. Cellular uptake of L-arginine, modulated by the isozymes of type-2 cationic amino acid transporters (CAT), including CAT-2, CAT-2A and CAT-2B, has been reported to be a crucial factor in the regulation of iNOS activity. We sought to elucidate the expression of CAT-2 isozymes and the role of nuclear factor-kappaB (NF-kappaB) in this expression in lipopolysaccharide (LPS)-treated rat liver. METHODS Adult male Sprague-Dawley rats were randomly given intravenous (i.v.) injections of normal saline (N/S), LPS, LPS preceded by an NF-kappaB inhibitor (PDTC, dexamethasone or salicylate) or an NF-kappaB inhibitor alone. After injection, rats were sacrificed at different times and enzyme expression and liver injury were examined. Hepatic and systemic NO production were also measured. RESULTS CAT-2, CAT-2A and CAT-2B were constitutively expressed in un-stimulated rat liver. LPS stimulation not only significantly increased iNOS mRNA and NO concentrations but also decreased the mRNA concentrations of CAT-2 and CAT-2B, but not CAT-2A, in a time-dependent manner. LPS-induced hepatic and systemic NO overproduction was associated with hepatocellular injury. Pre-treatment with NF-kappaB inhibitors significantly attenuated LPS-induced iNOS induction as well as CAT-2/CAT-2B mRNA destabilization, which was associated with significant inhibition of NO biosynthesis and less liver injury. CONCLUSION NF-kappaB inhibitors stabilize CAT-2 and CAT-2B mRNA in LPS-stimulated rat liver. The hepatic CAT-2/CAT-2B pathway may be a constitutive part of cytoprotective mechanisms against sepsis.
Collapse
Affiliation(s)
- C-H Yang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Huang CJ, Tsai PS, Pan WHT, Skimming JW. Microdialysis for measurement of hepatic and systemic nitric oxide biosynthesis in septic rats. Acta Anaesthesiol Scand 2005; 49:28-34. [PMID: 15675978 DOI: 10.1111/j.1399-6576.2005.00486.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We sought to compare two techniques, microdialysis and repeated blood withdrawal, for serial assessment of hepatic and systemic nitric oxide (NO) biosynthesis in septic rats. METHODS Rats were randomly allocated to either microdialysis or blood withdrawal groups. Two microdialysis probes, one in liver and the other in right atrium, were placed in rats in the microdialysis group. Half of the rats from each group were then given lipopolysaccharide (LPS) to induce NO production. The other half of the rats from each group were injected with vehicle (normal saline) to serve as controls. In the microdialysis group, dialysate (30 microl) was collected every 30 min. In the blood withdrawal group, 0.3 ml of blood was drawn every 30 min. Sampling was performed up to 6 h after injection of LPS or vehicle. Hemodynamics, hepatic and systemic NO concentrations, and iNOS expression in harvested liver tissues were assayed. RESULTS Repeated blood withdrawal by itself caused a significant decrease in blood pressure and induced hepatic iNOS expression. Microdialysis, on the contrary, reliably detected LPS-induced NO production without resulting either in hemodynamic changes or in iNOS induction in liver tissue. CONCLUSIONS Microdialysis provides serial measure of hepatic and systemic NO concentrations in LPS-treated rats without the need for removal of tissue.
Collapse
Affiliation(s)
- C-J Huang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
14
|
Kavdia M, Popel AS. Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure. J Appl Physiol (1985) 2004; 97:293-301. [PMID: 15033959 DOI: 10.1152/japplphysiol.00049.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) plays an important role in autocrine and paracrine manner in numerous physiological processes, including regulation of blood pressure and blood flow, platelet aggregation, and leukocyte adhesion. In vascular wall, most of the bioavailable NO is believed to derive from endothelial cell NO synthase (eNOS). Recently, neuronal NOS (nNOS) has been identified as a source of NO in the vicinity of microvessels and has been shown to participate in vascular function. Thus NO can be produced and transported to the vascular smooth muscle cells from 1). endothelial cells and 2). perivascular nerve fibers, mast cells, and other nNOS-containing sources. In this study, a mathematical model of NO diffusion-reaction in a cylindrical arteriolar segment was formulated. The model quantifies the relative contribution of these NO sources and the smooth muscle availability of NO in a tissue containing an arteriolar blood vessel. The results indicate that a source of NO derived through nNOS in the perivascular region can be a significant contributor to smooth muscle NO. Predicted smooth muscle NO concentrations are as high as 430 nM, which is consistent with reported experimental measurements ( approximately 400 nM). In addition, we used the model to analyze the smooth muscle NO availability in 1). eNOS and nNOS knockout experiments, 2). the presence of myoglobin, and 3). the presence of cell-free Hb, e.g., Hb-based oxygen carriers. The results show that NO release by nNOS would significantly affect available smooth muscle NO. Further experimental and theoretical studies are required to account for distribution of NOS isoforms and determine NO availability in vasculatures of different tissues.
Collapse
MESH Headings
- Algorithms
- Animals
- Arterioles/enzymology
- Capillaries/enzymology
- Capillaries/physiology
- Diffusion
- Endothelial Cells/enzymology
- Endothelial Cells/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiology
- Erythrocytes/physiology
- Free Radical Scavengers/metabolism
- Hemoglobins/metabolism
- Humans
- Isoenzymes/metabolism
- Mesenteric Arteries/enzymology
- Mice
- Mice, Knockout
- Models, Statistical
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myoglobin/metabolism
- Neurons/enzymology
- Nitric Oxide/biosynthesis
- Nitric Oxide/physiology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- Nitric Oxide Synthase Type II
- Nitric Oxide Synthase Type III
Collapse
Affiliation(s)
- Mahendra Kavdia
- Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
15
|
Abstract
Nitric oxide (NOz.rad;) is a diatomic mediator liberated on oxidation of L-arginine by the nitric oxide synthase (NOS) family of enzymes. It has complex and wide ranging functions in vivo and has been implicated in the development of the profound inflammatory response that occurs as a result of cutaneous burn injury. In addition, dysregulation of NOS activity has been associated with multiple organ failure in human burn patients and may therefore represent a novel therapeutic target in such circumstances. This review focuses on the role of NOz.rad; in inflammation, with particular emphasis on the acute post-burn inflammatory response. Specific areas of discussion include the maintenance of microvascular haemostasis, leukocyte recruitment and remote organ dysfunction following thermal injury.
Collapse
Affiliation(s)
- Andrew Rawlingson
- Centre for Cardiovascular Biology & Medicine, King's College London, Guy's Campus, SE1 1UL, London, UK.
| |
Collapse
|
16
|
Kavdia M, Popel AS. Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based O2 carriers. Microvasc Res 2003; 66:49-58. [PMID: 12826074 DOI: 10.1016/s0026-2862(03)00008-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endothelium-derived nitric oxide (NO) is one of the mediators of smooth muscle (SM) relaxation. The release of NO by endothelium depends on the wall shear stress (WSS) to which endothelium is exposed. During hemodilution or isovolemic exchange transfusion with hemoglobin-based oxygen carriers (HBOCs) or volume expanders, the systemic hematocrit, blood viscosity, and blood flow rate are affected that would change WSS at endothelium. The effect of WSS-dependent NO release on SM NO availability has not been determined by direct measurements. We have formulated a mathematical model that is capable of predicting NO concentration in and around arteriolar vessels. The model predicts that the normal physiological SM NO concentration is approximately 100 nM at a physiological WSS of 24 dyn/cm(2) and the NO concentration is linearly dependent on WSS. With volume expanders, the SM NO concentration increases significantly and the levels of SM NO are significantly higher with increase in WSS. The SM NO decreases several-fold even for 5 microM luminal HBOC. For HBOCs, the NO levels are not restored to normal physiological level even with a significant increase in WSS (>48 dyn/cm(2)). These predictions are consistent with the results of animal studies of vascular tone following administration of HBOCs and volume expanders.
Collapse
Affiliation(s)
- Mahendra Kavdia
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
17
|
Figueroa XF, González DR, Martínez AD, Durán WN, Boric MP. ACh-induced endothelial NO synthase translocation, NO release and vasodilatation in the hamster microcirculation in vivo. J Physiol 2002; 544:883-96. [PMID: 12411531 PMCID: PMC2290640 DOI: 10.1113/jphysiol.2002.021972] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Studies in cultured cells show that activation of endothelial nitric oxide (NO) synthase (eNOS) requires the dissociation of this enzyme from its inhibitory association with caveolin-1 (Cav-1), and perhaps its translocation from plasma membrane caveolae to other cellular compartments. We investigated the hypothesis that in vivo NO-dependent vasodilatation is associated with the translocation of eNOS from the cell membrane. To this end, we applied ACh topically (10-100 microM for 10 min) to the hamster cheek pouch microcirculation and measured NO production, blood flow and vessel diameter, and assessed subcellular eNOS distribution by Western blotting. Baseline NO production was 54.4 +/- 5.2 pmol min(-1) (n = 16). ACh increased NO release, caused arteriolar and venular dilatation and elevated microvascular flow. These responses were inhibited by N(G)-nitro-L-arginine (30 microM). The maximal increase in NO production induced by 10 microM and 100 microM ACh was 45 +/- 20 % and 111 +/- 33 %, respectively; the corresponding blood flow increases were 50 +/- 10 % and 130 +/- 24 %, respectively (n = 4-6). Both responses followed a similar time course, although increases in NO preceded flow changes. In non-stimulated tissues, eNOS was distributed mainly in the microsomal fraction. ACh-induced vasodilatation was associated with eNOS translocation to the cytosolic and Golgi-enriched fractions. After 1.5, 3.0 or 6.0 min of application, 10 microM ACh decreased the level of membrane-bound eNOS by -13 +/- 4 %, -60 +/- 4 % and -19 +/- 17 %, respectively; at the same time points, 100 microM ACh reduced microsomal eNOS content by -38 +/- 9 %, -61 +/- 16 % and -40 +/- 18 %, respectively (n = 4-5). In all cases, microsomal Cav-1 content did not change. The close ACh concentration dependence and the concomitance between eNOS subcellular redistribution and NO release support the concept that eNOS translocation from the plasma membrane is part of an activation mechanism that induces NO-dependent vasodilatation in vivo.
Collapse
Affiliation(s)
- Xavier F Figueroa
- Unidad de Regulación Neurohumoral, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
18
|
Kavdia M, Tsoukias NM, Popel AS. Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes. Am J Physiol Heart Circ Physiol 2002; 282:H2245-53. [PMID: 12003834 DOI: 10.1152/ajpheart.00972.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of hemoglobin-based oxygen carriers (HBOCs) frequently results in vasoconstriction that is primarily attributed to the scavenging of endothelium-derived nitric oxide (NO) by cell-free hemoglobin. The ensuing pressor response could be caused by the high NO reactivity of HBOC in the vascular lumen and/or the extravasation of hemoglobin molecules. There is a need for quantitative understanding of the NO interaction with HBOC in the blood vessels. We developed a detailed mathematical model of NO diffusion and reaction in the presence of an HBOC for an arteriolar-size vessel. The HBOC reactivity with NO and degree of extravasation was studied in the range of 2-58 x 10(6) M(-1) x s(-1) and 0-100%, respectively. The model predictions showed that the addition of HBOC reduced the smooth muscle (SM) NO concentration in the activation range (12-28 nM) for soluble guanylate cyclase, a major determinant of SM contraction. The SM NO concentration was significantly reduced when the extravasation of HBOC molecules was considered. The myoglobin present in the parenchymal cells scavenges NO, which reduces the SM NO concentration.
Collapse
Affiliation(s)
- Mahendra Kavdia
- Department of Biomedical Engineering and Center for Computational Medicine and Biology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|