1
|
Mosqueira M, Konietzny R, Andresen C, Wang C, H A Fink R. Cardiomyocyte depolarization triggers NOS-dependent NO transient after calcium release, reducing the subsequent calcium transient. Basic Res Cardiol 2021; 116:18. [PMID: 33728868 PMCID: PMC7966140 DOI: 10.1007/s00395-021-00860-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Cardiac excitation-contraction coupling and metabolic and signaling activities are centrally modulated by nitric oxide (NO), which is produced by one of three NO synthases (NOSs). Despite the significant role of NO in cardiac Ca2+ homeostasis regulation under different pathophysiological conditions, such as Duchenne muscular dystrophy (DMD), no precise method describes the production, source or effect of NO through two NO signaling pathways: soluble guanylate cyclase-protein kinase G (NO-sGC-PKG) and S-nitrosylation (SNO). Using a novel strategy involving isolated murine cardiomyocytes loaded with a copper-based dye highly specific for NO, we observed a single transient NO production signal after each electrical stimulation event. The NO transient signal started 67.5 ms after the beginning of Rhod-2 Ca2+ transient signal and lasted for approximately 430 ms. Specific NOS isoform blockers or NO scavengers significantly inhibited the NO transient, suggesting that wild-type (WT) cardiomyocytes produce nNOS-dependent NO transients. Conversely, NO transient in mdx cardiomyocyte, a mouse model of DMD, was dependent on inducible NOS (iNOS) and endothelial (eNOS). In a consecutive stimulation protocol, the nNOS-dependent NO transient in WT cardiomyocytes significantly reduced the next Ca2+ transient via NO-sGC-PKG. In mdx cardiomyocytes, this inhibitory effect was iNOS- and eNOS-dependent and occurred through the SNO pathway. Basal NO production was nNOS- and iNOS-dependent in WT cardiomyocytes and eNOS- and iNOS-dependent in mdx cardiomyocytes. These results showed cardiomyocyte produces NO isoform-dependent transients upon membrane depolarization at the millisecond time scale activating a specific signaling pathway to negatively modulate the subsequent Ca2+ transient.
Collapse
Affiliation(s)
- Matias Mosqueira
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany.
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Roland Konietzny
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Carolin Andresen
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chao Wang
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Cardiovascular Department, Wuhan No. 1 Hospital, Hubei, China
| | - Rainer H A Fink
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Kaakinen M, Reichelt ME, Ma Z, Ferguson C, Martel N, Porrello ER, Hudson JE, Thomas WG, Parton RG, Headrick JP. Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Res Cardiol 2017; 112:24. [PMID: 28343262 DOI: 10.1007/s00395-017-0613-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Caveolae and associated cavin and caveolins may govern myocardial function, together with responses to mechanical and ischaemic stresses. Abnormalities in these proteins are also implicated in different cardiovascular disorders. However, specific roles of the cavin-1 protein in cardiac and coronary responses to mechanical/metabolic perturbation remain unclear. We characterised cardiovascular impacts of cavin-1 deficiency, comparing myocardial and coronary phenotypes and responses to stretch and ischaemia-reperfusion in hearts from cavin-1 +/+ and cavin-1 -/- mice. Caveolae and caveolins 1 and 3 were depleted in cavin-1 -/- hearts. Cardiac ejection properties in situ were modestly reduced in cavin-1 -/- mice. While peak contractile performance in ex vivo myocardium from cavin-1 -/- and cavin-1 +/+ mice was comparable, intrinsic beating rate, diastolic stiffness and Frank-Starling behaviour (stretch-dependent diastolic and systolic forces) were exaggerated in cavin-1 -/- hearts. Increases in stretch-dependent forces were countered by NOS inhibition (100 µM L-NAME), which exposed negative inotropy in cavin-1 -/- hearts, and were mimicked by 100 µM nitroprusside. In contrast, chronotropic differences appeared largely NOS-independent. Cavin-1 deletion also induced NOS-dependent coronary dilatation, ≥3-fold prolongation of reactive hyperaemic responses, and exaggerated pressure-dependence of coronary flow. Stretch-dependent efflux of lactate dehydrogenase and cardiac troponin I was increased and induction of brain natriuretic peptide and c-Fos inhibited in cavin-1 -/- hearts, while ERK1/2 phospho-activation was preserved. Post-ischaemic dysfunction and damage was also exaggerated in cavin-1 -/- hearts. Diverse effects of cavin-1 deletion reveal important roles in both NOS-dependent and -independent control of cardiac and coronary functions, together with governing sarcolemmal fragility and myocardial responses to stretch and ischaemia.
Collapse
Affiliation(s)
- Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Zhibin Ma
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nick Martel
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
3
|
Dietary nitrate improves cardiac contractility via enhanced cellular Ca²⁺ signaling. Basic Res Cardiol 2016; 111:34. [PMID: 27071401 DOI: 10.1007/s00395-016-0551-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/29/2016] [Indexed: 01/18/2023]
Abstract
The inorganic anion nitrate (NO3 (-)), which is naturally enriched in certain vegetables (e.g., spinach and beetroot), has emerged as a dietary component that can regulate diverse bodily functions, including blood pressure, mitochondrial efficiency, and skeletal muscle force. It is not known if dietary nitrate improves cardiac contractility. To test this, mice were supplemented for 1-2 weeks with sodium nitrate in the drinking water at a dose similar to a green diet. The hearts from nitrate-treated mice showed increased left ventricular pressure and peak rate of pressure development as measured with the Langendorff heart technique. Cardiomyocytes from hearts of nitrate-treated and control animals were incubated with the fluorescent indicator Fluo-3 to measure cytoplasmic free [Ca(2+)] and fractional shortening. Cardiomyocytes from nitrate-treated mice displayed increased fractional shortening, which was linked to larger Ca(2+) transients. Moreover, nitrate hearts displayed increased protein expression of the L-type Ca(2+) channel/dihydropyridine receptor and peak L-type Ca(2+) channel currents. The nitrate-treated hearts displayed increased concentration of cAMP but unchanged levels of cGMP compared with controls. These findings provide the first evidence that dietary nitrate can affect the expression of important Ca(2+) handling proteins in the heart, resulting in increased cardiomyocyte Ca(2+) signaling and improved left ventricular contractile function. Our observation shows that dietary nitrate impacts cardiac function and adds understanding to inorganic nitrate as a physiological modulator.
Collapse
|
4
|
NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes. Basic Res Cardiol 2015; 110:506. [PMID: 26173391 DOI: 10.1007/s00395-015-0506-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/20/2015] [Accepted: 07/07/2015] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the age-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1(-/-)) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of β-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1(-/-) mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1(-/-) mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of β-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes.
Collapse
|
5
|
Kruzliak P, Pechanova O, Kara T. New perspectives of nitric oxide donors in cardiac arrest and cardiopulmonary resuscitation treatment. Heart Fail Rev 2015; 19:383-90. [PMID: 23712508 PMCID: PMC3976759 DOI: 10.1007/s10741-013-9397-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is often used to treat heart failure accompanied with pulmonary edema. According to present knowledge, however, NO donors are contraindicated when systolic blood pressure is less than 90 mmHg. Based on recent findings and our own clinical experience, we formulated a hypothesis about the new breakthrough complex lifesaving effects of NO donors in patients with cardiac arrest and cardiopulmonary resuscitation therapy. It includes a direct hemodynamic effect of NO donors mediated through vasodilation of coronary arteries in cooperation with improvement of cardiac function and cardiac output through reversible inhibition of mitochondrial complex I and mitochondrial NO synthase, followed by reduction in reactive oxygen species and correction of myocardial stunning. Simultaneously, an increase in vascular sensitivity to sympathetic stimulation could lead to an increase in diastolic blood pressure. Confirmation of this hypothesis in clinical practice would mean a milestone in the treatment for cardiac arrest and cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Peter Kruzliak
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of Sciences, Bratislava, Slovak Republic,
| | | | | |
Collapse
|
6
|
ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes. Basic Res Cardiol 2015; 110:21. [PMID: 25804308 DOI: 10.1007/s00395-015-0477-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
Angiotensin II (Ang II), a potent precursor of hypertrophy and heart failure, upregulates neuronal nitric oxide synthase (nNOS or NOS1) in the myocardium. Here, we investigate the involvement of type 1 and 2 angiotensin receptors (AT1R and AT2R) and molecular mechanisms mediating Ang II-upregulation of nNOS. Our results showed that pre-treatment of left ventricular (LV) myocytes with antagonists of AT1R or AT2R (losartan, PD123319) and ROS scavengers (apocynin, tiron or PEG-catalase) blocked Ang II-upregulation of nNOS. Surface biotinylation or immunocytochemistry experiments demonstrated that AT1R expression in plasma membrane was progressively decreased (internalization), whereas AT2R was increased (membrane trafficking) by Ang II. Inhibition of AT1R or ROS scavengers prevented Ang II-induced translocation of AT2R to plasma membrane, suggesting an alignment of AT1R-ROS-AT2R. Furthermore, Ang II increased eNOS-Ser(1177) but decreased eNOS-Thr(495), indicating concomitant activation of eNOS. Intriguingly, ROS scavengers but not AT2R antagonist prevented Ang II-activation of eNOS. NOS inhibitor (L-NG-Nitroarginine Methyl Ester, L-NAME) or eNOS gene deletion (eNOS(-/-)) abolished Ang II-induced membrane trafficking of AT2R, nNOS protein expression and activity. Mechanistically, S-nitrosation of AT2R was increased by sodium nitroprusside (SNP), a NO donor. Site-specific mutagenesis analysis reveals that C-terminal cysteine 349 in AT2R is essential in AT2R translocation to plasma membrane. Taken together, we demonstrate, for the first time, that Ang II upregulates nNOS protein expression and activity via AT1R/ROS/eNOS-dependent S-nitrosation and membrane translocation of AT2R. Our results suggest a novel crosstalk between AT1R and AT2R in regulating nNOS via eNOS in the myocardium under pathogenic stimuli.
Collapse
|
7
|
Pechánová O, Varga ZV, Cebová M, Giricz Z, Pacher P, Ferdinandy P. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 2015; 172:1415-33. [PMID: 25297560 PMCID: PMC4369254 DOI: 10.1111/bph.12960] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 02/06/2023] Open
Abstract
It is well documented that metabolic syndrome (i.e. a group of risk factors, such as abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides and low cholesterol level in high-density lipoprotein), which raises the risk for heart disease and diabetes, is associated with increased reactive oxygen and nitrogen species (ROS/RNS) generation. ROS/RNS can modulate cardiac NO signalling and trigger various adaptive changes in NOS and antioxidant enzyme expressions/activities. While initially these changes may represent protective mechanisms in metabolic syndrome, later with more prolonged oxidative, nitrosative and nitrative stress, these are often exhausted, eventually favouring myocardial RNS generation and decreased NO bioavailability. The increased oxidative and nitrative stress also impairs the NO-soluble guanylate cyclase (sGC) signalling pathway, limiting the ability of NO to exert its fundamental signalling roles in the heart. Enhanced ROS/RNS generation in the presence of risk factors also facilitates activation of redox-dependent transcriptional factors such as NF-κB, promoting myocardial expression of various pro-inflammatory mediators, and eventually the development of cardiac dysfunction and remodelling. While the dysregulation of NO signalling may interfere with the therapeutic efficacy of conventional drugs used in the management of metabolic syndrome, the modulation of NO signalling may also be responsible for the therapeutic benefits of already proven or recently developed treatment approaches, such as ACE inhibitors, certain β-blockers, and sGC activators. Better understanding of the above-mentioned pathological processes may ultimately lead to more successful therapeutic approaches to overcome metabolic syndrome and its pathological consequences in cardiac NO signalling.
Collapse
Affiliation(s)
- O Pechánová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
- Faculty of Natural Sciences, Comenius UniversityBratislava, Slovak Republic
| | - Z V Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - M Cebová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
| | - Z Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - P Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAABethesda, MD, USA
| | - P Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
- Pharmahungary GroupSzeged, Hungary
| |
Collapse
|
8
|
van de Sandt AM, Windler R, Gödecke A, Ohlig J, Zander S, Reinartz M, Graf J, van Faassen EE, Rassaf T, Schrader J, Kelm M, Merx MW. Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Basic Res Cardiol 2013; 108:330. [PMID: 23397596 PMCID: PMC3597270 DOI: 10.1007/s00395-013-0330-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 12/07/2012] [Accepted: 01/14/2013] [Indexed: 01/23/2023]
Abstract
Endothelial nitric oxide synthase (NOS)3-derived nitric oxide (NO) modulates inotropic response and diastolic interval for optimal cardiac performance under non-inflammatory conditions. In sepsis, excessive NO production plays a key role in severe hypotension and myocardial dysfunction. We aimed to determine the role of NOS3 on myocardial performance, NO production, and time course of sepsis development. NOS3(-/-) and C57BL/6 wildtype mice were rendered septic by cecum ligation and puncture (CLP). Cardiac function was analyzed by serial echocardiography, in vivo pressure and isolated heart measurements. Cardiac output (CO) increased to 160 % of baseline at 10 h after sepsis induction followed by a decline to 63 % of baseline after 18 h in wildtype mice. CO was unaltered in septic NOS3(-/-) mice. Despite the hyperdynamic state, cardiac function and mean arterial pressure were impaired in septic wildtype as early as 6 h post CLP. At 12 h, cardiac function in septic wildtype was refractory to catecholamines in vivo and respective isolated hearts showed impaired pressure development and limited coronary flow reserve. Hemodynamics remained stable in NOS3(-/-) mice leading to significant survival benefit. Unselective NOS inhibition in septic NOS3(-/-) mice diminished this survival benefit. Plasma NO( x )- and local myocardial NO( x )- and NO levels (via NO spin trapping) demonstrated enhanced NO( x )- and bioactive NO levels in septic wildtype as compared to NOS3(-/-) mice. Significant contribution by inducible NOS (NOS2) during this early phase of sepsis was excluded. Our data suggest that NOS3 relevantly contributes to bioactive NO pool in developing sepsis resulting in impaired cardiac contractility.
Collapse
Affiliation(s)
- Annette M van de Sandt
- Division of Cardiology, Pneumology and Angiology, Department of Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Neuronal nitric oxide synthase is indispensable for the cardiac adaptive effects of exercise. Basic Res Cardiol 2013; 108:332. [PMID: 23377961 DOI: 10.1007/s00395-013-0332-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Exercise results in beneficial adaptations of the heart that can be directly observed at the ventricular myocyte level. However, the molecular mechanism(s) responsible for these adaptations are not well understood. Interestingly, signaling via neuronal nitric oxide synthase (NOS1) within myocytes results in similar effects as exercise. Thus, the objective was to define the role NOS1 plays in the exercise-induced beneficial contractile effects in myocytes. After an 8-week aerobic interval training program, exercise-trained (Ex) mice had higher VO(2max) and cardiac hypertrophy compared to sedentary (Sed) mice. Ventricular myocytes from Ex mice had increased NOS1 expression and nitric oxide production compared to myocytes from Sed mice. Remarkably, acute NOS1 inhibition normalized the enhanced contraction (shortening and Ca(2+) transients) in Ex myocytes to Sed levels. The NOS1 effect on contraction was mediated via greater Ca(2+) cycling that resulted from increased phospholamban phosphorylation. Intriguingly, a similar aerobic interval training program on NOS1 knockout mice failed to produce any beneficial cardiac adaptations (VO(2max), hypertrophy, and contraction). These data demonstrate that the beneficial cardiac adaptations observed after exercise training were mediated via enhanced NOS1 signaling. Therefore, it is likely that beneficial effects of exercise may be mimicked by the interventions that increase NOS1 signaling. This pathway may provide a potential novel therapeutic target in cardiac patients who are unable or unwilling to exercise.
Collapse
|
10
|
Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases. Mediators Inflamm 2012; 2012:390892. [PMID: 22577249 PMCID: PMC3337636 DOI: 10.1155/2012/390892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/01/2012] [Indexed: 02/07/2023] Open
Abstract
Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists (“priming effect”). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β.
This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic.
Collapse
|
11
|
Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Djordjevic JD, Radak DJ, Mikhailidis DP, Isenović ER. Regulation of Inducible Nitric Oxide Synthase (iNOS) and its Potential Role in Insulin Resistance, Diabetes and Heart Failure. Open Cardiovasc Med J 2011; 5:153-63. [PMID: 21792376 PMCID: PMC3141344 DOI: 10.2174/1874192401105010153] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 02/08/2023] Open
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF.
Collapse
Affiliation(s)
- Sanja S Soskić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Branislava D Dobutović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Emina M Sudar
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Milan M Obradović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Dragana M Nikolić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Jelena D Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, P.O.Box S2 Republic of Serbia
| | - Djordje J Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Belgrade University School of Medicine, Belgrade, Serbia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free campus, University College London Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
| | - Esma R Isenović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| |
Collapse
|
12
|
The in-situ pig heart with regional ischemia/reperfusion — Ready for translation. J Mol Cell Cardiol 2011; 50:951-63. [DOI: 10.1016/j.yjmcc.2011.02.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/18/2022]
|
13
|
Heusch P, Aker S, Boengler K, Deindl E, van de Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, Di Lisa F, Schulz R. Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol 2010; 299:H446-53. [PMID: 20511413 DOI: 10.1152/ajpheart.01034.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our objective was to address the balance of inducible nitric oxide (NO) synthase (iNOS) and arginase and their contribution to contractile dysfunction in heart failure (HF). Excessive NO formation is thought to contribute to contractile dysfunction; in macrophages, increased iNOS expression is associated with increased arginase expression, which competes with iNOS for arginine. With substrate limitation, iNOS may become uncoupled and produce reactive oxygen species (ROS). In rabbits, HF was induced by left ventricular (LV) pacing (400 beats/min) for 3 wk. iNOS mRNA [quantitative real-time PCR (qRT-PCR)] and protein expression (confocal microscopy) were detected, and arginase II expression was quantified with Western blot; serum arginine and myocardial nitrite and nitrate concentrations were determined by chemiluminescence, and protein S-nitrosylation with Western blot. Superoxide anions were quantified with dihydroethidine staining. HF rabbits had increased LV end-diastolic diameter [20.0 + or - 0.5 (SE) vs. 17.2 + or - 0.3 mm in sham] and decreased systolic fractional shortening (11.1 + or - 1.4 vs. 30.6 + or - 0.7% in sham; both P < 0.05). Myocardial iNOS mRNA and protein expression were increased, however, not associated with increased myocardial nitrite or nitrate concentrations or protein S-nitrosylation. The serum arginine concentration was decreased (124.3 + or - 5.6 vs. 155.4 + or - 12.0 micromol/l in sham; P < 0.05) at a time when cardiac arginase II expression was increased (0.06 + or - 0.01 vs. 0.02 + or - 0.01 arbitrary units in sham; P < 0.05). Inhibition of iNOS with 1400W attenuated superoxide anion formation and contractile dysfunction in failing hearts. Concomitant increases in iNOS and arginase expression result in unchanged NO species and protein S-nitrosylation; with substrate limitation, uncoupled iNOS produces superoxide anions and contributes to contractile dysfunction.
Collapse
Affiliation(s)
- Philipp Heusch
- Institute for Pathophysiology, Univ. of Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lupia E, Spatola T, Cuccurullo A, Bosco O, Mariano F, Pucci A, Ramella R, Alloatti G, Montrucchio G. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 2010; 105:609-20. [PMID: 20467749 DOI: 10.1007/s00395-010-0103-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 01/21/2023]
Abstract
Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.
Collapse
Affiliation(s)
- Enrico Lupia
- Department of Clinical Pathophysiology, University of Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Segers VFM, Lemmens K, Hendrickx J, Sys SU, De Keulenaer GW. Inhibition of heme oxygenase?1 impairs cardiac muscle sensitivity to beta?adrenergic stimulation. Basic Res Cardiol 2005; 100:224-30. [PMID: 15630521 DOI: 10.1007/s00395-005-0510-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 10/29/2004] [Accepted: 11/30/2004] [Indexed: 11/27/2022]
Abstract
UNLABELLED Heme oxygenase-1 (HO-1) is the inducible isoform of heme oxygenase and plays a role in defense against cellular stress. The effects of HO-1 on cardiac muscle contractility, however, are unknown. METHODS HO-1 was induced by intraperitoneal injection of hemin in rabbits 24 and 48 h before isolating right ventricular papillary muscles for mechanical in vitro analysis at baseline and during stimulation with isoprenalin. Western blotting and activity measurement con.rmed upregulation of HO-1 in ventricular tissue, and immunohistochemical stainings showed localization in the cardiac endothelium. RESULTS Baseline mechanical performance of papillary muscles and maximal inotropic response to ISO was not significantly affected by HO-1 induction. Also, the log(EC50) of the ISO concentration-response curve was not affected by HO-1 induction. Inhibition of heme oxygenase with stanneous mesoporphyrin or chromium mesoporphyrin in muscles with induced HO-1, however, shifted the log(EC50) of the ISO concentration-response curve from -6.9 +/- 0.2 to -6.0 +/- 0.2 (p = 0.008). CONCLUSION These results indicate that induction of cardiac HO-1 has no direct effect on baseline contractility. Pharmacological inhibition of HO-1 upon induction, however, diminishes cardiac muscle sensitivity to beta-adrenergic stimulation. These results caution against pharmacologically targeting HO-1 when an activated adrenergic system is important for hemodynamic stability.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | | | | | | |
Collapse
|
16
|
Post H, d'Agostino C, Lionetti V, Castellari M, Kang EY, Altarejos M, Xu X, Hintze TH, Recchia FA. Reduced left ventricular compliance and mechanical efficiency after prolonged inhibition of NO synthesis in conscious dogs. J Physiol 2003; 552:233-9. [PMID: 12878761 PMCID: PMC2343315 DOI: 10.1113/jphysiol.2003.048769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute inhibition of NO synthesis decreases left ventricular (LV) work and external efficiency, but it is unknown whether compensatory mechanisms can limit the alterations in LV mechanoenergetics after prolonged NO deficiency. Eight chronically instrumented male mongrel dogs received 35 mg kg-1 day-1 of Nomega-nitro-L-arginine methyl ester orally for 10 days to inhibit NO synthesis. At spontaneous beating frequency, heart rate, coronary blood flow, peak LV pressure, end-diastolic LV pressure and the maximum derivative of LV pressure (dP/dtmax) were not significantly different vs. baseline, whereas LV end-diastolic diameter (32.5 +/- 1.0 vs. 37.6 +/- 1.4 mm) and LV stroke work (515 +/- 38 vs. 650 +/- 44 mmHg mm), were reduced (all P < 0.05). The slope of the LV end-systolic pressure-diameter relationship was increased at 10 days vs. baseline (13.9 +/- 1.0 vs. 9.6 +/- 0.9 mmHg mm-1, P < 0.05), while the end-diastolic LV diameter was smaller at matched LV end-diastolic pressures. At fixed heart rate (130 beats min-1), cardiac oxygen consumption was increased (12.2 +/- 1.5 vs. 9.9 +/- 1.0 ml min-1), and the ratio between stroke work and oxygen consumption was decreased by 33 +/-7 % (all P < 0.05) after NO inhibition. We conclude that sustained inhibition of NO synthesis in dogs causes a decrease in LV work despite an increased contractility, which is most probably due to reduced diastolic compliance and a decrease in external efficiency. Thus, prolonged NO deficiency is not compensated for on the level of LV mechanoenergetics in vivo.
Collapse
Affiliation(s)
- Heiner Post
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kojic ZZ, Flogel U, Schrader J, Decking UKM. Endothelial NO formation does not control myocardial O2 consumption in mouse heart. Am J Physiol Heart Circ Physiol 2003; 285:H392-7. [PMID: 12609821 DOI: 10.1152/ajpheart.00836.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test whether endothelium-derived nitric oxide (NO) regulates mitochondrial respiration, NO was pharmacologically modulated in isolated mouse hearts, which were perfused at constant flow to sensitively detect small changes in myocardial O2 consumption (MVO2). Stimulation of NO formation by 10 microM bradykinin (BK) increased coronary venous nitrite release fivefold to 58 +/- 33 nM (n = 17). Vasodilatation by BK, adenosine (1 microM), or papaverine (10 microM) decreased perfusion pressure, left ventricular developed pressure (LVDP), and MVO2. In the presence of adenosine-induced vasodilatation, stimulation of endothelial NO synthesis by BK had no effect on LVDP and MVO2. Also, inhibition of NO formation by NG-monomethyl-l-arginine (l-NMMA, 100 microM) did not significantly alter LVDP and MVO2. Similarly, intracoronary infusion of authentic NO <or=2 microM did not influence LVDP or MVO2 (-1 +/- 1%). Only when NO was >2 microM were contractile dysfunction and MVO2 reduction observed. Because BK-induced stimulation of endothelial NO formation and basal NO are not sufficient to impair MVO2 in the saline-perfused mouse heart, a tonic control of the respiratory chain by endothelial NO is difficult to conceive.
Collapse
Affiliation(s)
- Zvezdana Z Kojic
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Postfach 10 10 07, 40001 Düsseldorf, Germany
| | | | | | | |
Collapse
|
18
|
Abstract
There is good evidence that nitric oxide has important autocrine/paracrine effects in the myocardium, serving to optimise and fine tune cardiac function
Collapse
Affiliation(s)
- J M Cotton
- Department of Cardiology, Guy's King's & St Thomas's School of Medicine, King's College London (Denmark Hill Campus), London, UK
| | | | | |
Collapse
|