1
|
Zaniboni M. The electrical restitution of the non-propagated cardiac ventricular action potential. Pflugers Arch 2024; 476:9-37. [PMID: 37783868 PMCID: PMC10758374 DOI: 10.1007/s00424-023-02866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Sudden changes in pacing cycle length are frequently associated with repolarization abnormalities initiating cardiac arrhythmias, and physiologists have long been interested in measuring the likelihood of these events before their manifestation. A marker of repolarization stability has been found in the electrical restitution (ER), the response of the ventricular action potential duration to a pre- or post-mature stimulation, graphically represented by the so-called ER curve. According to the restitution hypothesis (ERH), the slope of this curve provides a quantitative discrimination between stable repolarization and proneness to arrhythmias. ER has been studied at the body surface, whole organ, and tissue level, and ERH has soon become a key reference point in theoretical, clinical, and pharmacological studies concerning arrhythmia development, and, despite criticisms, it is still widely adopted. The ionic mechanism of ER and cellular applications of ERH are covered in the present review. The main criticism on ERH concerns its dependence from the way ER is measured. Over the years, in fact, several different experimental protocols have been established to measure ER, which are also described in this article. In reviewing the state-of-the art on cardiac cellular ER, I have introduced a notation specifying protocols and graphical representations, with the aim of unifying a sometime confusing nomenclature, and providing a physiological tool, better defined in its scope and limitations, to meet the growing expectations of clinical and pharmacological research.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma (Italy), Parco Area Delle Scienze, 11/A, 43124, Parma, Italy.
| |
Collapse
|
2
|
Gray RA, Franz MR. Amiodarone prevents wave front-tail interactions in patients with heart failure: an in silico study. Am J Physiol Heart Circ Physiol 2023; 325:H952-H964. [PMID: 37656133 PMCID: PMC10907032 DOI: 10.1152/ajpheart.00227.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Amiodarone (AM) is an antiarrhythmic drug whose chronic use has proved effective in preventing ventricular arrhythmias in a variety of patient populations, including those with heart failure (HF). AM has both class III [i.e., it prolongs the action potential duration (APD) via blocking potassium channels) and class I (i.e., it affects the rapid sodium channel) properties; however, the specific mechanism(s) by which it prevents reentry formation in patients with HF remains unknown. We tested the hypothesis that AM prevents reentry induction in HF during programmed electrical stimulation (PES) via its ability to induce postrepolarization refractoriness (PRR) via its class I effects on sodium channels. Here we extend our previous human action potential model to represent the effects of both HF and AM separately by calibrating to human tissue and clinical PES data, respectively. We then combine these models (HF + AM) to test our hypothesis. Results from simulations in cells and cables suggest that AM acts to increase PRR and decrease the elevation of takeoff potential. The ability of AM to prevent reentry was studied in silico in two-dimensional sheets in which a variety of APD gradients (ΔAPD) were imposed. Reentrant activity was induced in all HF simulations but was prevented in 23 of 24 HF + AM models. Eliminating the AM-induced slowing of the recovery of inactivation of the sodium channel restored the ability to induce reentry. In conclusion, in silico testing suggests that chronic AM treatment prevents reentry induction in patients with HF during PES via its class I effect to induce PRR.NEW & NOTEWORTHY This work presents a new model of the action potential of the human, which reproduces the complex dynamics during premature stimulation in heart failure patients with and without amiodarone. A specific mechanism of the ability of amiodarone to prevent reentrant arrhythmias is presented.
Collapse
Affiliation(s)
- Richard A Gray
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Michael R Franz
- Cardiology Division, Veteran Affairs Medical Center, Washington, District of Columbia, United States
- Department of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia, United States
| |
Collapse
|
3
|
Aronis KN, Prakosa A, Bergamaschi T, Berger RD, Boyle PM, Chrispin J, Ju S, Marine JE, Sinha S, Tandri H, Ashikaga H, Trayanova NA. Characterization of the Electrophysiologic Remodeling of Patients With Ischemic Cardiomyopathy by Clinical Measurements and Computer Simulations Coupled With Machine Learning. Front Physiol 2021; 12:684149. [PMID: 34335294 PMCID: PMC8317643 DOI: 10.3389/fphys.2021.684149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale Patients with ischemic cardiomyopathy (ICMP) are at high risk for malignant arrhythmias, largely due to electrophysiological remodeling of the non-infarcted myocardium. The electrophysiological properties of the non-infarcted myocardium of patients with ICMP remain largely unknown. Objectives To assess the pro-arrhythmic behavior of non-infarcted myocardium in ICMP patients and couple computational simulations with machine learning to establish a methodology for the development of disease-specific action potential models based on clinically measured action potential duration restitution (APDR) data. Methods and Results We enrolled 22 patients undergoing left-sided ablation (10 ICMP) and compared APDRs between ICMP and structurally normal left ventricles (SNLVs). APDRs were clinically assessed with a decremental pacing protocol. Using genetic algorithms (GAs), we constructed populations of action potential models that incorporate the cohort-specific APDRs. The variability in the populations of ICMP and SNLV models was captured by clustering models based on their similarity using unsupervised machine learning. The pro-arrhythmic potential of ICMP and SNLV models was assessed in cell- and tissue-level simulations. Clinical measurements established that ICMP patients have a steeper APDR slope compared to SNLV (by 38%, p < 0.01). In cell-level simulations, APD alternans were induced in ICMP models at a longer cycle length compared to SNLV models (385–400 vs 355 ms). In tissue-level simulations, ICMP models were more susceptible for sustained functional re-entry compared to SNLV models. Conclusion Myocardial remodeling in ICMP patients is manifested as a steeper APDR compared to SNLV, which underlies the greater arrhythmogenic propensity in these patients, as demonstrated by cell- and tissue-level simulations using action potential models developed by GAs from clinical measurements. The methodology presented here captures the uncertainty inherent to GAs model development and provides a blueprint for use in future studies aimed at evaluating electrophysiological remodeling resulting from other cardiac diseases.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Adityo Prakosa
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Teya Bergamaschi
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ronald D Berger
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Patrick M Boyle
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Chrispin
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Suyeon Ju
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Joseph E Marine
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Sunil Sinha
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Harikrishna Tandri
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hiroshi Ashikaga
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Natalia A Trayanova
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Shattock MJ, Park KC, Yang HY, Lee AWC, Niederer S, MacLeod KT, Winter J. Restitution slope is principally determined by steady-state action potential duration. Cardiovasc Res 2018; 113:817-828. [PMID: 28371805 PMCID: PMC5437364 DOI: 10.1093/cvr/cvx063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/22/2017] [Indexed: 12/02/2022] Open
Abstract
Aims The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Methods and results Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM – to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Conclusion(s) Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death.
Collapse
Affiliation(s)
- Michael J Shattock
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Kyung Chan Park
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Hsiang-Yu Yang
- NHLI, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Angela W C Lee
- Biomedical Engineering, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Steven Niederer
- Biomedical Engineering, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Kenneth T MacLeod
- NHLI, ICTEM Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James Winter
- Cardiovascular Division, King's College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
5
|
Electrophysiology of Heart Failure Using a Rabbit Model: From the Failing Myocyte to Ventricular Fibrillation. PLoS Comput Biol 2016; 12:e1004968. [PMID: 27336310 PMCID: PMC4919062 DOI: 10.1371/journal.pcbi.1004968] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Heart failure is a leading cause of death, yet its underlying electrophysiological (EP) mechanisms are not well understood. In this study, we use a multiscale approach to analyze a model of heart failure and connect its results to features of the electrocardiogram (ECG). The heart failure model is derived by modifying a previously validated electrophysiology model for a healthy rabbit heart. Specifically, in accordance with the heart failure literature, we modified the cell EP by changing both membrane currents and calcium handling. At the tissue level, we modeled the increased gap junction lateralization and lower conduction velocity due to downregulation of Connexin 43. At the biventricular level, we reduced the apex-to-base and transmural gradients of action potential duration (APD). The failing cell model was first validated by reproducing the longer action potential, slower and lower calcium transient, and earlier alternans characteristic of heart failure EP. Subsequently, we compared the electrical wave propagation in one dimensional cables of healthy and failing cells. The validated cell model was then used to simulate the EP of heart failure in an anatomically accurate biventricular rabbit model. As pacing cycle length decreases, both the normal and failing heart develop T-wave alternans, but only the failing heart shows QRS alternans (although moderate) at rapid pacing. Moreover, T-wave alternans is significantly more pronounced in the failing heart. At rapid pacing, APD maps show areas of conduction block in the failing heart. Finally, accelerated pacing initiated wave reentry and breakup in the failing heart. Further, the onset of VF was not observed with an upregulation of SERCA, a potential drug therapy, using the same protocol. The changes introduced at the cell and tissue level have increased the failing heart’s susceptibility to dynamic instabilities and arrhythmias under rapid pacing. However, the observed increase in arrhythmogenic potential is not due to a steepening of the restitution curve (not present in our model), but rather to a novel blocking mechanism. Ventricular fibrillation (VF) is one of the leading causes of sudden death. During VF, the electrical wave of activation in the heart breaks up chaotically. Consequently, the heart is unable to contract synchronously and pump blood to the rest of the body. In our work we formulate and validate a model of heart failure (HF) that allows us to evaluate the arrhythmogenic potential of individual and combined electrophysiological changes. In diagnostic cardiology, the electrocardiogram (ECG) is one of the most commonly used tools for detecting abnormalities in the heart electrophysiology. One of our goals is to use our numerical model to link changes at the cellular and tissue level in a failing heart to a numerically computed ECG. This allows us to characterize the precursor to and the risk of VF. In order to understand the mechanisms underlying VF in HF, we design a test that simulates a HF patient performing physical exercise. We show that under fast heart rates with changes in pacing, HF patients are more prone to VF due to a new conduction blocking mechanism. In the long term, our mathematical model is suitable for investigating the effect of drug therapies in HF.
Collapse
|
6
|
Transmural, interventricular, apicobasal and anteroposterior action potential duration gradients are all essential to the genesis of the concordant and realistic T wave: A whole-heart model study. J Electrocardiol 2016; 49:569-78. [PMID: 27034121 DOI: 10.1016/j.jelectrocard.2016.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND It has been reported that ventricular repolarization dispersion resulting from transmural, apicobasal and interventricular action potential duration (APD) gradients makes the T wave concordant with the QRS complex. METHOD AND RESULTS A whole-heart model integrating transmural, apicobasal, interventricular and anteroposterior APD gradients was used, and the corresponding electrocardiograms were simulated to study the influence of these APD gradients on the T-wave amplitudes. The simulation results showed that changing a single APD gradient (e.g., interventricular APD gradient alone) only made substantial changes to the T-wave amplitudes in a limited number of leads and was not able to generate T waves with amplitudes comparable with clinical findings in all leads. A combination of transmural, apicobasal and interventricular APD gradients could simulate T waves with amplitudes similar to clinical values in the limb leads only. Adding the anteroposterior APD gradient into the model greatly improved the consistency between the simulated T-wave amplitudes and the clinical values. CONCLUSION The simulation results support that the transmural, apicobasal, interventricular and the anteroposterior APD gradient are all essential to the genesis of the clinical T wave.
Collapse
|
7
|
Winter J, Shattock MJ. Geometrical considerations in cardiac electrophysiology and arrhythmogenesis. Europace 2015; 18:320-31. [PMID: 26585597 DOI: 10.1093/europace/euv307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 11/14/2022] Open
Abstract
The rate of repolarization (RRepol) and so the duration of the cardiac action potential are determined by the balance of inward and outward currents across the cardiac membrane (net ionic current). Plotting action potential duration (APD) as a function of the RRepol reveals an inverse non-linear relationship, arising from the geometric association between these two factors. From the RRepol-APD relationship, it can be observed that a longer action potential will exhibit a greater propensity to shorten, or prolong, for a given change in the RRepol (i.e. net ionic current), when compared with one that is initially shorter. This observation has recently been used to explain why so many interventions that prolong the action potential exert a greater effect at slow rates (reverse rate-dependence). In this article, we will discuss the broader implications of this simple principle and examine how common experimental observations on the electrical behaviour of the myocardium may be explained in terms of the RRepol-APD relationship. An argument is made, with supporting published evidence, that the non-linear relationship between the RRepol and APD is a fundamental, and largely overlooked, property of the myocardium. The RRepol-APD relationship appears to explain why interventions and disease with seemingly disparate mechanisms of action have similar electrophysiological consequences. Furthermore, the RRepol-APD relationship predicts that prolongation of the action potential, by slowing repolarization, will promote conditions of dynamic electrical instability, exacerbating several electrophysiological phenomena associated with arrhythmogenesis, namely, the rate dependence of dispersion of repolarization, APD restitution, and electrical alternans.
Collapse
Affiliation(s)
- James Winter
- Cardiovascular Division, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, UK
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, UK
| |
Collapse
|
8
|
Quintanilla JG, Moreno J, Archondo T, Usandizaga E, Molina-Morúa R, Rodríguez-Bobada C, González P, García-Torrent MJ, Filgueiras-Rama D, Pérez-Castellano N, Macaya C, Pérez-Villacastín J. Increased intraventricular pressures are as harmful as the electrophysiological substrate of heart failure in favoring sustained reentry in the swine heart. Heart Rhythm 2015; 12:2172-83. [DOI: 10.1016/j.hrthm.2015.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/24/2022]
|
9
|
Lau E, Kossidas K, Kim TY, Kunitomo Y, Ziv O, Zhen S, Taylor C, Schofield L, Yammine J, Liu G, Peng X, Qu Z, Koren G, Choi BR. Spatially Discordant Alternans and Arrhythmias in Tachypacing-Induced Cardiac Myopathy in Transgenic LQT1 Rabbits: The Importance of IKs and Ca2+ Cycling. PLoS One 2015; 10:e0122754. [PMID: 25970695 PMCID: PMC4430457 DOI: 10.1371/journal.pone.0122754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/12/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Remodeling of cardiac repolarizing currents, such as the downregulation of slowly activating K+ channels (IKs), could underlie ventricular fibrillation (VF) in heart failure (HF). We evaluated the role of Iks remodeling in VF susceptibility using a tachypacing HF model of transgenic rabbits with Long QT Type 1 (LQT1) syndrome. METHODS AND RESULTS LQT1 and littermate control (LMC) rabbits underwent three weeks of tachypacing to induce cardiac myopathy (TICM). In vivo telemetry demonstrated steepening of the QT/RR slope in LQT1 with TICM (LQT1-TICM; pre: 0.26±0.04, post: 0.52±0.01, P<0.05). In vivo electrophysiology showed that LQT1-TICM had higher incidence of VF than LMC-TICM (6 of 11 vs. 3 of 11, respectively). Optical mapping revealed larger APD dispersion (16±4 vs. 38±6 ms, p<0.05) and steep APD restitution in LQT1-TICM compared to LQT1-sham (0.53±0.12 vs. 1.17±0.13, p<0.05). LQT1-TICM developed spatially discordant alternans (DA), which caused conduction block and higher-frequency VF (15±1 Hz in LQT1-TICM vs. 13±1 Hz in LMC-TICM, p<0.05). Ca2+ DA was highly dynamic and preceded voltage DA in LQT1-TICM. Ryanodine abolished DA in 5 out of 8 LQT1-TICM rabbits, demonstrating the importance of Ca2+ in complex DA formation. Computer simulations suggested that HF remodeling caused Ca2+-driven alternans, which was further potentiated in LQT1-TICM due to the lack of IKs. CONCLUSIONS Compared with LMC-TICM, LQT1-TICM rabbits exhibit steepened APD restitution and complex DA modulated by Ca2+. Our results strongly support the contention that the downregulation of IKs in HF increases Ca2+ dependent alternans and thereby the risk of VF.
Collapse
Affiliation(s)
- Emily Lau
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Konstantinos Kossidas
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Yukiko Kunitomo
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Ohad Ziv
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Song Zhen
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chantel Taylor
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Lorraine Schofield
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Joe Yammine
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Gongxin Liu
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Xuwen Peng
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hsieh YC, Chang PC, Hsueh CH, Lee YS, Shen C, Weiss JN, Chen Z, Ai T, Lin SF, Chen PS. Apamin-sensitive potassium current modulates action potential duration restitution and arrhythmogenesis of failing rabbit ventricles. Circ Arrhythm Electrophysiol 2013; 6:410-8. [PMID: 23420832 DOI: 10.1161/circep.111.000152] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Apamin-sensitive K currents (I(KAS)) are upregulated in heart failure. We hypothesize that apamin can flatten action potential duration restitution (APDR) curve and can reduce ventricular fibrillation duration in failing ventricles. METHODS AND RESULTS We simultaneously mapped membrane potential and intracellular Ca (Ca(i)) in 7 rabbit hearts with pacing-induced heart failure and in 7 normal hearts. A dynamic pacing protocol was used to determine APDR at baseline and after apamin (100 nmol/L) infusion. Apamin did not change APD(80) in normal ventricles, but prolonged APD(80) in failing ventricles at either long (≥300 ms) or short (≤170 ms) pacing cycle length, but not at intermediate pacing cycle length. The maximal slope of APDR curve was 2.03 (95% confidence interval, 1.73-2.32) in failing ventricles and 1.26 (95% confidence interval, 1.13-1.40) in normal ventricles at baseline (P=0.002). After apamin administration, the maximal slope of APDR in failing ventricles decreased to 1.43 (95% confidence interval, 1.01-1.84; P=0.018), whereas no significant changes were observed in normal ventricles. During ventricular fibrillation in failing ventricles, the number of phase singularities (baseline versus apamin, 4.0 versus 2.5), dominant frequency (13.0 versus 10.0 Hz), and ventricular fibrillation duration (160 versus 80 s) were all significantly (P<0.05) decreased by apamin. CONCLUSIONS Apamin prolongs APD at long and short, but not at intermediate pacing cycle length in failing ventricles. I(KAS) upregulation may be antiarrhythmic by preserving the repolarization reserve at slow heart rate, but is proarrhythmic by steepening the slope of APDR curve, which promotes the generation and maintenance of ventricular fibrillation.
Collapse
Affiliation(s)
- Yu-Cheng Hsieh
- Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vaseghi M, Lux RL, Mahajan A, Shivkumar K. Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction. Am J Physiol Heart Circ Physiol 2012; 302:H1838-46. [PMID: 22345568 DOI: 10.1152/ajpheart.01106.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sympathetic nervous system is thought to play a key role in genesis and maintenance of ventricular arrhythmias. The myocardial effect of sympathetic stimulation on myocardial repolarization in humans is poorly understood. The purpose of this study was to evaluate the effects of direct and reflex sympathetic stimulation on ventricular repolarization in patients with postinfarct cardiomyopathy (ICM). The effects of direct sympathetic stimulation were assessed using isoproterenol, while those of reflex sympathetic stimulation were assessed with nitroprusside infusion in ICM patients (n = 5). Five patients without cardiomyopathy were also studied. Local repolarization was measured from intracardiac electrograms that were used to calculate the activation recovery interval (ARI), a surrogate of action potential duration. Isoproterenol significantly increased heterogeneity in repolarization in patients with ICM; the decrease in ARI from baseline was 72.9 ± 9.1 ms in more viable regions, 64.5 ± 8.9 ms in the scar, and 54.9 ± 9.1 ms in border zones (P = 0.0002 and 0.014 comparing normal and scar to border zones, respectively). In response to nitroprusside, the ARI at the border zones decreased significantly more than either scar or surrounding viable myocardium, which showed an increase in ARI (P = 0.014 and 0.08 comparing normal tissue and scar to border zones, respectively). Furthermore, isoproterenol increased ARI dispersion by 70%, while nitroprusside increased ARI dispersion by 230% when ICM patients were compared to those with structurally normal hearts (P = 0.0015 and P < 0.001, respectively). In humans, both direct and reflex sympathetic stimulations increase regional differences in repolarization. The normal tissue surrounding the scar appears denervated. Dispersion of ARI in response to sympathetic stimulation is significantly increased in patients with ICM.
Collapse
Affiliation(s)
- Marmar Vaseghi
- University of Califonia, Los Angeles, Cardiac Arrhythmia Center, Los Angeles, CA 90095-1679, USA
| | | | | | | |
Collapse
|
12
|
Vollkron M, Voitl P, Ta J, Wieselthaler G, Schima H. Suction Events During Left Ventricular Support and Ventricular Arrhythmias. J Heart Lung Transplant 2007; 26:819-25. [DOI: 10.1016/j.healun.2007.05.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/16/2007] [Accepted: 05/17/2007] [Indexed: 11/15/2022] Open
|
13
|
Tang HF, Wu SL, Deng CY, Zhang WC, Kuang SJ. Bisoprolol inhibits sodium current in ventricular myocytes of rats with diastolic heart failure. Clin Exp Pharmacol Physiol 2007; 34:714-9. [PMID: 17600546 DOI: 10.1111/j.1440-1681.2007.04628.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Changes in sodium currents (I(Na)) in heart failure contribute to cardiac electrophysiological alterations and, thereby, to ventricular arrhythmias. Bisoprolol has anti-arrhythmic effects, but its direct effect on I(Na) in cardiac cells remains unclear. Accordingly, in the present study we investigated the effects of bisoprolol on ventricular I(Na) in diastolic heart failure (DHF) and normal rats. 2. The DHF model was produced by abdominal aortic coarctation for 4 weeks and single ventricular myocytes were isolated by enzymatic dissociation. The electrophysiological actions of bisoprolol on I(Na) currents were investigated using a whole-cell patch-clamp technique. 3. The membrane capacitance of rats in the DHF group was significantly greater than that of the control group and the current-voltage curve was simultaneously shifted downward. Bisoprolol concentration-dependently decreased I(Na) in ventricular myocytes of both groups (at -45 mV), with IC(50) values of 19.53 +/- 0.06 and 40.78 +/- 0.03 micromol/L in the control and DHF groups, respectively. 4. In both groups, the current-voltage curves were shifted upwards, whereas activation potentials, peak currents and reversal potentials showed no significant changes. At -45 mV, the descent ratio of current densities in the DHF group was lower than that of the control group. In both groups, inactivation curves were shifted to more negative potentials, but activation curves and recovery curves were not altered. Changes in the half-inactivation voltage, V(0.5), and the slope of the inactivation curve, S, were similar for both groups. 5. In conclusion, bisoprolol concentration-dependently decreases I(Na) in ventricular myocytes of DHF and normal rats, which could be responsible, at least in part, for its anti-arrhythmic effects.
Collapse
MESH Headings
- Animals
- Anti-Arrhythmia Agents/pharmacology
- Anti-Arrhythmia Agents/therapeutic use
- Aorta, Abdominal/surgery
- Aortic Coarctation/complications
- Aortic Coarctation/metabolism
- Aortic Coarctation/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Bisoprolol/pharmacology
- Bisoprolol/therapeutic use
- Blood Pressure/drug effects
- Diastole
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Heart Failure/complications
- Heart Failure/drug therapy
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Rate/drug effects
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Male
- Membrane Potentials/drug effects
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Sodium/metabolism
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Hui-Fang Tang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, China
| | | | | | | | | |
Collapse
|
14
|
Stambler BS. Tachycardia-induced ventricular electrical remodeling: A perspective on unresolved experimental mechanisms and clinical implications. Heart Rhythm 2006; 3:1378-81. [PMID: 17074649 DOI: 10.1016/j.hrthm.2006.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Indexed: 11/23/2022]
Affiliation(s)
- Bruce S Stambler
- Division of Cardiology, Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
15
|
Fricke E, Fricke H, Eckert S, Zijlstra S, Weise R, Lindner O, Horstkotte D, Burchert W. Myocardial sympathetic innervation in patients with chronic coronary artery disease: is reduction in coronary flow reserve correlated with sympathetic denervation? Eur J Nucl Med Mol Imaging 2006; 34:206-11. [PMID: 17021809 DOI: 10.1007/s00259-006-0236-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/25/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE Higher sensitivity of sympathetic nerves to ischaemia in comparison with myocytes has been observed and has been claimed to contribute to poor prognosis in patients with coronary artery disease (CAD). The aim of this study was to evaluate the dependency of myocardial sympathetic innervation on restrictions in coronary flow reserve (CFR). METHODS We analysed 27 non-diabetic patients with advanced CAD. We determined quantitative myocardial blood flow using (13)N-ammonia PET, myocardial viability with (18)F-FDG PET and cardiac innervation with (11)C-HED PET. Scarred segments were excluded from analysis. We investigated the relationship between regional HED retention, blood flow and CFR. RESULTS There was no correlation between rest perfusion and HED retention within a flow range from approximately 30 to 120 ml/(100 ml x min). A slight correlation was observed between stress perfusion values and HED retention (p<0.001), and between CFR and HED retention (p<0.001). CONCLUSION In non-diabetic CAD patients, HED retention in vital myocardium does not correlate with myocardial rest perfusion over a large flow range. The observed relation between HED retention and CFR indicates that sympathetic innervation can be preserved even when there is major impairment of myocardial blood supply. Most probably the occurrence of denervation depends not only on reductions in CFR, but also on the duration and severity of resulting ischaemic episodes.
Collapse
Affiliation(s)
- Eva Fricke
- Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center North Rhine-Westphalia, Georgstrasse 11, 32545 Bad Oeynhausen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The characterization of single gene disorders has provided important insights into the molecular pathogenesis of cardiac arrhythmias. Primary electricalal diseases including long-QT syndrome, short-QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia have been associated with mutations in a variety of ion channel subunit genes that promote arrhythmogenesis. Pathological remodeling of ionic currents and network properties of the heart critical for normal electrical propagation plays a critical role in the initiation and maintenance of acquired arrhythmias. This review focuses on the molecular and cellular basis of electrical activity in the heart under normal and pathophysiological conditions to provide insights into the fundamental mechanisms of inherited and acquired cardiac arrhythmias. Improved understanding of the basic biology of cardiac arrhythmias holds the promise of identifying new molecular targets for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Manish Shah
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|