1
|
Mahmutovic Persson I, Bozovic G, Westergren-Thorsson G, Rolandsson Enes S. Spatial lung imaging in clinical and translational settings. Breathe (Sheff) 2024; 20:230224. [PMID: 39360023 PMCID: PMC11444490 DOI: 10.1183/20734735.0224-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024] Open
Abstract
For many severe lung diseases, non-invasive biomarkers from imaging could improve early detection of lung injury or disease onset, establish a diagnosis, or help follow-up disease progression and treatment strategies. Imaging of the thorax and lung is challenging due to its size, respiration movement, transferred cardiac pulsation, vast density range and gravitation sensitivity. However, there is extensive ongoing research in this fast-evolving field. Recent improvements in spatial imaging have allowed us to study the three-dimensional structure of the lung, providing both spatial architecture and transcriptomic information at single-cell resolution. This fast progression, however, comes with several challenges, including significant image file storage and network capacity issues, increased costs, data processing and analysis, the role of artificial intelligence and machine learning, and mechanisms to combine several modalities. In this review, we provide an overview of advances and current issues in the field of spatial lung imaging.
Collapse
Affiliation(s)
- Irma Mahmutovic Persson
- Lund University BioImaging Centre (LBIC), Faculty of Medicine, Lund University, Lund, Sweden
- Respiratory Immunopharmacology, Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Gracijela Bozovic
- Department of Clinical Sciences, Radiology, Lund University, Lund, Sweden
- Department of Medical Imaging and Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Gunilla Westergren-Thorsson
- Lund University BioImaging Centre (LBIC), Faculty of Medicine, Lund University, Lund, Sweden
- Lung Biology, Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sara Rolandsson Enes
- Lung Biology, Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Liu C, Liu H, Li Y, Xiao Z, Wang Y, Guo H, Luo J. Establishing a 4D-CT lung function related volumetric dose model to reduce radiation pneumonia. Sci Rep 2024; 14:12589. [PMID: 38824238 PMCID: PMC11144207 DOI: 10.1038/s41598-024-63251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
In order to study how to use pulmonary functional imaging obtained through 4D-CT fusion for radiotherapy planning, and transform traditional dose volume parameters into functional dose volume parameters, a functional dose volume parameter model that may reduce level 2 and above radiation pneumonia was obtained. 41 pulmonary tumor patients who underwent 4D-CT in our department from 2020 to 2023 were included. MIM Software (MIM 7.0.7; MIM Software Inc., Cleveland, OH, USA) was used to register adjacent phase CT images in the 4D-CT series. The three-dimensional displacement vector of CT pixels was obtained when changing from one respiratory state to another respiratory state, and this three-dimensional vector was quantitatively analyzed. Thus, a color schematic diagram reflecting the degree of changes in lung CT pixels during the breathing process, namely the distribution of ventilation function strength, is obtained. Finally, this diagram is fused with the localization CT image. Select areas with Jacobi > 1.2 as high lung function areas and outline them as fLung. Import the patient's DVH image again, fuse the lung ventilation image with the localization CT image, and obtain the volume of fLung different doses (V60, V55, V50, V45, V40, V35, V30, V25, V20, V15, V10, V5). Analyze the functional dose volume parameters related to the risk of level 2 and above radiation pneumonia using R language and create a predictive model. By using stepwise regression and optimal subset method to screen for independent variables V35, V30, V25, V20, V15, and V10, the prediction formula was obtained as follows: Risk = 0.23656-0.13784 * V35 + 0.37445 * V30-0.38317 * V25 + 0.21341 * V20-0.10209 * V15 + 0.03815 * V10. These six independent variables were analyzed using a column chart, and a calibration curve was drawn using the calibrate function. It was found that the Bias corrected line and the Apparent line were very close to the Ideal line, The consistency between the predicted value and the actual value is very good. By using the ROC function to plot the ROC curve and calculating the area under the curve: 0.8475, 95% CI 0.7237-0.9713, it can also be determined that the accuracy of the model is very high. In addition, we also used Lasso method and random forest method to filter out independent variables with different results, but the calibration curve drawn by the calibration function confirmed poor prediction performance. The function dose volume parameters V35, V30, V25, V20, V15, and V10 obtained through 4D-CT are key factors affecting radiation pneumonia. Establishing a predictive model can provide more accurate lung restriction basis for clinical radiotherapy planning.
Collapse
Affiliation(s)
- Chunmei Liu
- Department of Radiation Oncology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Huizhi Liu
- Department of Radiation Oncology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Yange Li
- Department of Radiation Oncology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Zhiqing Xiao
- Department of Radiation Oncology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Yanqiang Wang
- Department of Radiation Oncology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Han Guo
- Department of Radiation Oncology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Gülle S, Çelik A, Birlik M, Yılmaz O. Skin and lung fibrosis induced by bleomycin in mice: a systematic review. Reumatismo 2024; 76. [PMID: 38523580 DOI: 10.4081/reumatismo.2024.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/02/2023] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE Scleroderma, or systemic sclerosis (SSc), is a chronic autoimmune connective disease with an unknown etiology and poorly understood pathogenesis. The striking array of autoimmune, vascular, and fibrotic changes that develop in almost all patients makes SSc unique among connective tissue diseases. Although no animal model developed for SSc to date fully represents all features of human disease, some animal models that demonstrate features of SSc may help to better understand the pathogenesis of the disease and to develop new therapeutic options. In this review, we aimed to evaluate skin fibrosis and lung involvement in a bleomycin (BLM)-induced mouse model and to evaluate the differences between studies. METHODS A systematic literature review (PRISMA guideline) on PubMed and EMBASE (until May 2023, without limits) was performed. A primary literature search was conducted using the PubMed and EMBASE databases for all articles published from 1990 to May 2023. Review articles, human studies, and non-dermatological studies were excluded. Of the 38 non-duplicated studies, 20 articles were included. RESULTS Among inducible animal models, the BLM-induced SSc is still the most widely used. In recent years, the measurement of tissue thickness between the epidermal-dermal junction and the dermal-adipose tissue junction (dermal layer) has become more widely accepted. CONCLUSIONS In animal studies, it is important to simultaneously evaluate lung tissues in addition to skin fibrosis induced in mice by subcutaneous BLM application, following the 3R (replacement, reduction, and refinement) principle to avoid cruelty to animals.
Collapse
Affiliation(s)
- S Gülle
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir; Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| | - A Çelik
- Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| | - M Birlik
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir.
| | - O Yılmaz
- Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| |
Collapse
|
4
|
Lian X, Scott-Thomas A, Lewis JG, Bhatia M, MacPherson SA, Zeng Y, Chambers ST. Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23105563. [PMID: 35628374 PMCID: PMC9146623 DOI: 10.3390/ijms23105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as “possible” or “probable” cases but not “proven”. Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.
Collapse
Affiliation(s)
- Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Department of Medical Imaging, The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China
| | - Amy Scott-Thomas
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - John G. Lewis
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Steroid and Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - Sean A. MacPherson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Haematology Department, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China;
| | - Stephen T. Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Correspondence: ; Tel.: +64-3-364-0649
| |
Collapse
|
5
|
Murray A, Gow AJ, Venosa A, Andres J, Malaviya R, Adler D, Yurkow E, Laskin JD, Laskin DL. Assessment of mustard vesicant lung injury and anti-TNF-α efficacy in rodents using live-animal imaging. Ann N Y Acad Sci 2020; 1480:246-256. [PMID: 33165947 DOI: 10.1111/nyas.14525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023]
Abstract
Nitrogen mustard (NM) causes acute lung injury, which progresses to fibrosis. This is associated with a macrophage-dominant inflammatory response and the production of proinflammatory/profibrotic mediators, including tumor necrosis factor alpha (TNF-α). Herein, we refined magnetic resonance imaging (MRI) and computed tomography (CT) imaging methodologies to track the progression of NM-induced lung injury in rodents and assess the efficacy of anti-TNF-α antibody in mitigating toxicity. Anti-TNF-α antibody was administered to rats (15 mg/kg, every 8 days, intravenously) beginning 30 min after treatment with phosphate-buffered saline control or NM (0.125 mg/kg, intratracheally). Animals were imaged by MRI and CT prior to exposure and 1-28 days postexposure. Using MRI, we characterized acute lung injury and fibrosis by quantifying high-signal lung volume, which represents edema, inflammation, and tissue consolidation; these pathologies were found to persist for 28 days following NM exposure. CT scans were used to assess structural components of the lung and to register changes in tissue radiodensities. CT scans showed that in control animals, total lung volume increased with time. Treatment of rats with NM caused loss of lung volume; anti-TNF-α antibody mitigated this decrease. These studies demonstrate that MRI and CT can be used to monitor lung disease and the impact of therapeutic intervention.
Collapse
Affiliation(s)
- Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Jaclynn Andres
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Derek Adler
- Molecular Imaging Center, Rutgers University, Piscataway, New Jersey
| | - Edward Yurkow
- Molecular Imaging Center, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
6
|
Mecozzi L, Mambrini M, Ruscitti F, Ferrini E, Ciccimarra R, Ravanetti F, Sverzellati N, Silva M, Ruffini L, Belenkov S, Civelli M, Villetti G, Stellari FF. In-vivo lung fibrosis staging in a bleomycin-mouse model: a new micro-CT guided densitometric approach. Sci Rep 2020; 10:18735. [PMID: 33127949 PMCID: PMC7603396 DOI: 10.1038/s41598-020-71293-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Although increasing used in the preclinical testing of new anti-fibrotic drugs, a thorough validation of micro-computed tomography (CT) in pulmonary fibrosis models has not been performed. Moreover, no attempts have been made so far to define density thresholds to discriminate between aeration levels in lung parenchyma. In the present study, a histogram-based analysis was performed in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis by micro-CT, evaluating longitudinal density changes from 7 to 21 days after BLM challenge, a period representing the progression of fibrosis. Two discriminative densitometric indices (i.e. 40th and 70th percentiles) were extracted from Hounsfield Unit density distributions and selected for lung fibrosis staging. The strong correlation with histological findings (rSpearman = 0.76, p < 0.01) confirmed that variations in 70th percentile could reflect a pathological lung condition and estimate the effect of antifibrotic treatments. This index was therefore used to define lung aeration levels in mice distinguishing in hyper-inflated, normo-, hypo- and non-aerated pulmonary compartments. A retrospective analysis performed on a large cohort of mice confirmed the correlation between the proposed preclinical density thresholds and the histological outcomes (rSpearman = 0.6, p < 0.01), strengthening their suitability for tracking disease progression and evaluating antifibrotic drug candidates.
Collapse
Affiliation(s)
- Laura Mecozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Mambrini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Francesca Ruscitti
- Phamacology and Toxicology Department, Chiesi Farmaceutici S.P.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A 43122, Parma, Italy
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | | | - Mario Silva
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Livia Ruffini
- Department Nuclear Medicine, Academic Hospital of Parma, Parma, Italy
| | | | - Maurizio Civelli
- Phamacology and Toxicology Department, Chiesi Farmaceutici S.P.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A 43122, Parma, Italy
| | - Gino Villetti
- Phamacology and Toxicology Department, Chiesi Farmaceutici S.P.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A 43122, Parma, Italy
| | - Fabio Franco Stellari
- Phamacology and Toxicology Department, Chiesi Farmaceutici S.P.A., Corporate Pre-Clinical R&D, Largo Belloli, 11/A 43122, Parma, Italy.
| |
Collapse
|
7
|
Tielemans B, Dekoster K, Verleden SE, Sawall S, Leszczyński B, Laperre K, Vanstapel A, Verschakelen J, Kachelriess M, Verbeken E, Swoger J, Vande Velde G. From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases. Diagnostics (Basel) 2020; 10:E636. [PMID: 32859103 PMCID: PMC7554749 DOI: 10.3390/diagnostics10090636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Lung diseases such as fibrosis, asthma, cystic fibrosis, infection and cancer are life-threatening conditions that slowly deteriorate quality of life and for which our diagnostic power is high, but our knowledge on etiology and/or effective treatment options still contains important gaps. In the context of day-to-day practice, clinical and preclinical studies, clinicians and basic researchers team up and continuously strive to increase insights into lung disease progression, diagnostic and treatment options. To unravel disease processes and to test novel therapeutic approaches, investigators typically rely on end-stage procedures such as serum analysis, cyto-/chemokine profiles and selective tissue histology from animal models. These techniques are useful but provide only a snapshot of disease processes that are essentially dynamic in time and space. Technology allowing evaluation of live animals repeatedly is indispensable to gain a better insight into the dynamics of lung disease progression and treatment effects. Computed tomography (CT) is a clinical diagnostic imaging technique that can have enormous benefits in a research context too. Yet, the implementation of imaging techniques in laboratories lags behind. In this review we want to showcase the integrated approaches and novel developments in imaging, lung functional testing and pathological techniques that are used to assess, diagnose, quantify and treat lung disease and that may be employed in research on patients and animals. Imaging approaches result in often novel anatomical and functional biomarkers, resulting in many advantages, such as better insight in disease progression and a reduction in the numbers of animals necessary. We here showcase integrated assessment of lung disease with imaging and histopathological technologies, applied to the example of lung fibrosis. Better integration of clinical and preclinical imaging technologies with pathology will ultimately result in improved clinical translation of (therapy) study results.
Collapse
Affiliation(s)
- Birger Tielemans
- Department of Imaging and Pathology, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (B.T.); (K.D.); (J.V.); (E.V.)
| | - Kaat Dekoster
- Department of Imaging and Pathology, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (B.T.); (K.D.); (J.V.); (E.V.)
| | - Stijn E. Verleden
- Department of CHROMETA, BREATHE lab, KU Leuven, 3000 Leuven, Belgium; (S.E.V.); (A.V.)
| | - Stefan Sawall
- German Cancer Research Center (DKFZ), X-Ray Imaging and CT, Heidelberg University, 69117 Heidelberg, Germany; (S.S.); (M.K.)
| | - Bartosz Leszczyński
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 31-007 Kraków, Poland;
| | | | - Arno Vanstapel
- Department of CHROMETA, BREATHE lab, KU Leuven, 3000 Leuven, Belgium; (S.E.V.); (A.V.)
| | - Johny Verschakelen
- Department of Imaging and Pathology, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (B.T.); (K.D.); (J.V.); (E.V.)
| | - Marc Kachelriess
- German Cancer Research Center (DKFZ), X-Ray Imaging and CT, Heidelberg University, 69117 Heidelberg, Germany; (S.S.); (M.K.)
| | - Erik Verbeken
- Department of Imaging and Pathology, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (B.T.); (K.D.); (J.V.); (E.V.)
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain;
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (B.T.); (K.D.); (J.V.); (E.V.)
| |
Collapse
|
8
|
Wu L, Rodríguez-Rodríguez C, Cun D, Yang M, Saatchi K, Häfeli UO. Quantitative comparison of three widely-used pulmonary administration methods in vivo with radiolabeled inhalable nanoparticles. Eur J Pharm Biopharm 2020; 152:108-115. [PMID: 32437751 DOI: 10.1016/j.ejpb.2020.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Pulmonary formulations have been attracting much attention because of their direct effects on respiratory diseases, but also their non-invasive administration for the treatment of systemic diseases. When developing such formulations, they are typically first investigated in mice. As there are various pulmonary administration methods, the researcher has to decide on the best quantitative method for their preclinical investigations among candidate methods, both for total delivery and distribution within the lung lobes. In this study, we investigated the deposition and distribution of siRNA loaded PLGA nanoparticles (NPs) in the different lung lobes via three widely used pulmonary administration methods: intratracheal instillation, intratracheal spraying and intranasal instillation. The NPs were radiolabeled with 111In, administered and a single photon emission computed tomography (SPECT/CT) whole body scan performed. Quantitative image volume of interest (VOI) analysis of all inhalation related organs was performed, plus sub-organ examinations using dissection and gamma counting. Intratracheal instillation and intratracheal spraying deposited >95% and >85% of radiolabeled NPs in the lung, respectively. However, the lung lobe distribution of the NPs was inhomogeneous. Intranasal instillation deposited only ~28% of the dose in the lungs, with even larger inhomogeneity and individual variation between animals. Furthermore, there was a high deposition of the NPs in the stomach. Intratracheal instillation and intratracheal spraying deposit a large number of NPs in the lungs, and are thus useful to test therapeutic effects in preclinical animal studies. However, the inhomogeneous distribution of formulation between lung lobes needs to be considered in the experimental design. Intranasal instillation should not be used as a means of pulmonary administration.
Collapse
Affiliation(s)
- Lan Wu
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Cristina Rodríguez-Rodríguez
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Katayoun Saatchi
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Urs O Häfeli
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Development of an embedded multimodality imaging platform for onco-pharmacology using a smart anticancer prodrug as an example. Sci Rep 2020; 10:2661. [PMID: 32060400 PMCID: PMC7021674 DOI: 10.1038/s41598-020-59561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
Increasingly, in vivo imaging holds a strategic position in bio-pharmaceutical innovation. We will present the implementation of an integrated multimodal imaging setup enabling the assessment of multiple, complementary parameters. The system allows the fusion of information provided by: Near infrared fluorescent biomarkers, bioluminescence (for tumor proliferation status), Photoacoustic and Ultrasound imaging. We will study representative applications to the development of a smart prodrug, delivering a highly cytotoxic chemotherapeutic agent to cancer tumors. The results realized the ability of this embedded, multimodality imaging platform to firstly detect bioluminescent and fluorescent signals, and secondly, record ultrasound and photoacoustic data from the same animal. This study demonstrated that the prodrug was effective in three different models of hypoxia in human cancers compared to the parental cytotoxic agent and the vehicle groups. Monitoring by photoacoustic imaging during the treatments revealed that the prodrug exhibits an intrinsic capability to prevent the progression of tumor hypoxia. It is essential for onco-pharmacology studies to precisely document the hypoxic status of tumors both before and during the time course of treatments. This approach opens new perspectives for exploitation of preclinical mouse models of cancer, especially when considering associations between hypoxia, neoangiogenesis and antitumor activity.
Collapse
|
10
|
Ethanol fixation method for heart and lung imaging in micro-CT. Jpn J Radiol 2019; 37:500-510. [DOI: 10.1007/s11604-019-00830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
11
|
Integrating Small Animal Irradiators withFunctional Imaging for Advanced Preclinical Radiotherapy Research. Cancers (Basel) 2019; 11:cancers11020170. [PMID: 30717307 PMCID: PMC6406472 DOI: 10.3390/cancers11020170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Translational research aims to provide direct support for advancing novel treatment approaches in oncology towards improving patient outcomes. Preclinical studies have a central role in this process and the ability to accurately model biological and physical aspects of the clinical scenario in radiation oncology is critical to translational success. The use of small animal irradiators with disease relevant mouse models and advanced in vivo imaging approaches offers unique possibilities to interrogate the radiotherapy response of tumors and normal tissues with high potential to translate to improvements in clinical outcomes. The present review highlights the current technology and applications of small animal irradiators, and explores how these can be combined with molecular and functional imaging in advanced preclinical radiotherapy research.
Collapse
|
12
|
Viswanath P, Peng S, Singh R, Kingsley C, Balter PA, Johnson FM. A Novel Method for Quantifying Total Thoracic Tumor Burden in Mice. Neoplasia 2018; 20:975-984. [PMID: 30157470 PMCID: PMC6111024 DOI: 10.1016/j.neo.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Mouse models are powerful tools to study lung cancer initiation and progression in vivo and have contributed significantly to recent advances in therapy. Using micro-computed tomography to monitor and study parenchymal and extra-parenchymal metastases in existing murine models of lung cancer is challenging owing to a lack of radiographic contrast and difficulty in achieving respiratory gating. To facilitate the analysis of these in vivo imaging studies and study of tumor progression in murine models we developed a novel, rapid, semi-automated method of calculating thoracic tumor burden from computed tomography images. This method, in which commercially available software is used to calculate the mass of the thoracic cavity (MTC), takes into account the aggregate tumor burden in the thoracic cavity. The present study showed that in tumor-free mice, the MTC does not change over time and is not affected by breathing, whereas in tumor-bearing mice, the increase in the MTC is a measure of tumor mass that correlates well with tumor burden measured by lung weight. Tumor burden calculated with our MTC method correlated with that measured by lung weight as well as or better than that calculated using four established methods. To test this method, we assessed metastatic tumor development and response to a pharmacologic PLK1 inhibitor in an orthotopic xenograft mouse model. PLK1 inhibition significantly inhibited tumor growth. Our results demonstrate that the MTC method can be used to study dynamic changes in tumor growth and response to therapeutics in genetically engineered mouse models and orthotopic xenograft mouse models of lung cancer.
Collapse
Affiliation(s)
- Pavitra Viswanath
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Shaohua Peng
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ratnakar Singh
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Charles Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Peter A Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faye M Johnson
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX.
| |
Collapse
|
13
|
A Multimodal Imaging Approach Enables In Vivo Assessment of Antifungal Treatment in a Mouse Model of Invasive Pulmonary Aspergillosis. Antimicrob Agents Chemother 2018; 62:AAC.00240-18. [PMID: 29760132 DOI: 10.1128/aac.00240-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/06/2018] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus causes life-threatening lung infections in immunocompromised patients. Mouse models are extensively used in research to assess the in vivo efficacies of antifungals. In recent years, there has been an increasing interest in the use of noninvasive imaging techniques to evaluate experimental infections. However, single imaging modalities have limitations concerning the type of information they can provide. In this study, magnetic resonance imaging and bioluminescence imaging were combined to obtain longitudinal information on the extent of developing lesions and fungal load in a leukopenic mouse model of invasive pulmonary aspergillosis (IPA). This multimodal imaging approach was used to assess changes occurring within lungs of infected mice receiving voriconazole treatment starting at different time points after infection. The results showed that IPA development depends on the inoculum size used to infect animals and that disease can be successfully prevented or treated by initiating intervention during early stages of infection. Furthermore, we demonstrated that a reduction in fungal load is not necessarily associated with the disappearance of lesions on anatomical lung images, especially when antifungal treatment coincides with immune recovery. In conclusion, multimodal imaging allows an investigation of different aspects of disease progression or recovery by providing complementary information on dynamic processes, which are highly useful for assessing the efficacy of (novel) therapeutic compounds in a time- and labor-efficient manner.
Collapse
|
14
|
Bonniaud P, Fabre A, Frossard N, Guignabert C, Inman M, Kuebler WM, Maes T, Shi W, Stampfli M, Uhlig S, White E, Witzenrath M, Bellaye PS, Crestani B, Eickelberg O, Fehrenbach H, Guenther A, Jenkins G, Joos G, Magnan A, Maitre B, Maus UA, Reinhold P, Vernooy JHJ, Richeldi L, Kolb M. Optimising experimental research in respiratory diseases: an ERS statement. Eur Respir J 2018; 51:13993003.02133-2017. [PMID: 29773606 DOI: 10.1183/13993003.02133-2017] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
Abstract
Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality.
Collapse
Affiliation(s)
- Philippe Bonniaud
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre Hospitalo-Universitaire de Bourgogne, Dijon, France.,Faculté de Médecine et Pharmacie, Université de Bourgogne-Franche Comté, Dijon, France.,INSERM U866, Dijon, France
| | - Aurélie Fabre
- Dept of Histopathology, St Vincent's University Hospital, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Strasbourg, France.,CNRS UMR 7200, Faculté de Pharmacie, Illkirch, France.,Labex MEDALIS, Université de Strasbourg, Strasbourg, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mark Inman
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tania Maes
- Dept of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.,Dept of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Stampfli
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada.,Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Eric White
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Witzenrath
- Dept of Infectious Diseases and Respiratory Medicine And Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre-Simon Bellaye
- Département de Médecine nucléaire, Plateforme d'imagerie préclinique, Centre George-François Leclerc (CGFL), Dijon, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Service de Pneumologie A, Paris, France.,INSERM UMR 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Heinz Fehrenbach
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Member of the Leibniz Research Alliance Health Technologies
| | - Andreas Guenther
- Justus-Liebig-University Giessen, Universitary Hospital Giessen, Agaplesion Lung Clinic Waldhof-Elgershausen, German Center for Lung Research, Giessen, Germany
| | - Gisli Jenkins
- Nottingham Biomedical Research Centre, Respiratory Research Unit, City Campus, University of Nottingham, Nottingham, UK
| | - Guy Joos
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Antoine Magnan
- Institut du thorax, CHU de Nantes, Université de Nantes, Nantes, France
| | - Bernard Maitre
- Hôpital H Mondor, AP-HP, Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et de Pathologie Professionnelle, DHU A-TVB, Université Paris Est - Créteil, Créteil, France
| | - Ulrich A Maus
- Hannover School of Medicine, Division of Experimental Pneumology, Hannover, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at the 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Jena, Germany
| | - Juanita H J Vernooy
- Dept of Respiratory Medicine, Maastricht University Medical Center+ (MUMC+), AZ Maastricht, The Netherlands
| | - Luca Richeldi
- UOC Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Martin Kolb
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Pinar IP, Jones HD. Novel imaging approaches for small animal models of lung disease (2017 Grover Conference series). Pulm Circ 2018; 8:2045894018762242. [PMID: 29480066 PMCID: PMC5888832 DOI: 10.1177/2045894018762242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Imaging in small animal models of lung disease is challenging, as existing technologies are limited either by resolution or by the terminal nature of the imaging approach. Here, we describe the current state of small animal lung imaging, the technological advances of laboratory-sourced phase contrast X-ray imaging, and the application of this novel technology and its attendant image analysis techniques to the in vivo imaging of the large airways and pulmonary vasculature in murine models of lung health and disease.
Collapse
Affiliation(s)
- Isaac P Pinar
- 1 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.,2 Division of Biological Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia
| | - Heather D Jones
- 3 Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
17
|
Liu M, Guo H, Liu H, Zhang Z, Chi C, Hui H, Dong D, Hu Z, Tian J. In vivo pentamodal tomographic imaging for small animals. BIOMEDICAL OPTICS EXPRESS 2017; 8:1356-1371. [PMID: 28663833 PMCID: PMC5480548 DOI: 10.1364/boe.8.001356] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 05/05/2023]
Abstract
Multimodality molecular imaging emerges as a powerful strategy for correlating multimodal information. We developed a pentamodal imaging system which can perform positron emission tomography, bioluminescence tomography, fluorescence molecular tomography, Cerenkov luminescence tomography and X-ray computed tomography successively. Performance of sub-systems corresponding to different modalities were characterized. In vivo multimodal imaging of an orthotopic hepatocellular carcinoma xenograft mouse model was performed, and acquired multimodal images were fused. The feasibility of pentamodal tomographic imaging system was successfully validated with the imaging application on the mouse model. The ability of integrating anatomical, metabolic, and pharmacokinetic information promises applications of multimodality molecular imaging in precise medicine.
Collapse
Affiliation(s)
- Muhan Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Contributed equally
| | - Hongbo Guo
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Information Sciences and Technology, Northwest University, Xi'an, 710069, China
- Contributed equally
| | - Hongbo Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zeyu Zhang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Hui
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Dong
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenhua Hu
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The State Key Laboratory of Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The State Key Laboratory of Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Gilhodes JC, Julé Y, Kreuz S, Stierstorfer B, Stiller D, Wollin L. Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis. PLoS One 2017; 12:e0170561. [PMID: 28107543 PMCID: PMC5249201 DOI: 10.1371/journal.pone.0170561] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/08/2017] [Indexed: 12/13/2022] Open
Abstract
Current literature on pulmonary fibrosis induced in animal models highlights the need of an accurate, reliable and reproducible histological quantitative analysis. One of the major limits of histological scoring concerns the fact that it is observer-dependent and consequently subject to variability, which may preclude comparative studies between different laboratories. To achieve a reliable and observer-independent quantification of lung fibrosis we developed an automated software histological image analysis performed from digital image of entire lung sections. This automated analysis was compared to standard evaluation methods with regard to its validation as an end-point measure of fibrosis. Lung fibrosis was induced in mice by intratracheal administration of bleomycin (BLM) at 0.25, 0.5, 0.75 and 1 mg/kg. A detailed characterization of BLM-induced fibrosis was performed 14 days after BLM administration using lung function testing, micro-computed tomography and Ashcroft scoring analysis. Quantification of fibrosis by automated analysis was assessed based on pulmonary tissue density measured from thousands of micro-tiles processed from digital images of entire lung sections. Prior to analysis, large bronchi and vessels were manually excluded from the original images. Measurement of fibrosis has been expressed by two indexes: the mean pulmonary tissue density and the high pulmonary tissue density frequency. We showed that tissue density indexes gave access to a very accurate and reliable quantification of morphological changes induced by BLM even for the lowest concentration used (0.25 mg/kg). A reconstructed 2D-image of the entire lung section at high resolution (3.6 μm/pixel) has been performed from tissue density values allowing the visualization of their distribution throughout fibrotic and non-fibrotic regions. A significant correlation (p<0.0001) was found between automated analysis and the above standard evaluation methods. This correlation establishes automated analysis as a novel end-point measure of BLM-induced lung fibrosis in mice, which will be very valuable for future preclinical drug explorations.
Collapse
Affiliation(s)
| | | | - Sebastian Kreuz
- Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Stierstorfer
- Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Detlef Stiller
- Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Lutz Wollin
- Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
19
|
Markus MA, Napp J, Behnke T, Mitkovski M, Monecke S, Dullin C, Kilfeather S, Dressel R, Resch-Genger U, Alves F. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation. ACS NANO 2015; 9:11642-11657. [PMID: 26513457 DOI: 10.1021/acsnano.5b04026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Thomas Behnke
- Biophotonics Division, BAM Federal Institute for Materials Research and Testing , 12205 Berlin, Germany
| | | | | | | | | | | | - Ute Resch-Genger
- Biophotonics Division, BAM Federal Institute for Materials Research and Testing , 12205 Berlin, Germany
| | | |
Collapse
|
20
|
Marenzana M, Vande Velde G. Refine, reduce, replace: Imaging of fibrosis and arthritis in animal models. Best Pract Res Clin Rheumatol 2015; 29:715-40. [DOI: 10.1016/j.berh.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Vande Velde G, Poelmans J, De Langhe E, Hillen A, Vanoirbeek J, Himmelreich U, Lories RJ. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume. Dis Model Mech 2015; 9:91-8. [PMID: 26563390 PMCID: PMC4728330 DOI: 10.1242/dmm.020321] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 11/08/2015] [Indexed: 02/02/2023] Open
Abstract
In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung disease, in order to fully describe and understand dynamic processes during lung disease onset, progression and therapy. This is highly relevant for the translation of therapy evaluation results from preclinical studies to human patients.
Collapse
Affiliation(s)
- Greetje Vande Velde
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, B-3000 Leuven, Flanders, Belgium
| | - Jennifer Poelmans
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, B-3000 Leuven, Flanders, Belgium
| | - Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, B-3000 Leuven, Flanders, Belgium Division of Rheumatology, University Hospitals Leuven, B-3000 Leuven, Flanders, Belgium
| | - Amy Hillen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, B-3000 Leuven, Flanders, Belgium
| | - Jeroen Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, B-3000 Leuven, Flanders, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, B-3000 Leuven, Flanders, Belgium
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, B-3000 Leuven, Flanders, Belgium Division of Rheumatology, University Hospitals Leuven, B-3000 Leuven, Flanders, Belgium
| |
Collapse
|
22
|
Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1229-38. [PMID: 26432872 DOI: 10.1152/ajplung.00319.2015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
In utero, fetal lung epithelial cells actively secrete Cl(-) ions into the lung air spaces while Na(+) ions follow passively to maintain electroneutrality. This process, driven by an electrochemical gradient generated by the Na(+)-K(+)-ATPase, is responsible for the secretion of fetal fluid that is essential for normal lung development. Shortly before birth, a significant upregulation of amiloride-sensitive epithelial channels (ENaCs) on the apical side of the lung epithelial cells results in upregulation of active Na(+) transport. This process is critical for the reabsorption of fetal lung fluid and the establishment of optimum gas exchange. In the adult lung, active Na(+) reabsorption across distal lung epithelial cells limits the degree of alveolar edema in patients with acute lung injury and cardiogenic edema. Cl(-) ions are transported either paracellularly or transcellularly to preserve electroneutrality. An increase in Cl(-) secretion across the distal lung epithelium has been reported following an acute increase in left atrial pressure and may result in pulmonary edema. In contrast, airway epithelial cells secrete Cl(-) through apical cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels and absorb Na(+). Thus the coordinated action of Cl(-) secretion and Na(+) absorption is essential for maintenance of the volume of epithelial lining fluid that, in turn, maximizes mucociliary clearance and facilitates clearance of bacteria and debris from the lungs. Any factor that interferes with Na(+) or Cl(-) transport or dramatically upregulates ENaC activity in airway epithelial cells has been associated with lung diseases such as cystic fibrosis or chronic obstructive lung disease. In this review we focus on the role of the ENaC, the mechanisms involved in ENaC regulation, and how ENaC dysregulation can lead to lung pathology.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
23
|
Zhou Y, Chen H, Ambalavanan N, Liu G, Antony VB, Ding Q, Nath H, Eary JF, Thannickal VJ. Noninvasive imaging of experimental lung fibrosis. Am J Respir Cell Mol Biol 2015; 53:8-13. [PMID: 25679265 DOI: 10.1165/rcmb.2015-0032tr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.
Collapse
Affiliation(s)
- Yong Zhou
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Huaping Chen
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | | | - Gang Liu
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Veena B Antony
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Qiang Ding
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| | - Hrudaya Nath
- 3 Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Janet F Eary
- 3 Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J Thannickal
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and
| |
Collapse
|
24
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
25
|
Vande Velde G, De Langhe E, Poelmans J, Bruyndonckx P, d'Agostino E, Verbeken E, Bogaerts R, Lories R, Himmelreich U. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity. Am J Physiol Lung Cell Mol Physiol 2015; 309:L271-9. [PMID: 26024893 DOI: 10.1152/ajplung.00098.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022] Open
Abstract
Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard.
Collapse
Affiliation(s)
- Greetje Vande Velde
- Biomedical MRI Unit/MoSAIC, Department Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Flanders, Belgium
| | - Jennifer Poelmans
- Biomedical MRI Unit/MoSAIC, Department Imaging & Pathology, KU Leuven, Leuven, Belgium
| | | | - Emiliano d'Agostino
- SB Dosimetry and Calibration, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK·CEN, Mol, Belgium
| | - Erik Verbeken
- Translational Cell and Tissue Research, Department Imaging and Pathology, KU Leuven, Leuven, Belgium; and
| | - Ria Bogaerts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rik Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Flanders, Belgium;
| | - Uwe Himmelreich
- Biomedical MRI Unit/MoSAIC, Department Imaging & Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Woods A, Patel A, Spina D, Riffo-Vasquez Y, Babin-Morgan A, de Rosales RTM, Sunassee K, Clark S, Collins H, Bruce K, Dailey LA, Forbes B. In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery. J Control Release 2015; 210:1-9. [PMID: 25980621 PMCID: PMC4674532 DOI: 10.1016/j.jconrel.2015.05.269] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023]
Abstract
The development of clinically acceptable albumin-based nanoparticle formulations for use in pulmonary drug delivery has been hindered by concerns about the toxicity of nanomaterials in the lungs combined with a lack of information on albumin nanoparticle clearance kinetics and biodistribution. In this study, the in vivo biocompatibility of albumin nanoparticles was investigated following a single administration of 2, 20, and 390 μg/mouse, showing no inflammatory response (TNF-α and IL-6, cellular infiltration and protein concentration) compared to vehicle controls at the two lower doses, but elevated mononucleocytes and a mild inflammatory effect at the highest dose tested. The biodistribution and clearance of 111In labelled albumin solution and nanoparticles over 48 h following a single pulmonary administration to mice was investigated by single photon emission computed tomography and X-ray computed tomography imaging and terminal biodistribution studies. 111In labelled albumin nanoparticles were cleared more slowly from the mouse lung than 111In albumin solution (64.1 ± 8.5% vs 40.6 ± 3.3% at t = 48 h, respectively), with significantly higher (P < 0.001) levels of albumin nanoparticle-associated radioactivity located within the lung tissue (23.3 ± 4.7%) compared to the lung fluid (16.1 ± 4.4%). Low amounts of 111In activity were detected in the liver, kidneys, and intestine at time points > 24 h indicating that small amounts of activity were cleared from the lungs both by translocation across the lung mucosal barrier, as well as mucociliary clearance. This study provides important information on the fate of albumin vehicles in the lungs, which may be used to direct future formulation design of inhaled nanomedicines.
Collapse
Affiliation(s)
- A Woods
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - A Patel
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Y Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - A Babin-Morgan
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - R T M de Rosales
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - K Sunassee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - S Clark
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - H Collins
- Division of Immunology, Infection & Inflammatory Diseases, Guy's Campus, King's College London, 15-16 Newcomen Street, London SE1 1UL, United Kingdom
| | - K Bruce
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - L A Dailey
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - B Forbes
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| |
Collapse
|