1
|
Zhang Y, Yin X, Zheng X. The relationship between PM2.5 and the onset and exacerbation of childhood asthma: a short communication. Front Pediatr 2023; 11:1191852. [PMID: 37593445 PMCID: PMC10429171 DOI: 10.3389/fped.2023.1191852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Much is known about the link between air pollution and asthma in adults, particularly fine particulate matter (PM2.5). Studies have found that certain levels of fine PM2.5 can increase airway responsiveness and worsen asthma. PM2.5 may play a role in the onset and exacerbation of childhood asthma. However, there is little in the literature on how PM2.5 affects asthma attacks and exacerbations in children. Asthma is a common chronic disease in children, and air pollution can aggravate it. The effect of PM2.5 on childhood asthma needs further research. By evaluating, reviewing, and collating existing results in this area, this paper aims to explore the relationship between PM2.5 and asthma onset and exacerbation in children.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Tomonaga T, Izumi H, Nishida C, Kato K, Yatera K, Kuroda E, Morimoto Y. Suppression of Airway Allergic Reactions by a Photocatalytic Filter Using Mouse Model. TOXICS 2022; 10:toxics10010040. [PMID: 35051082 PMCID: PMC8781178 DOI: 10.3390/toxics10010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
Photocatalytic filters installed in air purifiers have been used to purify spaces by decomposing allergenic substances. However, we have not found any reports that evaluate the effectiveness of photocatalytic filters in suppressing allergic reactions in living organisms. In this study, we intratracheally instilled ovalbumin (OVA) into OVA-sensitized mice after the OVA was photocatalyzed by a titanium dioxide (TiO2) filter, and verified the experimental model for evaluating the allergy-suppressing effect of photocatalysts. Mice were sensitized to OVA (10 µg/mouse) four times, and were intratracheally instilled with OVA (10 µg/mouse) after photocatalysis three times. Non-sensitized animals were instilled with normal saline following the same exposure schedule. The mice were dissected 24 h after final exposure. The OVA after photocatalysis significantly decreased the number of eosinophils in bronchoalveolar lavage fluid, and the concentration of OVA-specific IgE and IgG1 in serum, which were elevated in untreated OVA. Moreover, our experimental model showed the suppression of allergic reactions in mice, along with the decomposition of OVA after photocatalysis using the photocatalytic filter. Taken together, our experimental model for evaluating allergic reactions in the respiratory tract suggested that the allergy-suppressing effect of the photocatalytic filter can be evaluated.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (Y.M.)
- Correspondence: ; Tel.: +81-93-691-7466; Fax: +81-93-691-4284
| | - Hiroto Izumi
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (Y.M.)
| | - Chinatsu Nishida
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (C.N.); (K.K.); (K.Y.)
| | - Kaori Kato
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (C.N.); (K.K.); (K.Y.)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (C.N.); (K.K.); (K.Y.)
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8131, Japan;
| | - Yasuo Morimoto
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (Y.M.)
| |
Collapse
|
3
|
Sun J, Shen Z, Niu X, Zhang Y, Zhang B, Zhang T, He K, Xu H, Liu S, Ho SSH, Li X, Cao J. Cytotoxicity and Potential Pathway to Vascular Smooth Muscle Cells Induced by PM 2.5 Emitted from Raw Coal Chunks and Clean Coal Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14482-14493. [PMID: 33138382 DOI: 10.1021/acs.est.0c02236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coal combustion emits a large amount of PM2.5 (particulate matters with aerodynamic diameters less than 2.5 μm) and causes adverse damages to the cardiovascular system. In this study, emissions from anthracite and bitumite were examined. Red mud (RM) acts as an additive and is mixed in coal briquettes with a content of 0-10% as a single variable to demonstrate the reduction in the PM2.5 emissions. Burnt in a regulated combustion chamber, the 10% RM-containing bitumite and anthracite briquettes showed 52.3 and 18.6% reduction in PM2.5, respectively, compared with their chunk coals. Lower cytotoxicity (in terms of oxidative stresses and inflammation factors) was observed for PM2.5 emitted from the RM-containing briquettes than those from non-RM briquettes, especially for the bitumite groups. Besides, the results of western blotting illustrated that the inhibition of NF-κB and MAPK was the potential pathway for the reduction of cytokine levels by the RM addition. The regression analyses further demonstrated that the reduction was attributed to the lower emissions of transition metals (i.e., Mn) and PAHs (i.e., acenaphthene). This pilot study provides solid evidence for the cytotoxicity to vascular smooth muscle cells induced by PM2.5 from coal combustion and potential solutions for reducing the emission of toxic pollutants from human health perspectives.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Steven Sai Hang Ho
- Divison of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, United States
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| |
Collapse
|
4
|
Yu J, Tuo F, Luo Y, Xu J. Effect of gestational and lactational nonylphenol exposure on airway inflammation in ovalbumin-induced asthmatic rat pups. CHEMOSPHERE 2020; 250:126244. [PMID: 32113099 DOI: 10.1016/j.chemosphere.2020.126244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
To investigate the effect of gestational and lactational nonylphenol (NP) exposure on airway inflammation in ovalbumin (OVA)-induced asthmatic pups. Dams were gavaged with NP at dose levels of 25 mg/kg/day (low dose), 50 mg/kg/day (middle dose), 100 mg/kg/day (high dose) and groundnut oil alone (vehicle control) respectively from gestational day 7 to postnatal day 21. The results showed that the NP content in the lung tissues of pups in the 100 mg/kg NP group was significantly higher than that of the control group (P = 0.004). In the 100 mg/kg NP group, the infiltration of lymphocytes and eosinophils with thicken smooth muscle layer and inflammatory cells in the lumen were observed in the lung tissues of pups. Osmiophilic lamellar bodies were found in the cytoplasm of type II epithelial cells; mitochondria were clearly swollen. Compared with the control group, the levels of interleukin-4 (IL-4) in BALF (P = 0.042) and ovalbumin-specific serum immunoglobulin E (OVA-sIgE) (P = 0.005) in the OVA group were significantly higher. 25 mg/kg NP-OVA co-exposure synergistically decreased nuclear factor-κB (NF-κB) mRNA expression in the lung tissues of pups; Exposure to 50 mg/kg NP combined with OVA antagonized the increased expression of high mobility group box 1 (HMGB1) mRNA in the lung tissue. The combined exposure to 50 mg/kg NP and OVA synergistically increased HMGB1 protein expression in the lung tissues. 25 mg/kg NP-OVA co-exposure antagonized the increased nuclear factor-κB (NF-κB) protein expression in the lung tissues. There was a positive correlation between NP content and HMGB1 protein expression in the lung tissue of asthmatic pups (r = 0.602, P < 0.001). In conclusion, gestational and lactational exposure to 100 mg/kg NP in maternal rats exacerbated airway inflammation in OVA-induced asthmatic pups, and there is an interactive effect between NP and OVA. When the perinatal rats were exposed to 100 mg/kg NP, the levels of HMGB1 and NF-κB in the lung tissues of OVA-induced asthmatic pups were increased.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - FangXu Tuo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
5
|
Ge C, Hu L, Lou D, Li Q, Feng J, Wu Y, Tan J, Xu M. Nrf2 deficiency aggravates PM 2.5-induced cardiomyopathy by enhancing oxidative stress, fibrosis and inflammation via RIPK3-regulated mitochondrial disorder. Aging (Albany NY) 2020; 12:4836-4865. [PMID: 32182211 PMCID: PMC7138545 DOI: 10.18632/aging.102906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
PM2.5 is a well-known air pollutant threatening public health, and long-term exposure to PM2.5 increases the risk of cardiovascular diseases. Nrf2 plays a pivotal role in the amelioration of PM2.5-induced lung injury. However, if Nrf2 is involved in PM2.5-induced heart injury, and the underlying molecular mechanisms have not been explored. In this study, wild type (Nrf2+/+) and Nrf2 knockout (Nrf2-/-) mice were exposed to PM2.5 for 6 months. After PM2.5 exposure, Nrf2-/- mice developed severe physiological changes, lung injury and cardiac dysfunction. In the PM2.5-exposed hearts, Nrf2 deficiency caused significant collagen accumulation through promoting the expression of fibrosis-associated signals. Additionally, Nrf2-/- mice exhibited greater oxidative stress in cardiac tissues after PM2.5 exposure. Furthermore, PM2.5-induced inflammation in heart samples were accelerated in Nrf2-/- mice through promoting inhibitor of α/nuclear factor κB (IκBα/NF-κB) signaling pathways. We also found that Nrf2-/- aggravated autophagy initiation and glucose metabolism disorder in hearts of mice with PM2.5 challenge. Cardiac receptor-interacting protein kinase 3 (RIPK3) expression triggered by PM2.5 was further enhanced in mice with the loss of Nrf2. Collectively, these results suggested that strategies for enhancing Nrf2 could be used to treat PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| |
Collapse
|
6
|
Pang Y, Zhang B, Xing D, Shang J, Chen F, Kang H, Chu C, Li B, Wang J, Zhou L, Su X, Han B, Ning J, Li P, Ma S, Su D, Zhang R, Niu Y. Increased risk of carotid atherosclerosis for long-term exposure to indoor coal-burning pollution in rural area, Hebei Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113320. [PMID: 31610505 DOI: 10.1016/j.envpol.2019.113320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/12/2019] [Accepted: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Smoky coal burning is a predominant manner for heating and cooking in most rural areas, China. Air pollution is associated with the risk of atherosclerosis, however, the link between indoor air pollution induced by smoky coal burning and atherosclerosis is not very clear. Therefore, we designed a cross-sectional study to evaluate the association of long-term exposure to smoky coal burning pollutants with the risk of atherosclerosis. 426 and 326 participants were recruited from Nangong, China and assigned as the coal exposure and control group according to their heating and cooking way, respectively. The indoor air quality (PM2.5, CO, SO2) was monitored. The association between coal burning exposure and the prevalence of atherosclerosis was evaluated by unconditional logistic regression analysis, adjusted for confounding factors. The inflammatory cytokines mRNAs (IL-8, SAA1, TNF-α, CRP) expression in whole blood were examined by qPCR. People in the coal exposure group had a higher risk of carotid atherosclerosis compared with the control (risk ratio [RR], 1.434; 95% confidence interval [95%CI], 1.063 to 1.934; P = 0.018). The association was stronger in smokers, drinkers and younger (<45 years old) individuals. The elevation of IL-8 (0.24, 95%CI, 0.06-0.58; P < 0.05), CRP (0.37, 95%CI, 0.05-0.70; P < 0.05), TNF-α (0.41, 95%CI, 0.14-0.67; P < 0.01) mRNAs expression in whole blood were positively related to coal exposure. Our results suggested long-term exposure to smoky coal burning emissions could increase the risk of carotid atherosclerosis. The potential mechanism might relate that coal burning emissions exposure induced inflammatory cytokines elevation which had adverse effects on atherosclerotic plaque, and then promoted the development of atherosclerosis.
Collapse
Affiliation(s)
- Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Boyuan Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Dongmei Xing
- Department of Internal Medicine-Cardiovascular, Nangong Jinan Great Wall Hospital, Nangong 051800, PR China
| | - Jinmei Shang
- Department of Internal Medicine-Cardiovascular, Nangong Jinan Great Wall Hospital, Nangong 051800, PR China
| | - Fengge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050000, PR China
| | - Hui Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Juan Wang
- Department of Internal Medicine-Cardiovascular, Nangong Jinan Great Wall Hospital, Nangong 051800, PR China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Peiyuan Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shitao Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Dong Su
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| |
Collapse
|