1
|
Zounemat Kermani N, Chung KF, Macis G, Santini G, Clemeno FAA, Versi A, Sun K, Abdel-Aziz MI, Andersson LI, Auffray C, Badi Y, Bakke P, Brightling C, Brinkman P, Caruso M, Chanez P, De Meulder B, Djukanovic R, Fabbri L, Fowler SJ, Horvath I, Howarth P, James AJ, Kolmert J, Kraft M, Li CX, Maitland-van der Zee AH, Malerba M, Papi A, Rabe K, Sanak M, Shaw DE, Singh D, Sparreman Mikus M, van Den Berge M, Wheelock AM, Wheelock CE, Yasinska V, Guo YK, Wagers S, Barnes PJ, Bush A, Sterk PJ, Dahlen SE, Adcock IM, Siddiqui S, Montuschi P. Radiomultiomics: quantitative CT clusters of severe asthma associated with multiomics. Eur Respir J 2024; 64:2400207. [PMID: 39401856 PMCID: PMC11579543 DOI: 10.1183/13993003.00207-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Lung quantitative computed tomography (qCT) severe asthma clusters have been reported, but their replication and underlying disease mechanisms are unknown. We identified and replicated qCT clusters of severe asthma in two independent asthma cohorts and determined their association with molecular pathways, using radiomultiomics, integrating qCT, multiomics and machine learning/artificial intelligence. METHODS We used consensus clustering on qCT measurements of airway and lung CT scans, performed in 105 severe asthmatic adults from the U-BIOPRED cohort. The same qCT measurements were used to replicate qCT clusters in a subsample of the ATLANTIS asthma cohort (n=97). We performed integrated enrichment analysis using blood, sputum, bronchial biopsies, bronchial brushings and nasal brushings transcriptomics and blood and sputum proteomics to characterise radiomultiomic-associated clusters (RACs). RESULTS qCT clusters and clinical features in U-BIOPRED were replicated in the matched ATLANTIS cohort. In the U-BIOPRED cohort, RAC1 (n=30) was predominantly female with elevated body mass index, mild airflow limitation, decreased CT lung volume and increased lung density and upregulation of the complement pathway. RAC2 (n=34) subjects had airway wall thickness and a mild degree of airflow limitation, with upregulation of proliferative pathways including neurotrophic receptor tyrosine kinase 2/tyrosine kinase receptor B, and downregulation of semaphorin pathways. RAC3 (n=41) showed increased lung attenuation area and air trapping, severe airflow limitation, hyperinflation, and upregulation of cytokine signalling and signalling by interleukin pathways, and matrix metallopeptidase 1, 2 and 9. CONCLUSIONS U-BIOPRED severe asthma qCT clusters were replicated in a matched independent asthmatic cohort and associated with specific molecular pathways. Radiomultiomics might represent a novel strategy to identify new molecular pathways in asthma pathobiology.
Collapse
Affiliation(s)
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, London, UK
| | - Giuseppe Macis
- Radiology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Santini
- Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Franz A A Clemeno
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Ali Versi
- Data Science Institute, Imperial College London, London, UK
| | - Kai Sun
- Data Science Institute, Imperial College London, London, UK
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars I Andersson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Yusef Badi
- Data Science Institute, Imperial College London, London, UK
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Chris Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- AP-HM - Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Leonardo Fabbri
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Peter Howarth
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Anna J James
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Monica Kraft
- Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Chuan-Xing Li
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alberto Papi
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Klaus Rabe
- LungenClinic Grosshansdorf and Department of Medicine, Christian Albrechts University, Airway Research Center North within the German Center for Lung Research (DZL), Kiel, Germany
| | - Marek Sanak
- Division of Clinical Genetics and Molecular Biology, Department of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Manchester University NHS Foundation Hospital Trust, University of Manchester, Manchester, UK
| | | | - Maarten van Den Berge
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Asa M Wheelock
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Valentyna Yasinska
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yi-Ke Guo
- Data Science Institute, Imperial College London, London, UK
| | | | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Sterk
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sven-Erik Dahlen
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, UK
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| | - Paolo Montuschi
- National Heart and Lung Institute, Imperial College London, London, UK
- Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
- I.M. Adcock, S. Siddiqui and P. Montuschi contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
2
|
Hsieh MH, Chen PC, Hsu HY, Liu JC, Ho YS, Lin YJ, Kuo CW, Kuo WS, Kao HF, Wang SD, Liu ZG, Wu LSH, Wang JY. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol 2023; 20:38-50. [PMID: 36376488 PMCID: PMC9794778 DOI: 10.1038/s41423-022-00946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Increased levels of surfactant protein D (SP-D) and lipid-laden foamy macrophages (FMs) are frequently found under oxidative stress conditions and/or in patients with chronic obstructive pulmonary disease (COPD) who are also chronically exposed to cigarette smoke (CS). However, the roles and molecular mechanisms of SP-D and FMs in COPD have not yet been determined. In this study, increased levels of SP-D were found in the bronchoalveolar lavage fluid (BALF) and sera of ozone- and CS-exposed mice. Furthermore, SP-D-knockout mice showed increased lipid-laden FMs and airway inflammation caused by ozone and CS exposure, similar to that exhibited by our study cohort of chronic smokers and COPD patients. We also showed that an exogenous recombinant fragment of human SP-D (rfhSP-D) prevented the formation of oxidized low-density lipoprotein (oxLDL)-induced FMs in vitro and reversed the airway inflammation and emphysematous changes caused by oxidative stress and CS exposure in vivo. SP-D upregulated bone marrow-derived macrophage (BMDM) expression of genes involved in countering the oxidative stress and lipid metabolism perturbations induced by CS and oxLDL. Our study demonstrates the crucial roles of SP-D in the lipid homeostasis of dysfunctional alveolar macrophages caused by ozone and CS exposure in experimental mouse emphysema, which may provide a novel opportunity for the clinical application of SP-D in patients with COPD.
Collapse
Affiliation(s)
- Miao-Hsi Hsieh
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Pei-Chi Chen
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Han-Yin Hsu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Jui-Chang Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yu-Sheng Ho
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yuh Jyh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan, China
| | - Chin-Wei Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Wen-Shuo Kuo
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Shulhn-Der Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lawrence Shih-Hsin Wu
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, China.
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Department of Allergy, Immunology, and Rheumatology (AIR), China Medical University Children's Hospital, Taichung, Taiwan, China.
| |
Collapse
|
3
|
Albert K, Krischer JM, Pfaffenroth A, Wilde S, Lopez-Rodriguez E, Braun A, Smith BJ, Knudsen L. Hidden Microatelectases Increase Vulnerability to Ventilation-Induced Lung Injury. Front Physiol 2020; 11:530485. [PMID: 33071807 PMCID: PMC7530907 DOI: 10.3389/fphys.2020.530485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Mechanical ventilation of lungs suffering from microatelectases may trigger the development of acute lung injury (ALI). Direct lung injury by bleomycin results in surfactant dysfunction and microatelectases at day 1 while tissue elastance and oxygenation remain normal. Computational simulations of alveolar micromechanics 1-day post-bleomycin predict persisting microatelectases throughout the respiratory cycle and increased alveolar strain during low positive end-expiratory pressure (PEEP) ventilation. As such, we hypothesize that mechanical ventilation in presence of microatelectases, which occur at low but not at higher PEEP, aggravates and unmasks ALI in the bleomycin injury model. Rats were randomized and challenged with bleomycin (B) or not (H = healthy). One day after bleomycin instillation the animals were ventilated for 3 h with PEEP 1 (PEEP1) or 5 cmH2O (PEEP5) and a tidal volume of 10 ml/kg bodyweight. Tissue elastance was repetitively measured after a recruitment maneuver to investigate the degree of distal airspace instability. The right lung was subjected to bronchoalveolar lavage (BAL), the left lung was fixed for design-based stereology at light- and electron microscopic level. Prior to mechanical ventilation, lung tissue elastance did not differ. During mechanical ventilation tissue elastance increased in bleomycin-injured lungs ventilated with PEEP = 1 cmH2O but remained stable in all other groups. Measurements at the conclusion of ventilation showed the largest time-dependent increase in tissue elastance after recruitment in B/PEEP1, indicating increased instability of distal airspaces. These lung mechanical findings correlated with BAL measurements including elevated BAL neutrophilic granulocytes as well as BAL protein and albumin in B/PEEP1. Moreover, the increased septal wall thickness and volume of peri-bronchiolar-vascular connective tissue in B/PEEP1 suggested aggravation of interstitial edema by ventilation in presence of microatelectases. At the electron microscopic level, the largest surface area of injured alveolar epithelial was observed in bleomycin-challenged lungs after PEEP = 1 cmH2O ventilation. After bleomycin treatment cellular markers of endoplasmic reticulum stress (p-Perk and p-EIF-2α) were positive within the septal wall and ventilation with PEEP = 1 cmH2O ventilation increased the surface area stained positively for p-EIF-2α. In conclusion, hidden microatelectases are linked with an increased pulmonary vulnerability for mechanical ventilation characterized by an aggravation of epithelial injury.
Collapse
Affiliation(s)
- Karolin Albert
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Jeanne-Marie Krischer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Alexander Pfaffenroth
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Sabrina Wilde
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany.,Institute for Functional Anatomy, Charité, Berlin, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design and Computing, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hanover, Germany
| |
Collapse
|
4
|
Ahrendt N, Steingrüber T, Rajces A, Lopez-Rodriguez E, Eisenberg T, Magnes C, Madeo F, Sedej S, Schmiedl A, Ochs M, Mühlfeld C, Schipke J. Spermidine supplementation and voluntary activity differentially affect obesity-related structural changes in the mouse lung. Am J Physiol Lung Cell Mol Physiol 2020; 319:L312-L324. [PMID: 32521164 DOI: 10.1152/ajplung.00423.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with lung function impairment and respiratory diseases; however, the underlying pathophysiological mechanisms are still elusive, and therapeutic options are limited. This study examined the effects of prolonged excess fat intake on lung mechanics and microstructure and tested spermidine supplementation and physical activity as intervention strategies. C57BL/6N mice fed control diet (10% fat) or high-fat diet (HFD; 60% fat) were left untreated or were supplemented with 3 mM spermidine, had access to running wheels for voluntary activity, or a combination of both. After 30 wk, lung mechanics was assessed, and left lungs were analyzed by design-based stereology. HFD exerted minor effects on lung mechanics and resulted in higher body weight and elevated lung, air, and septal volumes. The number of alveoli was higher in HFD-fed animals. This was accompanied by an increase in epithelial, but not endothelial, surface area. Moreover, air-blood barrier and endothelium were significantly thicker. Neither treatment affected HFD-related body weights. Spermidine lowered lung volumes as well as endothelial and air-blood barrier thicknesses toward control levels and substantially increased the endothelial surface area under HFD. Activity resulted in decreased volumes of lung, septa, and septal compartments but did not affect vascular changes in HFD-fed mice. The combination treatment showed no additive effect. In conclusion, excess fat consumption induced alveolar capillary remodeling indicative of impaired perfusion and gas diffusion. Spermidine alleviated obesity-related endothelial alterations, indicating a beneficial effect, whereas physical activity reduced lung volumes apparently by other, possibly systemic effects.
Collapse
Affiliation(s)
- Nancy Ahrendt
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tobias Steingrüber
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Alexandra Rajces
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Christoph Magnes
- Joanneum Research, HEALTH-Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
5
|
Giraudo C, Evangelista L, Fraia AS, Lupi A, Quaia E, Cecchin D, Casali M. Molecular Imaging of Pulmonary Inflammation and Infection. Int J Mol Sci 2020; 21:ijms21030894. [PMID: 32019142 PMCID: PMC7037834 DOI: 10.3390/ijms21030894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Infectious and inflammatory pulmonary diseases are a leading cause of morbidity and mortality worldwide. Although infrequently used in this setting, molecular imaging may significantly contribute to their diagnosis using techniques like single photon emission tomography (SPET), positron emission tomography (PET) with computed tomography (CT) or magnetic resonance imaging (MRI) with the support of specific or unspecific radiopharmaceutical agents. 18F-Fluorodeoxyglucose (18F-FDG), mostly applied in oncological imaging, can also detect cells actively involved in infectious and inflammatory conditions, even if with a low specificity. SPET with nonspecific (e.g., 67Gallium-citrate (67Ga citrate)) and specific tracers (e.g., white blood cells radiolabeled with 111Indium-oxine (111In) or 99mTechnetium (99mTc)) showed interesting results for many inflammatory lung diseases. However, 67Ga citrate is unfavorable by a radioprotection point of view while radiolabeled white blood cells scan implies complex laboratory settings and labeling procedures. Radiolabeled antibiotics (e.g., ciprofloxacin) have been recently tested, although they seem to be quite unspecific and cause antibiotic resistance. New radiolabeled agents like antimicrobic peptides, binding to bacterial cell membranes, seem very promising. Thus, the aim of this narrative review is to provide a comprehensive overview about techniques, including PET/MRI, and tracers that can guide the clinicians in the appropriate diagnostic pathway of infectious and inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Chiara Giraudo
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
- Correspondence: ; Tel.: +39-049-821-2357; Fax: +39-049-821-1878
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
| | - Anna Sara Fraia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Amalia Lupi
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Emilio Quaia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| | - Massimiliano Casali
- Azienda Unità Sanitaria Locale–IRCCS di Reggio Emilia, 42121 Reggio Emilia, Italy;
| |
Collapse
|
6
|
Guo CJ, Atochina-Vasserman EN, Abramova E, Smith LC, Beers MF, Gow AJ. Surfactant protein-D modulation of pulmonary macrophage phenotype is controlled by S-nitrosylation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L539-L549. [PMID: 31411060 DOI: 10.1152/ajplung.00506.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.
Collapse
Affiliation(s)
- Chang-Jiang Guo
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | | | - Elena Abramova
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ley Cody Smith
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Michael F Beers
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Gow
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
7
|
Hollenbach J, Lopez-Rodriguez E, Mühlfeld C, Schipke J. Voluntary Activity Modulates Sugar-Induced Elastic Fiber Remodeling in the Alveolar Region of the Mouse Lung. Int J Mol Sci 2019; 20:ijms20102438. [PMID: 31108840 PMCID: PMC6567106 DOI: 10.3390/ijms20102438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023] Open
Abstract
Diabetes and respiratory diseases are frequently comorbid conditions. However, the mechanistic links between hyperglycemia and lung dysfunction are not entirely understood. This study examined the effects of high sucrose intake on lung mechanics and alveolar septal composition and tested voluntary activity as an intervention strategy. C57BL/6N mice were fed a control diet (CD, 7% sucrose) or a high sucrose diet (HSD, 35% sucrose). Some animals had access to running wheels (voluntary active; CD-A, HSD-A). After 30 weeks, lung mechanics were assessed, left lungs were used for stereological analysis and right lungs for protein expression measurement. HSD resulted in hyperglycemia and higher static compliance compared to CD. Lung and septal volumes were increased and the septal ratio of elastic-to-collagen fibers was decreased despite normal alveolar epithelial volumes. Elastic fibers appeared more loosely arranged accompanied by an increase in elastin protein expression. Voluntary activity prevented hyperglycemia in HSD-fed mice. The parenchymal airspace volume, but not the septal volume, was increased. The septal extracellular matrix (ECM) composition together with the protein expression of ECM components was similar to control levels in the HSD-A-group. In conclusion, HSD was associated with elastic fiber remodeling and reduced pulmonary elasticity. Voluntary activity alleviated HSD-induced ECM alterations, possibly by preventing hyperglycemia.
Collapse
Affiliation(s)
- Julia Hollenbach
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| |
Collapse
|
8
|
|
9
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation. PLoS Comput Biol 2017; 13:e1005570. [PMID: 28837561 PMCID: PMC5570219 DOI: 10.1371/journal.pcbi.1005570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 05/12/2017] [Indexed: 01/06/2023] Open
Abstract
Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at airway opening, to a greater extent than overt acinar wall destruction. Model-predicted deficits in PEEP-dependent lung recruitment correlate with altered lung lining fluid composition independent of age or genotype. Aging and chronic inflammation produce complex changes to the structure of the lung including accumulation of cells and debris, thinning and destruction of air sacs, altered airway size and increased tendency for airway collapse. As these structural changes are observed concurrently, their individual contributions to altered lung function cannot readily be determined by conventional measurement of lung function. Our study employs a novel approach to identifying the age progression of these effects in mice with and without chronic lung inflammation. Histologic changes in lung tissue were incorporated into a computational model of the mouse lung and used to simulate measured changes in lung function. By incorporating experimentally measured factors into the model in a stepwise fashion, the contribution of destructive and remodeling processes to alterations in lung function can be assessed. This modeling approach provides a framework for determining the significance of structural changes to the altered function observed in complex lung pathologies such as emphysema and chronic obstructive pulmonary disease. Such an approach could be utilized to assess mechanisms by which compounds alter lung function and the capacity of specific therapies to produce improvements in lung function at the organ level.
Collapse
|
11
|
Meyerholz DK, Sieren JC, Beck AP, Flaherty HA. Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 2017; 55:42-52. [PMID: 28812529 DOI: 10.1177/0300985817726117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation is a common feature in several types of lung disease and is a frequent end point to validate lung disease models, evaluate genetic or environmental impact on disease severity, or test the efficacy of new therapies. Questions relevant to a study should be defined during experimental design and techniques selected to specifically address these scientific queries. In this review, the authors focus primarily on the breadth of techniques to evaluate lung inflammation that have both clinical and preclinical applications. Stratification of approaches to assess lung inflammation can diminish weaknesses inherent to each technique, provide data validation, and increase the reproducibility of a study. Specialized techniques (eg, imaging, pathology) often require experienced personnel to collect, evaluate, and interpret the data; these experts should be active contributors to the research team through reporting of the data. Scoring of tissue lesions is a useful method to transform observational pathologic data into semiquantitative or quantitative data for statistical analysis and enhanced rigor. Each technique to evaluate lung inflammation has advantages and limitations; understanding these parameters can help identify approaches that best complement one another to increase the rigor and translational significance of data.
Collapse
Affiliation(s)
- David K Meyerholz
- 1 Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica C Sieren
- 2 Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amanda P Beck
- 4 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heather A Flaherty
- 5 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Schneider JP, Arkenau M, Knudsen L, Wedekind D, Ochs M. Lung remodeling in aging surfactant protein D deficient mice. Ann Anat 2017; 211:158-175. [DOI: 10.1016/j.aanat.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/13/2023]
|
13
|
Steffen L, Ruppert C, Hoymann HG, Funke M, Ebener S, Kloth C, Mühlfeld C, Ochs M, Knudsen L, Lopez-Rodriguez E. Surfactant replacement therapy reduces acute lung injury and collapse induration-related lung remodeling in the bleomycin model. Am J Physiol Lung Cell Mol Physiol 2017; 313:L313-L327. [PMID: 28450283 DOI: 10.1152/ajplung.00033.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 12/13/2022] Open
Abstract
Bleomycin-induced lung injury leads to surfactant dysfunction and permanent loss of alveoli due to a remodeling process called collapse induration. Collapse induration also occurs in acute interstitial lung disease and idiopathic pulmonary fibrosis in humans. We hypothesized that surfactant dysfunction aggravates lung injury and early remodeling resulting in collapse induration within 7 days after lung injury. Rats received bleomycin to induce lung injury and either repetitive surfactant replacement therapy (SRT: 100 mg Curosurf/kg BW = surf group) or saline (0.9% NaCl = saline group). After 3 (D3) or 7 (D7) days, invasive pulmonary function tests were performed to determine tissue elastance (H) and static compliance (Cst). Bronchoalveolar lavage (BAL) was taken for surfactant function, inflammatory markers, and protein measurements. Lungs were fixed by vascular perfusion for design-based stereology and electron microscopic analyses. SRT significantly improved minimum surface tension of alveolar surfactant as well as H and Cst at D3 and D7. At D3 decreased inflammatory markers including neutrophilic granulocytes, IL-1β, and IL-6 correlated with reduced BAL-protein levels after SRT. Numbers of open alveoli were significantly increased at D3 and D7 in SRT groups whereas at D7 there was also a significant reduction in septal wall thickness and parenchymal tissue volume. Septal wall thickness and numbers of open alveoli highly correlated with improved lung mechanics after SRT. In conclusion, reduction in surface tension was effective to stabilize alveoli linked with an attenuation of parameters of acute lung injury at D3 and collapse induration at D7. Hence, SRT modifies disease progression to collapse induration.
Collapse
Affiliation(s)
- Lilian Steffen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Germany, and Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Heinz-Gerd Hoymann
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Manuela Funke
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | - Simone Ebener
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | - Christina Kloth
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany; .,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| |
Collapse
|
14
|
Knudsen L, Ruppert C, Ochs M. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res 2016; 367:607-626. [PMID: 27981380 DOI: 10.1007/s00441-016-2543-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. .,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg, Giessen, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
PET imaging approaches for inflammatory lung diseases: Current concepts and future directions. Eur J Radiol 2016; 86:371-376. [PMID: 27663638 DOI: 10.1016/j.ejrad.2016.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 11/21/2022]
Abstract
Inflammatory lung disease is one of the most common clinical scenarios, and yet, it is often poorly understood. Inflammatory lung disorders, such as chronic obstructive pulmonary diseases, which are causing significant mortality and morbidity, have limited therapeutic options. Recently, new treatments have become available for pulmonary fibrosis. This review article will describe the new insights that are starting to be gained from positron emission tomography (PET) methods, by targeting molecular processes using dedicated radiotracers. Ultimately, this should aid in deriving better pathophysiological classification of these disorders, which will ultimately result in better evaluation of novel therapies.
Collapse
|