1
|
Wojnacki J, Lujan AL, Brouwers N, Aranda-Vallejo C, Bigliani G, Rodriguez MP, Foresti O, Malhotra V. Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules. Nat Commun 2023; 14:3710. [PMID: 37349283 PMCID: PMC10287693 DOI: 10.1038/s41467-023-39277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Agonist-mediated stimulated pathway of mucin and insulin release are biphasic in which rapid fusion of pre-docked granules is followed by slow docking and fusion of granules from the reserve pool. Here, based on a cell-culture system, we show that plasma membrane-located tetraspanin-8 sequesters syntaxin-2 to control mucin release. Tetraspanin-8 affects fusion of granules during the second phase of stimulated mucin release. The tetraspanin-8/syntaxin-2 complex does not contain VAMP-8, which functions with syntaxin-2 to mediate granule fusion. We suggest that by sequestering syntaxin-2, tetraspanin-8 prevents docking of granules from the reserve pool. In the absence of tetraspanin-8, more syntaxin-2 is available for docking and fusion of granules and thus doubles the quantities of mucins secreted. This principle also applies to insulin release and we suggest a cell type specific Tetraspanin/Syntaxin combination is a general mechanism regulating the fusion of dense core granules.
Collapse
Affiliation(s)
- José Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
2
|
Modaresi MA, Shirani E. Mucociliary clearance affected by mucus-periciliary interface stimulations using analytical solution during cough and sneeze. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:201. [PMID: 36883183 PMCID: PMC9983542 DOI: 10.1140/epjp/s13360-023-03796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Assessment of mucus velocity variations under different conditions including viscosity variation and boundary conditions is useful to develop mucosal-based medical treatments. This paper deals with the analytical investigation of mucus-periciliary velocities under mucus-periciliary interface movements and mucus viscosity variations. The results for mucus velocity show that there is no difference between the two cases under the free-slip condition. Therefore, power-law mucus can be substituted with a high viscosity Newtonian fluid since the upper boundary of the mucus layer is exposed to the free-slip condition. However, when the upper boundary of the mucus layer is under nonzero shear stress levels, including cough or sneeze, the assumption of a high viscosity Newtonian mucus layer is invalid. Moreover, mucus viscosity variations are investigated for both Newtonian and power-law mucus layers under sneeze and cough to propose a mucosal-based medical treatment. The results indicate by varying mucus viscosity up to a critical value, the direction of mucus movement changes. The critical values of viscosity in sneezing and coughing for Newtonian and power-law mucus layers are 10-4 and 5 × 10-5 and 0.0263 and 006.024 m2 s-1, respectively. Therefore, the pathogen entry into the respiratory system can be prevented by varying mucus viscosity during sneeze and cough.
Collapse
Affiliation(s)
- M. A. Modaresi
- Department of Mechanical Engineering, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| | - E. Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, P.O. Box 8415683111, Isfahan, Iran
| |
Collapse
|
3
|
Grebert C, Becq F, Vandebrouck C. Phospholipase C controls chloride-dependent short-circuit current in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 320:L205-L219. [PMID: 33236921 DOI: 10.1152/ajplung.00437.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloride secretion by airway epithelial cells is primordial for water and ion homeostasis and airways surface prevention of infections. This secretion is impaired in several human diseases, including cystic fibrosis, a genetic pathology due to CFTR gene mutations leading to chloride channel defects. A potential therapeutic approach is aiming at increasing chloride secretion either by correcting the mutated CFTR itself or by stimulating non-CFTR chloride channels at the plasma membrane. Here, we studied the role of phospholipase C in regulating the transepithelial chloride secretion in human airway epithelial 16HBE14o- and CFBE cells over-expressing wild type (WT)- or F508del-CFTR. Western blot analysis shows expression of the three endogenous phospholipase C (PLC) isoforms, namely, PLCδ1, PLCγ1, and PLCβ3 in 16HBE14o- cells. In 16HBE14o- cells, we performed Ussing chamber experiments after silencing each of these PLC isoforms or using the PLC inhibitor U73122 or its inactive analogue U73343. Our results show the involvement of PLCβ3 and PLCγ1 in CFTR-dependent short-circuit current activated by forskolin, but not of PLCδ1. In CFBE-WT CFTR and corrected CFBE-F508del CFTR cells, PLCβ3 silencing also inhibits CFTR-dependent current activated by forskolin and UTP-activated calcium-dependent chloride channels (CaCC). Our study supports the importance of PLC in maintaining CFTR-dependent chloride secretion over time, getting maximal CFTR-dependent current and increasing CaCC activation in bronchial epithelial cells.
Collapse
Affiliation(s)
- Chloé Grebert
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| |
Collapse
|
4
|
Skelin M, Bursa D, Kozina V, Winters T, Macan M, Urlin M. Key molecules in the GABA signalling pathway are present in mouse and human cervical tissue. Reprod Fertil Dev 2018; 30:1267-1275. [PMID: 29665953 DOI: 10.1071/rd17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/04/2018] [Indexed: 11/23/2022] Open
Abstract
Cervical mucus modulates fertility by cyclical changes of its biophysical and functional properties. Based on an analogy with bronchial goblet cells we set out to investigate the possible role of the gamma-aminobutyric acid (GABA) signalling pathway in the mediation of oestrogen-induced mucus secretion from endocervical secretory cells. The aim of the study was to examine the existence of GABAA receptor (GABAAR), glutamic acid decarboxylase 65/67 (GAD65/67) and vesicular GABA transporter (VGAT) in human and mouse cervical tissue. The mouse cervical tissue expressed GabaAR mRNA transcripts throughout the oestrous cycle. GABAAR-positive immunolabelling was present in the superficial layer of the mouse cervico-vaginal epithelium in pro-oestrus. Human cervical tissue showed the presence of GABAAR, GAD67 and VGAT mRNA transcripts and clear immunofluorescent signals of all three molecules were detected in the endocervical secretory epithelium. The results of this study confirmed that elements of the GABA signalling pathway are present in the secretory epithelium of mouse and human cervical tissue and that GABA signalling pathway could be considered a possible mediator in oestrogen regulation of mucus secretion in the endocervical glands.
Collapse
Affiliation(s)
- Marta Skelin
- Department of Histology and Embryology, University of Zagreb School of Medicine, Šalata 3, 10000 Zagreb, Croatia
| | - Danijel Bursa
- Department of Obstetrics and Gynaecology, Merkur Clinical Hospital, Zaj?eva 19, 10000 Zagreb, Croatia
| | - Viviana Kozina
- Department of Histology and Embryology, University of Zagreb School of Medicine, Šalata 3, 10000 Zagreb, Croatia
| | - Tristan Winters
- Medical Faculty Carl Gustav Carus, Institute of Physiological Chemistry Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Marija Macan
- Department of Gynaecological and Perinatal Pathology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Kišpati?eva 12, 10000 Zagreb, Croatia
| | - Marija Urlin
- Department of Histology and Embryology, University of Zagreb School of Medicine, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Abdullah LH, Coakley R, Webster MJ, Zhu Y, Tarran R, Radicioni G, Kesimer M, Boucher RC, Davis CW, Ribeiro CMP. Mucin Production and Hydration Responses to Mucopurulent Materials in Normal versus Cystic Fibrosis Airway Epithelia. Am J Respir Crit Care Med 2018; 197:481-491. [PMID: 29099608 PMCID: PMC5821906 DOI: 10.1164/rccm.201706-1139oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Cystic fibrosis (CF) airways disease produces a mucoobstructive lung phenotype characterized by airways mucus plugging, epithelial mucous cell metaplasia/hyperplasia, chronic infection, and inflammation. Simultaneous biochemical and functional in vivo studies of mucin synthesis and secretion from CF airways are not available. In vitro translational models may quantitate differential CF versus normal mucin and fluid secretory responses to infectious/inflammatory stimuli. OBJECTIVES We tested the hypothesis that CF airways exhibit defective epithelial fluid, but not mucin, secretory responses to bacterial/inflammatory host products. METHODS Well-differentiated primary human bronchial epithelial cultures were exposed to supernatant from mucopurulent material (SMM) from human CF airways as a test of bacterial/inflammatory host product stimulus. Human bronchial epithelia (HBE) with normal CF transmembrane conductance regulator function were compared with ΔF508/ΔF508 CF HBE. MEASUREMENTS AND MAIN RESULTS Acute (up to 60 min) SMM exposure promoted mucin secretion, but mucins were degraded by the proteolytic enzymes present in SMM. Chronic SMM exposure induced upregulation of mucin synthesis and storage and generated absolute increases in basal and stimulated mucin release in normal and CF cultures. These responses were similar in normal and CF cultures. In contrast, SMM produced a coordinated CF transmembrane conductance regulator-mediated Cl- secretory response in normal HBE, but not in CF HBE. The absence of the fluid secretory response in CF produced quantitatively more dehydrated mucus. CONCLUSIONS Our study reveals the interplay between regulation of mucin and fluid secretion rates in inflamed versus noninflamed conditions and why a hyperconcentrated mucus is produced in CF airways.
Collapse
Affiliation(s)
| | - Raymond Coakley
- Marsico Lung Institute and Cystic Fibrosis Research Center
- Department of Medicine
| | | | - Yunxiang Zhu
- Marsico Lung Institute and Cystic Fibrosis Research Center
| | - Robert Tarran
- Marsico Lung Institute and Cystic Fibrosis Research Center
- Department of Cell Biology and Physiology, and
| | | | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C. Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center
- Department of Medicine
| | - C. William Davis
- Marsico Lung Institute and Cystic Fibrosis Research Center
- Department of Cell Biology and Physiology, and
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center
- Department of Medicine
- Department of Cell Biology and Physiology, and
| |
Collapse
|
6
|
Vasquez PA, Jin Y, Palmer E, Hill D, Forest MG. Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures - Part I: Idealized Axisymmetric Swirling Flow. PLoS Comput Biol 2016; 12:e1004872. [PMID: 27494700 PMCID: PMC4975472 DOI: 10.1371/journal.pcbi.1004872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/15/2016] [Indexed: 01/26/2023] Open
Abstract
A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. In the lungs, the airway surface liquid protects the airway epithelium from inhaled pathogens and particulates. It is well known that failure to properly clear mucus from the airways leads to chronic, even fatal, lung infections. To date, there is no validated constitutive model capable of recapitulating mucus rheology under diverse, physiological stress and deformation conditions. This gap has hindered studies into the causal relationship between mucus rheology and mucociliary clearance. Our modeling-experimental approach fulfills several purposes: to implement linear and nonlinear constitutive modeling of mucus from micro- and macro-rheology, to test constitutive modeling in an independent experimental system, to build a coarse-grained model of the PCL-mucus boundary condition, to measure and understand modifications in mucociliary transport during and after deposition of a controlled drug concentration, to measure and simulate both the flow and stress fields throughout the mucus layer, and to measure and simulate how the advection profiles in the culture couple with diffusion of particulates landing on the air-mucus interface. These results lay the groundwork for extension of the code to three dimensions and more realistic metachronal wave boundary conditions, both in cell cultures and in airways.
Collapse
Affiliation(s)
- Paula A. Vasquez
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States of America
| | - Yuan Jin
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erik Palmer
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States of America
| | - David Hill
- Marsico Lung Institute & Cystic Fibrosis Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
8
|
Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease. Respir Res 2014; 15:113. [PMID: 25241909 PMCID: PMC4190389 DOI: 10.1186/s12931-014-0113-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022] Open
Abstract
Background Chronic bronchitis (CB) is one of the classic phenotypes of COPD. The aims of our study were to investigate genetic variants associated with COPD subjects with CB relative to smokers with normal spirometry, and to assess for genetic differences between subjects with CB and without CB within the COPD population. Methods We analyzed data from current and former smokers from three cohorts: the COPDGene Study; GenKOLS (Bergen, Norway); and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). CB was defined as having a cough productive of phlegm on most days for at least 3 consecutive months per year for at least 2 consecutive years. CB COPD cases were defined as having both CB and at least moderate COPD based on spirometry. Our primary analysis used smokers with normal spirometry as controls; secondary analysis was performed using COPD subjects without CB as controls. Genotyping was performed on Illumina platforms; results were summarized using fixed-effect meta-analysis. Results For CB COPD relative to smoking controls, we identified a new genome-wide significant locus on chromosome 11p15.5 (rs34391416, OR = 1.93, P = 4.99 × 10-8) as well as significant associations of known COPD SNPs within FAM13A. In addition, a GWAS of CB relative to those without CB within COPD subjects showed suggestive evidence for association on 1q23.3 (rs114931935, OR = 1.88, P = 4.99 × 10-7). Conclusions We found genome-wide significant associations with CB COPD on 4q22.1 (FAM13A) and 11p15.5 (EFCAB4A, CHID1 and AP2A2), and a locus associated with CB within COPD subjects on 1q23.3 (RPL31P11 and ATF6). This study provides further evidence that genetic variants may contribute to phenotypic heterogeneity of COPD. Trial registration ClinicalTrials.gov NCT00608764, NCT00292552 Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0113-2) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
|
10
|
Sears PR, Thompson K, Knowles MR, Davis CW. Human airway ciliary dynamics. Am J Physiol Lung Cell Mol Physiol 2012; 304:L170-83. [PMID: 23144323 DOI: 10.1152/ajplung.00105.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range.
Collapse
Affiliation(s)
- Patrick R Sears
- Cystic Fibrosis Center, University of North Carolina, 6026 Thurston-Bowles Bldg., CB7248, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
11
|
Burnstock G, Brouns I, Adriaensen D, Timmermans JP. Purinergic signaling in the airways. Pharmacol Rev 2012; 64:834-68. [PMID: 22885703 DOI: 10.1124/pr.111.005389] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
12
|
The role of purinergic signaling on deformation induced injury and repair responses of alveolar epithelial cells. PLoS One 2011; 6:e27469. [PMID: 22087324 PMCID: PMC3210789 DOI: 10.1371/journal.pone.0027469] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/17/2011] [Indexed: 01/11/2023] Open
Abstract
Cell wounding is an important driver of the innate immune response of ventilator-injured lungs. We had previously shown that the majority of wounded alveolus resident cells repair and survive deformation induced insults. This is important insofar as wounded and repaired cells may contribute to injurious deformation responses commonly referred to as biotrauma. The central hypothesis of this communication states that extracellular adenosine-5′ triphosphate (ATP) promotes the repair of wounded alveolus resident cells by a P2Y2-Receptor dependent mechanism. Using primary type 1 alveolar epithelial rat cell models subjected to micropuncture injury and/or deforming stress we show that 1) stretch causes a dose dependent increase in cell injury and ATP media concentrations; 2) enzymatic depletion of extracellular ATP reduces the probability of stretch induced wound repair; 3) enriching extracellular ATP concentrations facilitates wound repair; 4) purinergic effects on cell repair are mediated by ATP and not by one of its metabolites; and 5) ATP mediated cell salvage depends at least in part on P2Y2-R activation. While rescuing cells from wounding induced death may seem appealing, it is possible that survivors of membrane wounding become governors of a sustained pro-inflammatory state and thereby perpetuate and worsen organ function in the early stages of lung injury syndromes. Means to uncouple P2Y2-R mediated cytoprotection from P2Y2-R mediated inflammation and to test the preclinical efficacy of such an undertaking deserve to be explored.
Collapse
|
13
|
Bubar MJ, Stutz SJ, Cunningham KA. 5-HT(2C) receptors localize to dopamine and GABA neurons in the rat mesoaccumbens pathway. PLoS One 2011; 6:e20508. [PMID: 21687728 PMCID: PMC3110193 DOI: 10.1371/journal.pone.0020508] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/04/2011] [Indexed: 11/29/2022] Open
Abstract
The serotonin 5-HT2C receptor (5-HT2CR) is localized to the limbic-corticostriatal circuit, which plays an integral role in mediating attention, motivation, cognition, and reward processes. The 5-HT2CR is linked to modulation of mesoaccumbens dopamine neurotransmission via an activation of γ-aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA). However, we recently demonstrated the expression of the 5-HT2CR within dopamine VTA neurons suggesting the possibility of a direct influence of the 5-HT2CR upon mesoaccumbens dopamine output. Here, we employed double-label fluorescence immunochemistry with the synthetic enzymes for dopamine (tyrosine hydroxylase; TH) and GABA (glutamic acid decarboxylase isoform 67; GAD-67) and retrograde tract tracing with FluoroGold (FG) to uncover whether dopamine and GABA VTA neurons that possess 5-HT2CR innervate the nucleus accumbens (NAc). The highest numbers of FG-labeled cells were detected in the middle versus rostral and caudal levels of the VTA, and included a subset of TH- and GAD-67 immunoreactive cells, of which >50% also contained 5-HT2CR immunoreactivity. Thus, we demonstrate for the first time that the 5-HT2CR colocalizes in DA and GABA VTA neurons which project to the NAc, describe in detail the distribution of NAc-projecting GABA VTA neurons, and identify the colocalization of TH and GAD-67 in the same NAc-projecting VTA neurons. These data suggest that the 5-HT2CR may exert direct influence upon both dopamine and GABA VTA output to the NAc. Further, the indication that a proportion of NAc-projecting VTA neurons synthesize and potentially release both dopamine and GABA adds intriguing complexity to the framework of the VTA and its postulated neuroanatomical roles.
Collapse
Affiliation(s)
- Marcy J Bubar
- Department of Pharmacology and Toxicology and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | |
Collapse
|
14
|
Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Ann Am Thorac Soc 2011; 7:387-94. [PMID: 21030518 DOI: 10.1513/pats.201001-017aw] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic airway infection and inflammation are hallmarks of cystic fibrosis (CF) pulmonary disease. The altered airway environment resulting from infection and inflammation can affect the innate defense of the airway epithelia. Luminal bacterial and inflammatory stimuli trigger an adaptation in human airway epithelia, characterized by a hyperinflammatory response to inflammatory mediators, which is mediated by an expansion of the endoplasmic reticulum (ER) and its Ca(2+) stores. Recent studies demonstrated that a form of ER stress, the unfolded protein response (UPR), is activated in airway epithelia by bacterial infection-induced airway inflammation. UPR-dependent signaling is responsible for the ER Ca(2+) store expansion-mediated amplification of airway inflammatory responses. These studies highlight the functional importance of the UPR in airway inflammation and suggest that targeting the UPR may be a therapeutic strategy for airway diseases typified by chronic inflammation. This article reviews the contribution of airway epithelia to airway inflammatory responses, discusses how expansion of the ER Ca(2+) stores in inflamed airway epithelia contributes to airway inflammation, describes the functional role of the UPR in these processes, and discusses how UPR activation might be relevant for CF airways inflammatory disease.
Collapse
|
15
|
Okada SF, Zhang L, Kreda SM, Abdullah LH, Davis CW, Pickles RJ, Lazarowski ER, Boucher RC. Coupled nucleotide and mucin hypersecretion from goblet-cell metaplastic human airway epithelium. Am J Respir Cell Mol Biol 2010; 45:253-60. [PMID: 20935191 DOI: 10.1165/rcmb.2010-0253oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolite adenosine regulate airway mucociliary clearance via activation of purinoceptors. In this study, we investigated the contribution of goblet cells to airway epithelial ATP release. Primary human bronchial epithelial (HBE) cultures, typically dominated by ciliated cells, were induced to develop goblet cell metaplasia by infection with respiratory syncytial virus (RSV) or treatment with IL-13. Under resting conditions, goblet-cell metaplastic cultures displayed enhanced mucin secretion accompanied by increased rates of ATP release and mucosal surface adenosine accumulation as compared with nonmetaplastic control HBE cultures. Intracellular calcium chelation [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester] or disruption of the secretory pathways (nocodazole, brefeldin A, and N-ethylmaleimide) decreased mucin secretion and ATP release in goblet-cell metaplastic HBE cultures. Conversely, stimuli that triggered calcium-regulated mucin secretion (e.g., ionomycin or UTP) increased luminal ATP release and adenyl purine accumulation in control and goblet-cell metaplastic HBE cultures. Goblet cell-associated ATP release was not blocked by the connexin/pannexin hemichannel inhibitor carbenoxolone, suggesting direct nucleotide release from goblet cell vesicles rather than the hemichannel insertion. Collectively, our data demonstrate that nucleotide release is increased by goblet cell metaplasia, reflecting, at least in part, a mechanism tightly associated with goblet cell mucin secretion. Increased goblet cell nucleotide release and resultant adenosine accumulation provide compensatory mechanisms to hydrate mucins by paracrine stimulation of ciliated cell ion and water secretion and maintain mucociliary clearance, and to modulate inflammatory responses.
Collapse
Affiliation(s)
- Seiko F Okada
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Current Opinion in Pulmonary Medicine. Current world literature. Curr Opin Pulm Med 2009; 15:79-87. [PMID: 19077710 DOI: 10.1097/mcp.0b013e32831fb1f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Abstract
PURPOSE OF REVIEW Airway mucus plugging has long been recognized as a principal cause of death in asthma. However, molecular mechanisms of mucin overproduction and secretion have not been understood until recently. These mechanisms are reviewed together with ongoing investigations relating them to lung pathophysiology. RECENT FINDINGS Of the five secreted gel-forming mucins in mammals, only MUC5AC and MUC5B are produced in significant quantities in intrapulmonary airways. MUC5B is the principal gel-forming mucin at baseline in small airways of humans and mice, and therefore likely performs most homeostatic clearance functions. MUC5AC is the principal gel-forming mucin upregulated in airway inflammation and is under negative control by forkhead box a2 (Foxa2) and positive control by hypoxia inducible factor-1 (HIF-1). Mucin secretion is regulated separately from production, principally by extracellular triphosphate nucleotides that bind P2Y2 receptors on the lumenal surface of airway secretory cells, generating intracellular second messengers that activate the exocytic proteins, Munc13-2 and synaptotagmin-2. SUMMARY Markedly upregulated production of MUC5AC together with stimulated secretion leads to airflow obstruction in asthma. As MUC5B appears to mediate homeostatic functions, it may be possible to selectively inhibit MUC5AC production without impairing airway function. The precise roles of mucin hypersecretion in asthma symptoms such as dyspnea and cough and in physiologic phenomena such as airway hyperresponsiveness remain to be defined.
Collapse
|
18
|
Tuvim MJ, Mospan AR, Burns KA, Chua M, Mohler PJ, Melicoff E, Adachi R, Ammar-Aouchiche Z, Davis CW, Dickey BF. Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J Biol Chem 2009; 284:9781-7. [PMID: 19208631 DOI: 10.1074/jbc.m807849200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin 2 (Syt2) functions as a low affinity, fast exocytic Ca(2+) sensor in neurons, where it is activated by Ca(2+) influx through voltage-gated channels. Targeted insertion of lacZ into the mouse syt2 locus reveals expression in mucin-secreting goblet cells of the airways. In these cells, rapid Ca(2+) entry from the extracellular medium does not contribute significantly to stimulated secretion (Davis, C. W., and Dickey, B. F. (2008) Annu. Rev. Physiol. 70, 487-512). Nonetheless, Syt2(-/-) mice show a severe defect in acute agonist-stimulated airway mucin secretion, and Syt2(+/-) mice show a partial defect. In contrast to Munc13-2(-/-) mice (Zhu, Y., Ehre, C., Abdullah, L. H., Sheehan, J. K., Roy, M., Evans, C. M., Dickey, B. F., and Davis, C. W. (2008) J. Physiol. (Lond.) 586, 1977-1992), Syt2(-/-) mice show no spontaneous mucin accumulation, consistent with the inhibitory action of Syt2 at resting cytoplasmic Ca(2+) in neurons. In human airway goblet cells, inositol trisphosphate receptors are found in rough endoplasmic reticulum that closely invests apical mucin granules, consistent with the known dependence of exocytic Ca(2+) signaling on intracellular stores in these cells. Hence, Syt2 can serve as an exocytic sensor for diverse Ca(2+) signaling systems, and its levels are limiting for stimulated secretory function in airway goblet cells.
Collapse
Affiliation(s)
- Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gally F, Hartney JM, Janssen WJ, Perraud AL. CD38 plays a dual role in allergen-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol 2008; 40:433-42. [PMID: 18931329 DOI: 10.1165/rcmb.2007-0392oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional surface protein CD38 acts as a receptor with ecto-enzymatic activity, hydrolyzing NAD to generate several products known to exhibit Ca2+-mobilizing properties. Although CD38 is a convenient marker of immune cell development, and an indicator of progression for several diseases, it is not restricted to the immune compartment. To determine the potentially multilayered involvement of CD38 in allergen-induced airway inflammation and hyperreactivity, we dissected the potential role of CD38 as a regulator of immunity, but also pulmonary function. CD38-deficient and wild-type (WT) mice were sensitized and airway challenged with ovalbumin, and subsequently analyzed regarding their level of airway hyperresponsiveness (AHR) in response to methacholine. Parameters of lung inflammation were also analyzed. Similar sets of measurements were obtained from reciprocal bone marrow swapping experiments between CD38(-/-) and WT mice. Mice lacking CD38 exhibit strongly reduced AHR, which is accompanied by a decrease in typical hallmarks of pulmonary inflammation, including eosinophilia and lymphocytic lung infiltrates, as well as Th2-cytokine levels (IL-4, -5, and -13). Antigen-specific immunoglobulin (Ig)E and IgG1 antibody titers are substantially reduced, consistent with CD38 being crucial for mounting a primary humoral systemic immune response. Reconstitution of lethally irradiated, lung-shielded, CD38-deficient mice with WT bone marrow does not restore WT levels of airway hyperreactivity, nor mucus secretion. The opposite experiment, transferring CD38(-/-) bone marrow into WT mice, also shows reduced AHR levels. These studies demonstrate that CD38 not only acts as a key modulator of the immune response, but also plays an equally important role as an intrinsic pulmonary component.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Immunology, National Jewish Health, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Major advances in understanding regulated mucin secretion from airway goblet cells have been made in the past decade in the areas of pharmacology and basic cell biology. For instance, it is now appreciated that nucleotide agonists acting locally through P2Y purinoceptors on apical membranes of surface goblet cells provide the major regulatory system for mucin secretion. Similarly, Clara cells, the primary secretory cell in the mouse airways (and human small airways), are now recognized as major mucin-secreting cells. In Clara cells, the relative lack of staining for mucosubstances reflects essentially equal baseline rates of mucin synthesis and secretion, with little to no accumulation of mucin granules in storage pools. During mucous metaplasia induced under inflammatory conditions, mucin synthesis is massively upregulated in Clara cells, and stored mucin granules come to dominate the secretory cell phenotype. More importantly, we have seen a transition in the past few years from a pharmacological focus on regulated mucin secretion to a more molecular mechanistic focus that has great promise going forward. In part, these advances are occurring through the use of well-differentiated primary human bronchial epithelial cell cultures, but recent work in mouse models perhaps has had the most important impact. Emerging data from Munc13-2- and synaptotagmin 2-deficient mouse models represent the first direct, molecular-level manipulations of proteins involved in regulated secretory cell mucin secretion. These new data indicate that Munc13-2 is responsible for regulating a baseline mucin secretory pathway in the airways and is not essential for purinergic agonist-induced mucin secretion. In contrast, synaptotagmin 2, a fast Ca2+ sensor for the SNARE complex, is essential for regulated secretion. Interestingly, these early results suggest that there are two pathways for excocytic mucin release from goblet cells.
Collapse
Affiliation(s)
- C William Davis
- Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | |
Collapse
|
21
|
van der Vliet A. NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 2008; 44:938-55. [PMID: 18164271 PMCID: PMC2323509 DOI: 10.1016/j.freeradbiomed.2007.11.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/19/2007] [Accepted: 11/28/2007] [Indexed: 02/04/2023]
Abstract
The deliberate production of reactive oxygen species (ROS) by phagocyte NADPH oxidase is widely appreciated as a critical component of antimicrobial host defense. Recently, additional homologs of NADPH oxidase (NOX) have been discovered throughout the animal and plant kingdoms, which appear to possess diverse functions in addition to host defense, in cell proliferation, differentiation, and in regulation of gene expression. Several of these NOX homologs are also expressed within the respiratory tract, where they participate in innate host defense as well as in epithelial and inflammatory cell signaling and gene expression, and fibroblast and smooth muscle cell proliferation, in response to bacterial or viral infection and environmental stress. Inappropriate expression or activation of NOX/DUOX during various lung pathologies suggests their specific involvement in respiratory disease. This review summarizes the current state of knowledge regarding the general functional properties of mammalian NOX enzymes, and their specific importance in respiratory tract physiology and pathology.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology, Vermont Lung Center, College of Medicine, University of Vermont, D205 Given Building, 89 Beaumont Ave., Burlington, VT 05405, USA.
| |
Collapse
|
22
|
Zhu Y, Ehre C, Abdullah LH, Sheehan JK, Roy M, Evans CM, Dickey BF, Davis CW. Munc13-2-/- baseline secretion defect reveals source of oligomeric mucins in mouse airways. J Physiol 2008; 586:1977-92. [PMID: 18258655 DOI: 10.1113/jphysiol.2007.149310] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Since the airways of control mouse lungs contain few alcian blue/periodic acid-Schiff's (AB/PAS)+ staining 'goblet' cells in the absence of an inflammatory stimulus such as allergen sensitization, it was surprising to find that the lungs of mice deficient for the exocytic priming protein Munc13-2 stain prominently with AB/PAS under control conditions. Purinergic agonists (ATP/UTP) stimulated release of accumulated mucins in the Munc13-2-deficient airways, suggesting that the other airway isoform, Munc13-4, supports agonist-regulated secretion. Notably, however, not all of the mucins in Munc13-2-deficient airways were secreted, suggesting a strict Munc13-2 priming requirement for a population of secretory granules. AB/PAS+ staining of Munc13-2-deficient airways was not caused by an inflammatory, metaplastic-like response: bronchial-alveolar lavage leucocyte numbers, Muc5ac and Muc5b mRNA levels, and Clara cell ultrastructure (except for increased secretory granule numbers) were all normal. A Muc5b-specific antibody indicated the presence of this mucin in Clara cells of wildtype (WT) control mice, and increased amounts in Munc13-2-deficient mice. Munc13-2 therefore appears to prime a regulated, baseline secretory pathway, such that Clara cell Muc5b, normally secreted soon after synthesis, accumulates in the gene-deficient animals, making them stain AB/PAS+. The defective priming phenotype is widespread, as goblet cells of several mucosal tissues appear engorged and Clara cells accumulated Clara cell secretory protein (CCSP) in Munc13-2-deficient mice. Additionally, because in the human airways, MUC5AC localizes to the surface epithelium and MUC5B to submucosal glands, the finding that Muc5b is secreted by Clara cells under control conditions may indicate that it is also secreted tonically from human bronchiolar Clara cells.
Collapse
Affiliation(s)
- Yunxiang Zhu
- Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | | | | | | | | | | | | | | |
Collapse
|